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THE GENERALIZED GIBBS PHENOMENON
FOR REGULAR HAUSDORFF MEANS

JONAH M A N N AND DONALD J. NEWMAN

One says that the means σn(x)9 of the Fourier series of
a function /(#), exhibit the (generalized) Gibbs phenomenon
at the point x = x0 if the interval between the upper and
lower limit of σn(x), as n ~->oo and x -»x0 independently,
contains points outside the interval between the upper and
lower limits of f(x) as x —> x0. Theorem. In order that the
Hausdorff summability method given by g(t) not display the
Gibbs phenomenon for any Lebesgue integrable function, it
is necessary and sufficient that 1 — g(t) be positive definite.
A new inequality which must be satisfied by g(t), whenever

1 — git) is positive definite, is Re \̂ (1 — zt)ndg(t) ^ 0 where
Jo

z = 1 — eίx.

This generalized definition of Gibbs phenomenon is an extension
of the classical one, and is due to Kuttner [4].

Whereas originally the phenomenon was investigated for functions
having a simple discontinuity at the point considered, he includes any
Lebesgue integrable function. Kuttner proved the following:

THEOREM. In order that a given K-method [3, P. 56] not display
the Gibbs phenomenon for any Lebesgue integrable function, it is
necessary and sufficient that the kernel Kn{x) be bounded below.

Here Kn{x) are the means of the series 1/2 + cos x + cos 2x -\ .

For regular Hausdorff means [10] (which, being triangular, are

Z-methods) the kernel takes the form

Kn(x) = Im eίΦ \\l - t + terdg{t)
2sincc/2 Jo

where g(t) is of bounded variation in 0 < t g 1, 0(0 + ) = g(0) = 0, and
#(1) = 1. We find it useful to let g(t) be normalized in 0 < t < 1, and
to define it outside this interval by g(t) = 1 for t > 1 and g( — t) = g(t).

THEOREM. In order that the Hausdorff summability method given

by g(t) not display the Gibbs phenomenon for any Lebesgue integrable

function, it is necessary and sufficient that 1 — g(t) be positive de-

finite.
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(For the status of the corresponding problem for the classical Gibbs

phenomenon, see [8], [7], and [6].)

Proof of necessity. We shall show that KJx) is not bounded
below if 1 — g(t) is not positive definite. Since |1 — t + teix\ <£ 1, Im

i I (1 — t + teix)ndg(t) is bounded, and it suffices to consider
Jo

hn(x) = Im cot xl2\\l - t + teix)ndg(t) .
Jo

Let 1 — t + teix — Reia. Therefore R cos a = 1 — t + t cos x, R sin a ~
t sin x, R2 = 1 — 2t(l — t)(l — cos x), and

tan (x/2)hn(x) = Im ί ^ V ^ ^ ) = [R71 sin nadg(t) .
Jo Jo

We now choose a sequence of n and a? so that nx —> A < oo, A
to be specified later, as n —• oo and a? —> 0. Szasz [8] shows that
1 - Rn = λw(l - i22) where 0 < λ < 1, and

sin ^ α — sin ntx = 2 cos w(α +

Since 1 — R2 < x2 and nx —> A, it follows that

tan (αs/2) hn(x) = i sin ntx dg(t) +
Jo

= nx \ cos ntx-(I — g(t))dt + 0(x) .
Jo

The last equality is obtained by integrating by parts.
According to the way the definition of g(t) was extended,

tan(a;/2) /α#) = (nx/2) Γ einxt(l - g{t))dt + 0(α?) .
J—CO

Since 1 — #(£) belongs to L\— co, oo) and is of bounded variation
in (—oo, oo), it follows from Bochner's theorem [2] that its Fourier
transform is not always nonnegative. Consequently, there is an Ao > 0
for which

Γ β
J-oo

0 .

Then let A = Ao and obtain tan (a?/2) ftn(a?)-> —A0B/2. (Taking the
limit under the integral sign is permitted by "bounded convergence".)
This implies that hn(x) —* — oo 9 and completes this part of the proof.

Proof of sufficiency. We shall show now that Kn(x) is not only
bounded below when 1 — g(t) is positive definite but is, in fact, positive
for all n and x.
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Kn{x) = Im eΓ'2 \\l - (1 - e^)tfdg{t) .
2sina?/2 Jo2 sin x/2

Let z = 1 - e iβ. Then

KJx) — Im
4 sin2 x/2 Jo

= i?β . * Γ(i - gadget) .
4sm2#/2 Jo

Let fn(t) = (1 - ^ί)% + 1 in 0 < ί < 1 and (1 + ^ ) w + 1 in - 1 ^ ί < 0.
Therefore

X(n + 1) sin^ x/z J-I

It suffices to show that

\[fn(t)dg(t) <0 .

Let G(t) =fo{t)e~ixt. Since G{-t) = G(l - t) for 0 ^ ί ^ 1, /0(ί) may
be defined for ί, \t\ > 1, so that G(t) will be periodic of period 1.

Now

Γ G(t)e-2πίktdt = 2 \\l - (1 - e<x)t]β-<aιίβ-aiΓί"dί
J-i Jo

— 4(1 — cos a;)
(x + 2τrfc)2

Consequently

G(ί) = Σΐ—~Cke
27:ikt where each C, ^ 0 .

G(ί), therefore, is positive definite, and since the product of two
positive definite functions is positive definite, it follows that fo(t) is
positive definite. Also, each fn(t) is positive definite if it is defined
for ί, | ί | > 1, by

fu(t) = e^+1)9t[

Therefore

fn(t) = α0 + ΣΓ=i(αfc cos λftί + ίδ^ sin λΛί)

where αΛ ^ 0 and λ^ > 0, fc = 1, 2, , and

/ή(*) = ΣΓ=i(-αA* sinλ.ί + ibk\k cosXkt) ,

§o that
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+ ibkXkcosXkt)dg(t) .

Since f'n(t) is of bounded variation, its Fourier series is boundedly
convergent [9, P. 408] and the order of summation and integration
may be interchanged [1, P. 74].

I cos At dg(t) = 0 since g(t) is even, and

Γ sin At dg(t) = A Γ cos At(l - g(t))dt

= A Γ β"'(l - flr(ί))dt
J-oo

which is positive for positive A [2, P. 26] since 1 — g{t) is positive
definite and belongs to L\—ooj oo). Finally

1 /:(ί)dflf(<) < 0
— 1

and the theorem is proved.
This result, about positive kernels, may be compared with Kuttner's

result in [5].
It is worth noting that we have proved

\\l -zt)n

Jo
Rez

where z = 1 — eix, whenever 1 — g(t) is positive definite. This provides
some new inequalities which must be satisfied by a class of positive
definite functions which is encountered quite often. For example,
when n = 1 and x = π, we obtain

['(I - 2t)dg(t) ;> 0 .
Jo
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