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AN INEQUALITY FOR THE NUMBER OF ELEMENTS
IN A SUM OF TWO SETS OF LATTICE POINTS

BETTY KVARDA

For a fixed positive integer 7, let @ be the set of all »-
dimensional lattice points (x;, - -+, 2,) with each 2; a nonnega-
tive integer and at least one x; positive., A finite nonempty
subset R of @ is called a fundamental set if for every
(ryy =++,7re) in R, all vectors (x,:--, %, of Q with x; <7,
1=1,--,m, are also in R. If A is any subset of @ and R is
any fundamental set, let A(R) denote the number of vectors
in AnR. Finally, if A is any proper subset of @, let the
density of A be the quantity

A(R)
QER)+1°

taken over all fundamental sets R for which A(R) < Q(R).
Then the theorem proved in this paper can be stated as follows,
TueorkeEM, Let A and B be subsets of ), let C be the set
of all vectors of the form «, b, or @ + b where ac A and
beB, let @ be the density of A, and let B be any funda-
mental set such that (1) there exists at least one vector in R
which is not in C, and (2) for each b in BN R (if any) there
exists g in R but not in C such that ¢ — b is in Q. Then
C(R) z o[Q(R) + 1] + B(R) .

a=glb

It will be seen that for n = 1 this theorem implies a result of
H. B. Mann [2].

Let A and B Dbe sets of positive integers, and for any positive
integer 2 denote by A(x) the number of integers in A which are not

greater than x. Let the modified density (or Erdos density) of A be
the quantity

x;kx—|—l

where % is the smallest positive integer not in A, If C=A + B is
the set of all integers of the form @, b, or @ + b, where a is in A
and b is in B, and if « is a positive integer not in C, then Mann has

shown [2] that
C(x) > ax -+ B(x) .
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(Actually, Mann’s work is sufficient to establish C(x) = a(x + 1) + B(x).)
We will show that this theorem, with somewhat weaker hypotheses,
can be extended to certain sets of m-dimensional lattice points.

Let @ be the set of all lattice points x = (%, ---, x,) for which
each component is a nonnegative integer and at least one component
is positive. Define the sum of subsets of @ in the same manner as
was done for sets of positive integers, addition of lattice points being
done componentwise, and for any subsets A and B of Q let A — B
denote the set of all elements of A which are not in B, If A and S
are subsets of @ and S is finite let A(S) be the number of elements
in ANS. Let w; be that element of @ for which the ith component
is 1 and the others are 0.

DEFINITION 1. A finite nonempty subset R of @ will be called a
Jundamental set if whenever r = (v, --+, 7,) is in R then all vectors
x = (@, +--, 2, of @ such that ;< r,,2=1, ---,n, are also in R.

DEFINITION 2. Let A be any proper subset of Q. Then the
density of A is the quantity

taken over all fundamental sets R for which A(R) < Q(R) .

2. Extension of Mann’s result. The theorem to be proved can
now be stated as follows.

THEOREM. Let A and B be subsets of Q, let C = A + B, and let
« be the density of A. Let R be any fundamental set such that for
each b in BN R there exists g in R — C such that g — b is in Q,
and QR —C)=1. Then

C(R) =z a[Q(R) + 1] + B(R) .

Proof. Let the elements of @ be ordered so that (x, ---,x,) >
Yy =+, ¥a) I 2, >y, or if =y, -+, B = Yi, Tpix > Yiri.  Consider
a nonempty set S = R’ — R"”, where R’ and R" are fundamental sets, and
let & = (6, *++, 01), *+*, 8 = (0yy, =+, Oy,) be all the vectors of S such
that for each ¢t =1, +--,n and for each 7 =1, --+, 4 we have either
1) 8 —w; is in R”’, or (2) §; —w,=0=(0,---,0), or (8) 6;;, = 0.
There must be at least one such vector in S, for S is a nonempty
finite set, and hence has a least element (in our ordering). This least
element will satisfy the given conditions. Also, it is easily seen that
if (sy, ++-,s,) is any vector in S then for at least one of the &; we
have 0;, < s;,,2=1,---, n.

From this it follows that if for each 7 =1, ---, u we let
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SjZ{S:(Sl,"',Sn)|S€S,Si§5ji,1::1, ""n}y

then S= S, U -+ US,. Also, let S;=1{s— 8,|scS,,s=8;} and let
S =8SjU---US,. Each S}, and therefore also S, is either a funda-
mental set or is empty.

LEMMA 1. Q(S) + 1 = Q(S).
Proof of Lemma 1. The lemma is obvious if » = 1, since then
u =1 also. Hence assume n = 2. Let N, be a mapping defined so that
Shy={s—0;w,!s8eS;},j=1,---,u,
Shy =S\ U -+« US; .
Partition S into sets T.,...., such that
Tcz-ncn - {8 = (xlv Cyy =0 *,y Cn)‘)SGS} ’
and let

Tyt = {8 = (X, €5, -+, ¢,) [ s€ SN},
k - IIE{X (max {961 - 51‘1 | (mly Coy =00,y Cn) € SJ}) .
Then Q(T.,...\) = key..cp, + 1 or QT,.... M) + 1 =k,,.... + 1, according
as 0¢ 7T, .\ or0eT, .\, and k., . +1=@T.,. ).
Hence Q(S\,) = Q(S), and Q(S\,) + 1 < Q(S) if 0¢€ S\,.
Now define mappings \,, +-+, \,, such that

[ZXERY

Sy ves NsNi = {8 — 0,0 8€ Sihy o= o ML},
t=2,+++,m, and obtain as above
Q(S)H st Ni) +0; = Q(Skl et X'Z——l) + 0, = Q(S) ’

where ¢, = 0 or 1 according as 0¢ Sx,:--\; or 0€ S\, --- ;. This
establishes the lemma.

DEFINITION 3. A set S will be said to be of type I if

(1) S is a fundamental set,

(2) AS—-C)=1, and

(3) for all bin BNS (if any) and all g in S— C we have
g — b contained in Q.

DEFINITION 4. A set S will be said to be of type II if

(1) there exist fundamental sets R’, R such that S= R’ — R",

(2) B(S)=1and QS —C)=1, and

(3) for all bin BN S and g in S — C we have g — b contained
in Q.
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LEMMA 2. If S is any set of type II then

C(S) = aQ(S) + B(S) .

Proof of Lemma 2. Define the sets S; and S’ as above. Let
b= (b,-+-,b,) be the largest vector such that

(1) bisin BN S, and

(2) b+ +--+b,=max{w,+ ++-+2,|(@®, - --,2,)e BNS} Like-
wise, let g = (g, --+, ¢9.) be the largest vector such that

(1) gisin S —C, and

(2) g+ o0 +0,= max{y1+ cee + yni(yly “'7yn)eS - C}'

Let BS)=p0=1, S—C)=0=1, QS —A)=7. The set
{9 —x|xe BN S} contains p elements of @ (Definition 4, part 3), none
of which isin A. We show that these are in S’: If x = (%, -+, 2,)
isin BN S then x is in S; for some j such that 1 <37 < u. Hence
0; 2w, =g, for all ¢t=1,---,%, and g is in S;. 0*g—x=
(g —8;) —(x—39;). But g—39, is in S} and S} is a fundamental set.
Hence g — x is in S}, therefore in S'.

Likewise, the (possibly empty) set {w —blye S — C, y # g} contains
o — 1 elements, all of which are in S" — A. We must show that the
two sets are disjoint. Hence suppose that for some y = g and, therefore,
x # b, we have

g—x=y—>b.
Equating the ¢th components and transposing gives the n equations

gl—l_b1:y1+xl

g2+b2:yz+xz
V) .

Q+m=m+m
and
Gt F Gt bt F =g e A Yt B 2
Because of the way in which g and b were chosen, this implies
g+t g =+ +y, and b+ e b =aF o0+,

Therefore g > y and b > x, and at least one of the # equations of
(N) must fail to hold. We now have

tzo—1+4p,
QAS) —0z@QS)—7—1+p,
Q) —az=Q(S)—7c+ Q) —QIS)—-1+0p.
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We recall that Q(S) — Q(S') —1 =0, and that S’ is a fundamental
set. Hence

C(S) = A(S') + Q(S) — Q(S") — 1 + B(S)
= al@(S') + 1] + afQ(S) — Q(S") — 1] + B(S)
= aQ(S) + B(S) .

LEMMA 3. If S is any set of type I then
C(S) =z A Q(S) + 1] + B(S) .

Proof of Lemma 3. (i) Suppose B(S) = 0. Then
C(S) = A(S) = a[Q(S) + 1] + B(S) .

(ii) Suppose B(S) = 1. Define b and g as in the proof of Lemma
2. Let B(S)=p, QS —C) =0, QS — A) =7. Again the two sets
{9—x|xeBNS}and {y —b|lye S — C, y+g} give 0 —1 + p elements
not in A, which now will be in S. Also g is in S — C, hence is in
S — A, but is in neither of the two sets above. This implies that

T=Z0+p0,
QS)y—0z=QS)—7+p,
C(S) =z A(S) + B(S) = afQ(S) + 1] + B(S) .

We can now return to the proof of the theorem. Let R be any
fundamental set satisfying the hypotheses of the theorem. We will
use induction on the number of elements in R — C.

(i) Let QR —C)y=1. Then R is a set of type I, and we may
apply Lemma 3.

(ii) Assume the the theorem holds for any fundamental set R’
satisfying the hypotheses of the theorem and such that QR — C) < k,
k=2 and let QR —C)=Fk. If B(R) =0 then R is of type I, so
assume B(R) = 1.

Let g, @, -+, g, be the & vectors in R —C, T; ={x|x =g, or
gi—x€eQ}, 3=1,--+, k. If beT; for all j=1,-+--,k and all bin
BN R then again R is of type I, so assume (by re-numbering, if
necessary) that B(R — T,) > 0. Let J be the maximum j such that
B(R—(T,U «+-UTj))>0. Then beB and beR - (T,U --- UT))
implies be T;;,. We observe that J <k, since be R — (T, U --- U T),)
would imply that there does not exist g in B — C such that g — b is
in Q, contrary to hypothesis. Also, gy, ¢ T.U -+ UT},.

Let Wo=T,U +--UT,;. If R— W, is not of type II, there exists
be BN T, and a subscript ¢, such that 4, > J+ 1, beT;,. Let
W, =W,uT,. If R— W, is not of type II, we may repeat the above
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to form W,= W,U T,,, and so on. Eventually we must obtain a set
W, such that R — W, is of type II, m = 0.

But W, is a fundamental set satisfying the hypotheses of the
theorem, and Q(W, — C) < k since g5, ¢ W,. Hence

Cc(W,) =z AQW,) + 1] + B(W,) .
Also,
CR—-W,)zaQR —-W,)+ BR —-W,).
Adding, we obtain
C(R) =z ofQ(R) + 1] + B(R) .
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