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AN INEQUALITY FOR THE NUMBER OF ELEMENTS
IN A SUM OF TWO SETS OF LATTICE POINTS

BETTY KVARDA

For a fixed positive integer n, let Q be the set of all n
dimensional lattice points (xlf , xn) with each Xι a nonnega-
tive integer and at least one Xi positive. A finite nonempty
subset R of Q is called a fundamental set if for every
(TΊ> "'fτn) in R, all vectors (xίf •••, xn) of Q with #; ^ r*,
i = l, —,n, are also in R. If A is any subset of Q and R is
any fundamental set, let A(R) denote the number of vectors
in AnR. Finally, if A is any proper subset of Q, let the
density of A be the quantity

ii. A(R)

taken over all fundamental sets R for which A(R) < Q(R).
Then the theorem proved in this paper can be stated as follows.

THEOREM. Let A and B be subsets of Q, let C be the set

of all vectors of the form a, 6, or a + b where a e A and
b e B, let a be the density of A, and let R be any funda-
mental set such that (1) there exists at least one vector in R
which is not in C, and (2) for each b in BoR (if any) there
exists g in R but not in C such that g — b is in Q. Then

C(R) ^ α[Q(22) + 1] + B{R) .

It will be seen that for n — 1 this theorem implies a result of
H. B. Mann [2].

Let A and _B be sets of positive integers, and for any positive
integer x denote by A(x) the number of integers in A which are not
greater than x. Let the modified density (or Erdos density) of A be
the quantity

+ 1

where & is the smallest positive integer not in A. If C — A + B is
the set of all integers of the form α, 6, or a + 6, where α is in A
and 6 is in B, and if cc is a positive integer not in C, then Mann has
shown [2] that

CO) > <ra + B(x) .
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(Actually, Mann's work is sufficient to establish C(x) ^ a(x + 1) + B(x).)
We will show that this theorem, with somewhat weaker hypotheses,
can be extended to certain sets of ^-dimensional lattice points.

Let Q be the set of all lattice points x = (x19 •••,#„) for which
each component is a nonnegative integer and at least one component
is positive. Define the sum of subsets of Q in the same manner as
was done for sets of positive integers, addition of lattice points being
done componentwise, and for any subsets A and B of Q let A — B
denote the set of all elements of A which are not in B. If A and S
are subsets of Q and S is finite let A(S) be the number of elements
in A n S . Let (ύi be that element of Q for which the ΐth component
is 1 and the others are 0.

DEFINITION 1. A finite nonempty subset R of Q will be called a
fundamental set if whenever r = (rl9 , rn) is in R then all vectors
x = (χ19 ...9χn) of Q such that xi g ri9 i = 1, , n9 are also in R.

DEFINITION 2. Let A be any proper subset of Q. Then the
density of A is the quantity

taken over all fundamental sets R for which A(R) < Q{R) .

2* Extension of Mann's result* The theorem to be proved can
now be stated as follows.

THEOREM. Let A and B be subsets of Q, let C = A + B, and let
a be the density of A. Let R be any fundamental set such that for
each b in Bf]R there exists g in R •— C such that g — b is in Q,
and Q(R - C) ^ 1. Then

C(R) ^ a[Q(R) + 1] + B(R) .

Proof. Let the elements of Q be ordered so that (xl9 •••,#«)>
(Vi, ••',!/») if Bi > Vi, or if xt = yl9 , xk = yk9 xk+1 > yk+1. Consider
a nonempty set S = Rr — R"9 where Rf and R" are fundamental sets, and
let $t — (δU9 , δln)9 , Su = (δwl, , <5WJ be all the vectors of S such
that for each i = 1, , w and for each j 1 = 1, , u we have either
(1) So - ω, is in R", or (2) S3 - ω{ = 0 = (0, , 0), or (3) SΛ = 0.
There must be at least one such vector in S9 for S is a nonempty
finite set, and hence has a least element (in our ordering). This least
element will satisfy the given conditions. Also, it is easily seen that
if (sl9 , sn) is any vector in S then for at least one of the Sj we
have δji ^ si9 i = 1, , n.

From this it follows that if for each j = 1, , u we let
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Sj = {s = (A, , sn) I s e S, Si ̂  δji9 i = 1, , n} ,

then S = Si U U Su. Also, let SJ = {s - δ; | s G Sy, s ^ δ, } and let
S' = S[ U U S'u. Each SJ, and therefore also S', is either a funda-
mental set or is empty.

LEMMA 1. Q(S') + 1 ^ Q(S).

Proof of Lemma 1. The lemma is obvious if % = 1, since then
tt = 1 also. Hence assume n ^ 2. Let λx be a mapping defined so that

Syλi = {β - Sήtϋi! s G S, }, i = 1, , u ,

Sx1 = Sxλi U U SU\ .

Partition S into sets Tβ2...Cn such that

τ*r~'» = {s = (χi> c2, -- ,cn)\seS} ,

and let

Tcr..cn\ = {s = (a?i, c2, , cn) I s G Sx} ,

fcC2...Cw = max (max {x, - δ i x | (xl9 c2, , cΛ) e S, }) .

Then Q ί Γ ^ . ^ λ J - fcC2...Cw + 1 or Q(Ter..Oi\J + 1 - ΛC2...Cw + 1, according
as 0 0 ? V . c Λ or 0 G T C 2 . . , ^ , and &C2...Cn + 1 ^ Q(ΓβJ...βf|).

Hence QίSλO ^ Q(S), and QίSλj) + 1 ^ Q(S) if 0 G Sλlβ

Now define mappings λ2, , Xn such that

SjX, X^Xi = {s - δ i ; iω, I s G Syλ-L x^,} ,

i = 2, , n, and obtain as above

Q(SX1 λ<) + ^ ^ Q(Sλx λ ^ J + 5<_1

where θ1 = 0 or 1 according as 0 g Sλx λ4 or 0 e Sλx λ,:. This
establishes the lemma.

DEFINITION 3. A set S will be said to be of type / if
(1) S is a fundamental set,
(2) Q(S-C)^1, and
(3) for all b in B Π S (if any) and all g in S - C we have

# — b contained in Q.

DEFINITION 4. A set S will be said to be of type // if
(1) there exist fundamental sets E\ R" such that S = R - R",
(2) B(S) ^ 1 and Q(S - C) ^ 1, and
(3) for all 6 in B Π S and # in S — C we have fir — 6 contained

in Q.
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LEMMA 2. If S is any set of type II then

C(S) ^ aQ(S) + B(S) .

Proof of Lemma 2. Define the sets SJ and S' as above. Let
b = (blf •••,&„) be the largest vector such that

( 1 ) b is in B Π S, and
(2 ) &! + + bn = max {^ + + x J (a?if , xn) e B Π S}. Like-

wise, let g = (#!, , gn) be the largest vector such that
( 1 ) g is in S — C, and
( 2 ) O l + . . . +f j r w = m a x { y 1 + ••• + y n \ ( y 1 , - - - , y n ) e S - C } .
Let 5(S) = /o ̂  1, Q(S - C) = σ ^ 1, Q(S' - A) = r. The set

{fir — JC I JC G JB Π S} contains £> elements of Q (Definition 4, part 3), none
of which is in A. We show that these are in S': If x = (xx, •••,#„)
is in B Π S then x is in Sj for some j such that 1 ^ i g u. Hence
δji ^ Xi ^ 0i for all i = 1, , n, and g is in Sj. Q Φ g — x —
(g — Sj) — (x — Sj). But ί? — Sj is in Ŝ  and SJ is a fundamental set*
Hence gf — x is in SJ, therefore in S\

Likewise, the (possibly empty) set {y — b\yeS — C,yΦg} contains
σ — 1 elements, all of which are in S' — A. We must show that the
two sets are disjoint. Hence suppose that for some yΦg and, therefore,,
x Φ 6, we have

g — x = y — b .

Equating the ΐth components and transposing gives the n equations

= 1/2

and

01 + + 9n + &l + * * + ί\ = Vl + + Vn + Xl + * * * + Xn

Because of the way in which g and 6 were chosen, this implies

0i + + 9n = Vi + + Vn and b, + + bn = xλ + + xn .

Therefore g > y and b > x, and at least one of the n equations of
(N) must fail to hold. We now have

τ ^ σ - 1 + p ,

Q(S) - σ ^ Q(S) - r - 1 + /o ,

- σ ^ Q(S') - τ + Q(S) - Q(S') - 1 + p .
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We recall tha t Q(S) - Q(S') - 1 ^ 0 , and that S' is a fundamental

set. Hence

C(S) ^ A(S') + Q(S) - Q(S') - 1 + B(S)

^ a[Q(S') + 1] + a[Q(S) - Q(S') - 1] + B(S)

B(S) .

LEMMA 3. If S is any set of type I then

C(S) ^ a[Q(S) + 1] + B(S) .

Proof of Lemma 3. (i) Suppose B(S) = 0. Then

C(S) = A(S) ^ a[Q(S) + 1] + B(S) .

(ii) Suppose B(S) Ξ> 1. Define 6 and g as in the proof of Lemma
2. Let B(S) = <o, Q(S - C) = σ, Q(S - A) = τ. Again the two sets
{g — x\xe BΓ\S} and {# — 6 | y e S — C, yΦg\ give σ — 1 + p elements
not in A, which now will be in S. Also g is in S — C, hence is in
S — A, but is in neither of the two sets above. This implies that

τ ^ σ + p,

Q(S) - σ ^ Q(S) - τ + p ,

C(S) ^ A(S) + S(S) ^ α[Q(S) + 1] +

We can now return to the proof of the theorem. Let R be any
fundamental set satisfying the hypotheses of the theorem. We will
use induction on the number of elements in R — C.

( i ) Let Q(R — C) — 1. Then R is a set of type I, and we may
apply Lemma 3.

(ii) Assume the the theorem holds for any fundamental set Rf

satisfying the hypotheses of the theorem and such that Q{Rf — C) < k,
k^29 and let Q(R - C) = k. If B(R) = 0 then R is of type /, so
assume B(R) ^ 1.

Let glf g2, , gk be the k vectors in R — C, T̂  = {x | x = </y or
#, — x G Q}, j = 1, , fc. If 6 G Γy for all j — 1, , k and all b in
B Π R then again i2 is of type 7, so assume (by re-numbering, if
necessary) that B(i2 — Γj) > 0. Let J be the maximum j such that
B(JB - (T, U U Γi)) > 0. Then 6 e B and 6 6 R - (2\ u U Tj)
implies 6 e TJ+1. We observe that J < Jc, since 6 e R — (Γj. U U Tk)
would imply that there does not exist g in R — C such that g — 6 is
in Q, contrary to hypothesis. Also, # J + 1 £ TΊ U ••• UΓj.

Let Wo = 2\ U U Tj. If B - W; is not of type 77, there exists
δ e β f l T j + i and a subscript ^ such that i1>J+l, b^Tiχ. Let
WX=WQ\J Tiχ. If R — W1 is not of type 77, we may repeat the above
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to form W2 = Wι U T<a, and so on. Eventually we must obtain a set

TFm such that JB - Wm is of type //, m ^ 0.

But T^m is a fundamental set satisfying the hypotheses of the

theorem, and Q(Wm — C) < fc since # J + i£ TΓm. Hence

Also,

C(R - T7m) ^ aQ(R - Wm) + B(R - Wm).

Adding, we obtain

C(R) ^ a[Q(R) + 1] + B(R) .
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