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THE GENERALIZED GIBBS PHENOMENON
FOR REGULAR HAUSDORFF MEANS

JONAH MANN AND DoONALD J. NEWMAN

One says that the means o¢,(x), of the Fourier series of
a function f(x), exhibit the (generalized) Gibbs phenomenon
at the point x =z, if the interval between the upper and
lower limit of o.(x), as n— o and z— 1z, independently,
contains points outside the interval between the upper and
lower limits of f(x) as * —2x,. Theorem. In order that the
Hausdorff summability method given by g(¢) not display the
Gibbs phenomenon for any Lebesgue integrable function, it
is necessary and sufficient that 1 — g(f) be positive definite.
A new inequality which must be satisfied by g(t), whenever

1
1 — g(t) is positive definite, is Re zS 1 — 2t)*dg(t) = 0 where
0

z2=1—¢",

This generalized definition of Gibbs phenomenon is an extension
of the classical one, and is due to Kuttner [4].

Whereas originally the phenomenon was investigated for functions
having a simple discontinuity at the point considered, he includes any
Lebesgue integrable function. Kuttner proved the following:

THEOREM. In order that a given K-method [3, P. 56] not display
the Gibbs phenomenon for any Lebesgue integrable function, it s
necessary and sufficient that the kernel K,(x) be bounded below.

Here K,(x) are the means of the series 1/2 4 cos ¢ + cos 2 + -+ -,
For regular Hausdorff means [10] (which, being triangular, are
K-methods) the kernel takes the form

iz)2 1
=2 (L — ¢ + te)dg(t
K@) = In g2 | ydg(®)
where g¢(¢) is of bounded variation in 0 <t =1, g(0+) = g(0) = 0, and
g(1) = 1. We find it useful to let g(¢) be normalized in 0 <¢ <1, and
to define it outside this interval by g(t) =1 for ¢ > 1 and g(—t) = g(¢).

THEOREM. In order that the Hausdorff summability method given
by g(t) not display the Gibbs phenomenon for any Lebesgue integrable
Sfunction, it is mecessary and sufiicient that 1 — g(t) be positive de-
Sinite.
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(For the status of the corresponding problem for the classical Gibbs
phenomenon, see [8], [7], and [6].)

Proof of mnecessity. We shall show that K,(x) is not bounded
below if 1 — g(t) is not positive definite. Since |1 — ¢ + ¢¢”| =1, Im
iSl(l — t + te*®)"dg(t) is bounded, and it suffices to consider

0

h, (%) = Im cot x/ZSl(l — ¢ + teTydg(t) .

Let 1 —t + te'* = Re®. Therefore Rcosae =1 —t+ teosw, Rsina =
tsine, R* =1 — 2t(1 — t)(1 — cosx), and

tan (¢/2)h, @) = Im SlR”e""“dg(t) - gan sin ner dg(t) .
0 0

We now choose a sequence of » and « so that ne > A < o, A
to be specified later, as n— c and x—0. Szasz [8] shows that
1 — R =Ml — R*) where 0 < x <1, and

sin na — sin ntx = 2 cos n(a + tx)/2-sin O(ntx’) .

Since 1 — R* < 2* and ne — A, it follows that
tan (a/2)h(z) = Slsin nte dg(t) + 0(x)
0
= nx Slcos nte-(1 — g(t))dt + 0(x) .
[

The last equality is obtained by integrating by parts.
According to the way the definition of ¢(¢) was extended,

tan (/2)h, (@) = (n/2) r ¢ (1 — g(t))dt + 0(x) .

Since 1 — g(t) belongs to L'(—c, o) and is of bounded variation
in (—oo, ), it follows from Bochner’s theorem [2] that its Fourier
transform is not always nonnegative. Consequently, there is an 4, > 0
for which

| eat — gpat = —B < 0.

Then let A= A, and obtain tan (x/2):-%,(x) — —A,B/2. (Taking the
limit under the integral sign is permitted by “bounded convergence”.)
This implies that &,(x) — — o, and completes this part of the proof.

Proof of sufficiency. We shall show now that K,(x) is not only
bounded below when 1 — g(t) is positive definite but is, in fact, positive
for all » and 2.
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- ei:c/z 1 _ s "
Kn(m)_Immgo[l (1 — e*)e]"dg(t) .

Let z=1 — ¢**. Then

_ 12 Y o
Kn(x)_lmmgo(l 2t)"dg(t)

P 1
=Re— % — 2t)"dg(t) .
Re 4 sin® x/2 80(1 @) dg(t)

Let f,(®) =1 —2t)** in 0<¢<1 and (L 4+ 2t)"** in —1=¢t<0,
Therefore

_ —1 Y
Kolw) = 8(n -+ 1) sin® /2 S—:f”(t)dg(t) )

It suffices to show that

Yﬂm@mso.

-1

Let G(t) = fo(t)e~**. Since G(—t) = G(1 —¢) for 0 =< t <1, f.(t) may
be defined for ¢, || > 1, so that G(¢) will be periodic of period 1.

Now
gl G(t)e_zm;ktdt =9 Sl[l - (1 _ ew)t]e——izte—mikzdt
. .
— 41 —cosx)
(v + 2rk)
Consequently

G(t) = 3.7 _.C.e""* where each C, = 0.

G(t), therefore, is positive definite, and since the product of two
positive definite functions is positive definite, it follows that f,(¢) is
positive definite. Also, each f,(t) is positive definite if it is defined
for ¢, |t] > 1, by

EOE S CO
Therefore
Sa() = ay + i@y, cos Nt + b, sin A,t)
where a, =0 and A, >0, k=1,2, ---, and
Fu(t) = ZFal—ahg sin Ab + 1hh, cos i)

so that
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1 1
| £i0dg® = S| (~ansin vt + b cos vtdg(t)

Since f(t) is of bounded variation, its Fourier series is boundedly
convergent [9, P. 408] and the order of summation and integration
may be interchanged [1, P. 74].

Sl cos At dg(t) = 0 since ¢(t) is even, and
-1

Sl sin At dg(t) = A S cos At(L — g(t))dt
—1 1

-y r G4l — g(t))dt
which is positive for positive A [2, P. 26] since 1 — g(¢t) is positive
definite and belongs to L(— o, «). Finally

| fitrdg) <0

and the theorem is proved.

This result, about positive kernels, may be compared with Kuttner’s
result in [5].

It is worth noting that we have proved

1
Rez ‘ (1 — 2ty'dg(t) = 0,
Jo
where z = 1 — ¢**, whenever 1 — g(t) is positive definite. This provides
some new inequalities which must be satisfied by a class of positive
definite functions which is encountered quite often. For example,
when 7 =1 and ¢ = 7w, we obtain

.S:a — 2t)dg(t) > 0 .
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