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A GENERALIZATION OF THE
COSET DECOMPOSITION OF A FINITE GROUP

BAsiL. GORDON

Let G be a finite group, and suppose that G is partitioned
into disjoint subsets: G = |J?_, A;. If the A; are the left (or
right) cosets of a subgroup H S G, then the products xy, where
xecA; and y€ Aj, represent all elements of any A, the same
number of times. It turns out that certain other decomposi-
tions of G of interest in algebra enjoy this same property;
we will call such a partition = an a-partition.

In this paper all a-partitions are determined in the case G
is a cyclic group of prime order p; they arise by choosing a
divisor d of p— 1, and letting the A; be the sets on which
the d’th power residue symbol (z/p); has a fixed value, It is
shown that if an o-partition is invariant under the inner
automorphisms of G (strongly normal) then it is also invariant
under the antiautomorphism 2z — x~!, For such a-partitions
(called weakly normal) it is shown that the set A; containing
the identity element is a group. An example shows that this
need not hold for nonnermal partitions.

1. For any a-partition 7, let N,;, denote the number of times each
element of A, is represented among the products xy, xc A;, y< A;.
Then if A (G) is the group algebra of G over a field K, and if we
put

(1) aizzxy
z€4;

it is clear that a;a; = >\, N;;a,. Therefore the vector space spanned
over K by a, ---,a, is a subalgebra A, of A (@), with structure
constants N,;. Conversely, if 7: G = |J !, A4, is any partition of G into
disjoint subsets, and if the elements a; defined by (1) span a sub-
algebra of 2 (G), then 7 is an a-partition.

In the case where 7 is the decomposition of G into the cosets of
a normal subgroup H whose order m is not divisible by the character-
istic of K, the algebra A, is the group algebra A (G/H) of the
factor group G/H. For then the elements a;,/m form a group isomor-
phic to G/H, and are a basis of 2[..

In this paper some of the elementary properties of «a-partitions
are developed. I plan in a second paper to discuss in more detail the
structure of the algebras 2, and their application to the representa-
tion of G by matrices.
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2. Normal partitions., Since the a-partitions are a generaliza-
tion of the coset decomposition of G with respect to a subgroup H, it
is natural to begin the study of them by asking which a-partitions
should be called normal. Several different definitions of normality are
possible, and two of them will be considered here. Note first that if
7 is an a-partition, and ¢ is an automorphism or anti-automorphism of
&, then the partition 7= obtained by applying ¢ to the sets of x, is
again an a-partition. If 7 = 7", we will say that 7« is ‘nvariant
under o. This means that the sets of = are permuted among them-
selves by o. If ¢ has the stronger property of mapping each set of
7 onto itself, 7w is called setwise invariant under o.

An «-partition 7 is called weakly normal if it is invariant under
the anti-automorphism o¢: x — 2~'. On the other hand 7 is called
strongly normal if it is invariant under all inner automorphisms 7 :
x— t7'2t. It is easily seen that in the case where 7 is the left coset
decomposition of G with respect to a subgroup H, either type of
normality of 7 is equivalent to normality of H. The following theorem
explaing the choice of terminology.

THEOREM 1. If @ 4s strongly mormal, then 4t ts also weakly
normal.

Proof. Let ™ be strongly normal, let A; be any set of m, and
let © be any element of A;. Suppose x'c A;. If n is the order of
G, there exists a prime p such that p >#n, p= — 1(mod %), by
Dirichlet’s theorem on primes in an arithmetic progression. Let H;
be the group generated by the elements of A;, and denote its order
by m,;. Consider the set S of all ordered (p + 1)-tuples (¢, %, @,, =« +, 2,)
with ¢t € H;, all x,€ A;, and such that t~'2~'t = 2%, -+« ©,. The mapping
0: (@&, xy -, x,) — (tX,, Ty, ==+, ©,, ;) maps S onto itself, and so S is
decomposed into orbits by the cyclic group of mappings generated by
f. Clearly the cardinality of the orbit of (¢, 2, -+, 2,) is a multiple
of p unless ¢, =, = +-+ = x,. In this case we have t7'27% = ! =
a7, or equivalently ¢~'xt = x,. Therefore the number of such (p + 1)-
tuples is equal to the number of elements ¢ € H; such that ¢4t = A,.
But every element te H; has this property. Indeed, if te A, then
t~'tt = t, so that the assumed strong normality of 7 implies 74t =
A, ; the same is then of course true for all te H,.

From this we see that if N is the cardinality of S, then N = m,
(mod p). On the other hand it is immediately seen from the definition
of a strongly normal a-partition that if y is any element of A;, then
the number of ordered (p + 1)-tuples (¢, x,, -+, x,), t€ H;, x,€ A; such
that t~'yt = &, -+~ x, is also N. Since these (p + 1)-tuples can be
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divided into orbits as above, we see that there are exactly m, solutions
of the equation t~'y¢t = x? = a7, where te H;, x,€ A; (here we use
the fact that m; =< » < p). Hence all {e H;, give rise to solutions of
this equation. Taking ¢t = ¢ we get ¥y = x;!, so that the inverse of
any element of A; is in A,. Since the roles of A; and A4, can be
interchanged, we have A; = {z~'|z¢c A,}, and the proof is complete.

In general weak normality does not imply strong normality. This
can be seen by considering the example where A, is a nonnormal sub-
group of G and 4, =G — A,.

3. Weakly normal partitions. In this section we obtain a
characteristic property of weakly normal a-partitions which is useful
in the further development of the theory. Letw:G = U L, A, be any
decomposition of G into disjoint sets (not necessarily an «-partition).
Suppose that for any x e A;, the cardinality of the 2zA4; N A, depends
only on 4, j, k(that is, does not depend on the particular 2 chosen from
A;) and for any ye A;, the cardinality of A,y N A, depends only on
%, 7, k. We will use the tentative term B-partition to describe such
n’s, and will prove that they are precisely the weakly normal a-parti-
tions. Half of this can be proved at once.

THEOREM 2. FEvery weakly normal a-partition is a B-partition.

Proof. Suppose x€ A;, and form the set x4; N A,. The cardinal-
ity of this set is the number of solutions of the equation 2y = z,
where ye A;, z€ A,. Since this equation is equivalent to = = zy,
and since {y~'|ye A4;} = A; for some j’, the number of solutions is
N,;;, which depends only on %, 7, k. In the same way we see that
the cardinality of A,y N A,, where y<€ A;, depends only on 1, 7, k, and
the proof is complete.

The proof that every AS-partition is a weakly normal a-partition is
somewhat more complicated, and we need two lemmas. For any 5-
partition, let Q;;, denote the cardinality of A,y N A,, where ye A;.

LEMMA 1. Suppose that the identity element e of G is in the
set A, of a B-partition. Then A, is a group. FEach A; is a union
of right cosets At, te G, and also a union of left cosets tA,, teG.

Proof. Since eA, = A,, we must have x4, = A, for any xze A4,
which proves that A4, is a subgroup of G. For any other set A; we
have eA; = A;, and therefore xA4; = A, for all x€ A,. Hence whenever
A; contains an element ¢, it also contains the right coset A;f. By the
same reasoning A; contains the left coset t4,, which completes the
proof.
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LEMMA 2. Let A; be any set of a S-partition ©. Then {x'|x € A;}
18 also a set of m.

Proof. Choose a fixed element y€ A;, and let C be the set of 7@
to which y~ belongs (of course C may coincide with A4;). Then the
complex yC contains at least one number of A, namely e. Hence if
x is any other element of A;, the complex #C must contain a member
of A,. Thus 2¢ = w, where ceC and we A,. Then ' =cw™" is in
C by Lemma 1, which shows that C 2 {x~'|x€ A;}. By the same
reasoning A; 2 {z~*|2¢eC}, and hence C = {z*|xec 4;}.

We define the mapping 7 — ¢’ by putting A, = {x*|xc A}.

THEOREM 3. Every B-partition is a weakly normal a-partition.

Proof. Letrw:G =, A, be a S-partition. Fix ze A, and consider
the equation xy =2, where x€ A;,, v€ A;. Since this equation is
equivalent to ¥y = x7'%, it has @Q,.,; solutions. Therefore every element
of A, is represented @Q;,; times among the products xzy, x€ A;, y€ 4;,
and so 7w is an a-partition. It is weakly normal by Lemma 2.

In the next theorem we again let A, be the set of 7 containing
¢, and denote its cardinality by v..

THEOREM 4. If m is weakly normal, and if v, is not a multiple
of the characteristic of K, then U, has a two-sided identity element.

Proof. By Lemma 1 each A; is a union of right cosets of A,.
Hence 24; = A, for any x € A,. Therefore, defining the elements a;
by (1), we have a,a; = v,a;. Similarly a;a, = v,a;, so that " q, is a
two-sided identity in 2(,.

We conclude this section with some remarks and examples. Lemma
1 shows that if 7w is a weakly normal a-partition, then the set of «
containing the identity element is a subgroup of G. If G is Abelian,
then every a-partition is clearly strongly normal, and hence weakly
normal by Theorem 1. Thus in this case the set containg e is always
a subgroup. For non-Abelian groups this need not be so, as can be
seen by considering the double coset decomposition G = |J L, Ha,; K, where
H and K are nonnormal subgroups of G. For example if G = S;, the
symmetric group on 3 letters, H = {e, (12)}, K = {¢, (13)}, we obtain
an a-partition into the two sets A4, = {e, (12), (13), (123)}, A, = {(23),
(132)}. Here A, is not a group.

An important class of weakly normal a-partitions can be constructed
as follows. Let I" be any group of automorphisms of G, and let the
sets of w be the orbits of G under I, so that two elements z,, x,€G
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are in the same set of « if and only if Y = %, for some 0 € I". Then
if 2z and z° are two elements of A,, to every representation z = xy
with x€ 4;, ye A; corresponds the representation 2z = z°y” and con-
versely. Hence 7 is an a-partition. Also xf = w, implies (#;%)” = «g,
so that if A;isaset of 7, so is {x~*|x € A;}. Thus 7 is weakly normal.
It is easily seen that 7 is strongly normal if and only if I” is normalized
by the group I’y of inner automorphisms of G. This last situation
includes the partition of G into its conjugacy classes, for then I" = I',.

4. The case G = Z,. We next determine all a-partitions of Z,,
the cyclic group of prime order p. We use the additive notation for
Z,, so that its elements are 0,1, ---,p — 1, and the group operation
is addition (mod p). It is convenient in this case to call the sets of
the partition A,, ---, 4, rather than A4,, ---, 4,, and to let A, be the
set containing the identity element 0.

The only subgroups of Z, are Z, and {0}, and so by Lemma 1,
A, = Z, or A, = {0}, The first case gives rise to a trivial a-partition,
so only the second case need be considered. If ¢ is any primitive p’th
root of unity, then the mapping x— ¢* maps Z, isomorphically into
the complex field, and by extension maps the group algebra (G) over
the rational field @ homomorphically onto Q(¢). Let 7; be the image
of a; under this mapping, so that 7; = 3l,e,6"

LEMMA 3. The n; are algebraic integers of degree at most h.

Proof. By (1), 9%; = Xk= Nisi?. Since 7,=1= —7p, — 17, —
.+« — 7, this can be written in the form %7, = >3k (Niji — Nijo)s;
1=4%, 5= h). Thus the vector (, --+,7,) is an eigenvector of the
matrix (M;,) = (N — Nij) (1 =7, kE = h) with eigenvalue ;. Since
the M;, are integers, it follows that 7; is an algebraic integer of degree
< h.

THEOREM 5. Let UL, A; be an a-partition of Z, with A, = {0}.
Then

(i) p=1 (mod k)

(ii) If g s a primitive root of p, then the classes A; can be
numbered so that A; consists of all residues x with tnd,x = t(mod h) ;
(@ > 0).

(iii) Conwversely, for any h dividing p — 1, the sets defined in
(il) form an a-partition of z,.

Proof. Let C; be the number of elements in A;, and suppose for

the sake of the argument that ¢, = min ¢;. Theorem 2 implies that
1=i=h



508 BASIL GORDON

QS QM) S Qe), where S=[Q(n,):Q] = h. But Q) is a normal
extension of @ whose Galois group ® is generated by the automorphism
€ —¢Y and is cyclic of order » — 1. By the fundamental theorem of
Galois theory, the elements of Q(7,) are invariant under a subgroup
O of & of order ¢t = (p — 1)/s. Since a cyclic group has only one
subgroup of given order, O is generated by the automorphism e — &%°,
From this it follows that if &* is a term of 7,, then ¢’ is also a term
of 7;. Hence 7; contains the ¢ distinet terms e°, &', ... &7V 5o
thate, = ¢t. Hencep —1 = >4, ¢; = he, = ht = st = p — 1. Equality
must hold at each stage, and so ¢, =¢,= --- =¢, =1¢, and h = s,
Moreover each 7; is of the form 7, = &% 4 &%°% 4 «.. 4 g% and
accordingly each A, is of the form A; = {x;, ¢'%;, ---, g*"*x;}. Re-
numbering the A; if necessary, this is equivalent to assertion (ii).

To prove (iii) it suffices to apply the remark made at the end of
§2, taking I” to be the group of automorphisms of G generated by
the mapping « — px, where ¢ is an element of order % in the multi-
plicative group of non-zero residues (mod p).

The determination of the structure constants N;;, of the algebras
A, of Z, is an interesting and difficult problem. For a survey of the
known results, see [1].

5. The lattice of a-partitions. If 7, and 7, are any two parti-
tions of G into disjoint sets, we will say that 7=, < &, if every set of
7, is contained in some set of m,. This clearly defines a partial order-
ing, and the purpose of this section is to show that the set of all
a-partitions of G is a lattice under this ordering. The following

theorem is the key to the proof of this fact.

THEOREM 6. Let m, be a given partition of G. Then the set of
a-partitions T satisfying © < w, has a greatest element.

Proof. If m, is itself an a-partition the theorem is clearly true.
So we can suppose that there are three sets A;, A;, A, of m, such
that not all elements of A, are represented the same numbers of times
among the products xy, xc A; ye A;. Thus A, can be decomposed
into sets A, A, <-¢, Ay(Y = 2), by putting two elements u, ve 4, in
the same A,, if and only if % and v are represented the same number
of times in the form xy. Call 7, the resulting partition of G. If =
is an a-partition with = < «,, then A; and A; are both unions of sets
of m. Therefore each A,, is a union of sets of 7, so that 7 =7, < 7.
If =, is an a-partition we are through; otherwise we can treat =, in
the same way as m, thus obtaining a partition 7, < 7w, with the
property that any a-partition 7 < 7, is = 7,. Proceeding in this manner
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we obtain a chain 7, > 7, > 7, ---, which must terminate after a finite
number of steps since G is finite.

THEOREM 7. The a-partitions of G form a lattice L. The
weakly and strongly normal a-partitions form sublattices L, and L,
with L, < L, < L.

Proof. It m,:G=UL A; and 7,: G = J %, B; are any two a-
partitions of G, let @, be the partition G = U;,; 4; N B;. Clearly any
a-partition 7w satisfying 7 <7, and 7w =7, satisfyes # <x, and
conversely. Hence by Theorem 6 there is a greatest such a-partition,
which we denote by 7, N m,. It follows at once that any finite set
T, +-+, T, of a-partitions have a meet 7, N --- N w,. Therefore any
two a-partitions m,, 7w, have a join 7, U 7m,, namely the meet of all a-
partitions w such that =, = x, n, =< 7.

To prove the second part of the theorem, suppose that 7, and =,
are both invariant under a group 2 of automorphisms and antiauto-
morphisms of G. Then for any o0€2X we have (m, N 7,)° < 7f =7,
and similarly (7, N 7,)° = w,. Therefore (7, N 7,)" =< 7w, N 7w, and rea-
soning in the same way with o', we see that (7, N 7)) = 7, N 7,.
This shows that m, N 7, is invariant under %, and the same is of
course true of 7, U 7,.

The lattice of a-partitions of G conveys more information about
G than its lattice of subgroups. A fuller account of this will be given
elsewhere.
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