A GENERALIZATION OF THE COSET DECOMPOSITION OF A FINITE GROUP

Basil Gordon

Let G be a finite group, and suppose that G is partitioned into disjoint subsets: $G=\bigcup_{i=1}^{h} A_{i}$. If the A_{i} are the left (or right) cosets of a subgroup $H \cong G$, then the products $x y$, where $x \in A_{i}$ and $y \in A_{j}$, represent all elements of any A_{k} the same number of times. It turns out that certain other decompositions of G of interest in algebra enjoy this same property; we will call such a partition π an α-partition.

In this paper all α-partitions are determined in the case G is a cyclic group of prime order p; they arise by choosing a divisor d of $p-1$, and letting the A_{i} be the sets on which the d 'th power residue symbol $(x / p)_{d}$ has a fixed value. It is shown that if an α-partition is invariant under the inner automorphisms of G (strongly normal) then it is also invariant under the antiautomorphism $x \rightarrow x^{-1}$. For such α-partitions (called weakly normal) it is shown that the set A_{i} containing the identity element is a group. An example shows that this need not hold for nonnormal partitions.

1. For any α-partition π, let $N_{i j_{k}}$ denote the number of times each element of A_{k} is represented among the products $x y, x \in A_{i}, y \in A_{j}$. Then if $\mathfrak{A}(G)$ is the group algebra of G over a field K, and if we put

$$
\begin{equation*}
a_{i}=\sum_{x \in A_{i}} x \tag{1}
\end{equation*}
$$

it is clear that $a_{i} a_{j}=\sum_{k=1}^{h} N_{i j_{k}} a_{k}$. Therefore the vector space spanned over K by a_{1}, \cdots, a_{h} is a subalgebra \mathfrak{U}_{π} of $\mathfrak{U}(G)$, with structure constants $N_{i j k}$. Conversely, if $\pi: G=\bigcup_{i=1}^{h} A_{i}$ is any partition of G into disjoint subsets, and if the elements a_{i} defined by (1) span a subalgebra of $\mathfrak{A}(G)$, then π is an α-partition.

In the case where π is the decomposition of G into the cosets of a normal subgroup H whose order m is not divisible by the characteristic of K, the algebra \mathfrak{U}_{π} is the group algebra $\mathfrak{V}(G / H)$ of the factor group G / H. For then the elements a_{i} / m form a group isomorphic to G / H, and are a basis of \mathfrak{A}_{π}.

In this paper some of the elementary properties of α-partitions are developed. I plan in a second paper to discuss in more detail the structure of the algebras \mathscr{U}_{π} and their application to the representation of G by matrices.

[^0]2. Normal partitions. Since the α-partitions are a generalization of the coset decomposition of G with respect to a subgroup H, it is natural to begin the study of them by asking which α-partitions should be called normal. Several different definitions of normality are possible, and two of them will be considered here. Note first that if π is an α-partition, and σ is an automorphism or anti-automorphism of G, then the partition π^{σ} obtained by applying σ to the sets of π, is again an α-partition. If $\pi=\pi^{\sigma}$, we will say that π is invariant under σ. This means that the sets of π are permuted among themselves by σ. If σ has the stronger property of mapping each set of π onto itself, π is called setwise invariant under σ.

An α-partition π is called weakly normal if it is invariant under the anti-automorphism $\sigma: x \rightarrow x^{-1}$. On the other hand π is called strongly normal if it is invariant under all inner automorphisms τ : $x \rightarrow t^{-1} x t$. It is easily seen that in the case where π is the left coset decomposition of G with respect to a subgroup H, either type of normality of π is equivalent to normality of H. The following theorem explains the choice of terminology.

THEOREM 1. If π is strongly normal, then it is also weakly normal.

Proof. Let π be strongly normal, let A_{i} be any set of π, and let x be any element of A_{i}. Suppose $x^{-1} \in A_{j}$. If n is the order of G, there exists a prime p such that $p>n, p \equiv-1(\bmod n)$, by Dirichlet's theorem on primes in an arithmetic progression. Let H_{i} be the group generated by the elements of A_{i}, and denote its order by m_{i}. Consider the set S of all ordered $(p+1)$-tuples $\left(t, x_{1}, x_{2}, \cdots, x_{p}\right)$ with $t \in H_{i}$, all $x_{\nu} \in A_{i}$, and such that $t^{-1} x^{-1} t=x_{1} x_{2} \cdots x_{p}$. The mapping $\theta:\left(t, x_{1}, \cdots, x_{p}\right) \rightarrow\left(t x_{1}, x_{2}, \cdots, x_{p}, x_{1}\right)$ maps S onto itself, and so S is. decomposed into orbits by the cyclic group of mappings generated by θ. Clearly the cardinality of the orbit of $\left(t, x_{1}, \cdots, x_{p}\right)$ is a multiple of p unless $x_{1}=x_{2}=\cdots=x_{p}$. In this case we have $t^{-1} x^{-1} t=x_{1}^{p}=$ x_{1}^{-1}, or equivalently $t^{-1} x t=x_{1}$. Therefore the number of such $(p+1)$ tuples is equal to the number of elements $t \in H_{i}$ such that $t^{-1} A_{i} t=A_{i}$. But every element $t \in H_{i}$ has this property. Indeed, if $t \in A_{i}$ then $t^{-1} t t=t$, so that the assumed strong normality of π implies $t^{-1} A_{i} t=$ A_{i}; the same is then of course true for all $t \in H_{i}$.

From this we see that if N is the cardinality of S, then $N \equiv m_{i}$ $(\bmod p)$. On the other hand it is immediately seen from the definition of a strongly normal α-partition that if y is any element of A_{j}, then the number of ordered $(p+1)$-tuples $\left(t, x_{1}, \cdots, x_{p}\right), t \in H_{i}, x_{\nu} \in A_{i}$ such that $t^{-1} y t=x_{1} x_{2} \cdots x_{p}$ is also N. Since these $(p+1)$-tuples can be:
divided into orbits as above, we see that there are exactly m_{i} solutions of the equation $t^{-1} y t=x_{1}^{p}=x_{1}^{-1}$, where $t \in H_{i}, x_{1} \in A_{i}$ (here we use the fact that $m_{i} \leqq n<p$). Hence all $t \in H_{i}$, give rise to solutions of this equation. Taking $t=e$ we get $y=x_{1}^{-1}$, so that the inverse of any element of A_{j} is in A_{i}. Since the roles of A_{i} and A_{j} can be interchanged, we have $A_{j}=\left\{z^{-1} \mid z \in A_{i}\right\}$, and the proof is complete.

In general weak normality does not imply strong normality. This can be seen by considering the example where A_{1} is a nonnormal subgroup of G and $A_{2}=G-A_{1}$.
3. Weakly normal partitions. In this section we obtain a characteristic property of weakly normal α-partitions which is useful in the further development of the theory. Let $\pi: G=\cup_{i=1}^{h} A_{i}$ be any decomposition of G into disjoint sets (not necessarily an α-partition). Suppose that for any $x \in A_{i}$, the cardinality of the $x A_{j} \cap A_{k}$ depends only on i, j, k (that is, does not depend on the particular x chosen from A_{i}) and for any $y \in A_{j}$, the cardinality of $A_{i} y \cap A_{k}$ depends only on i, j, k. We will use the tentative term β-partition to describe such π 's, and will prove that they are precisely the weakly normal α-partitions. Half of this can be proved at once.

Theorem 2. Every weakly normal α-partition is a β-partition.
Proof. Suppose $x \in A_{i}$, and form the set $x A_{j} \cap A_{k}$. The cardinality of this set is the number of solutions of the equation $x y=z$, where $y \in A_{j}, z \in A_{k}$. Since this equation is equivalent to $x=z y^{-1}$, and since $\left\{y^{-1} \mid y \in A_{j}\right\}=A_{j}^{\prime}$ for some j^{\prime}, the number of solutions is $N_{k j^{\prime} i}$, which depends only on i, j, k. In the same way we see that the cardinality of $A_{i} y \cap A_{k}$, where $y \in A_{j}$, depends only on i, j, k, and the proof is complete.

The proof that every β-partition is a weakly normal α-partition is somewhat more complicated, and we need two lemmas. For any β partition, let $Q_{i j_{k}}$ denote the cardinality of $A_{i} y \cap A_{k}$, where $y \in A_{j}$.

Lemma 1. Suppose that the identity element e of G is in the set A_{1} of a β-partition. Then A_{1} is a group. Each A_{i} is a union of right cosets $A_{1} t, t \in G$, and also a union of left cosets $t A_{1}, t \in G$.

Proof. Since $e A_{1}=A_{1}$, we must have $x A_{1}=A_{1}$ for any $x \in A_{1}$, which proves that A_{1} is a subgroup of G. For any other set A_{i} we have $e A_{i}=A_{i}$, and therefore $x A_{i}=A_{i}$ for all $x \in A_{1}$. Hence whenever A_{i} contains an element t, it also contains the right coset $A_{1} t$. By the same reasoning A_{i} contains the left coset $t A_{1}$, which completes the proof.

Lemma 2. Let A_{i} be any set of a β-partition π. Then $\left\{x^{-1} \mid x \in A_{i}\right\}$ is also a set of π.

Proof. Choose a fixed element $y \in A_{i}$, and let C be the set of π to which y^{-1} belongs (of course C may coincide with A_{i}). Then the complex $y C$ contains at least one number of A_{1}, namely e. Hence if x is any other element of A_{i}, the complex $x C$ must contain a member of A_{1}. Thus $x c=w$, where $c \in C$ and $w \in A_{1}$. Then $x^{-1}=c w^{-1}$ is in C by Lemma 1, which shows that $C \supseteqq\left\{x^{-1} \mid x \in A_{i}\right\}$. By the same reasoning $A_{i} \supseteq\left\{z^{-1} \mid z \in C\right\}$, and hence $C=\left\{x^{-1} \mid x \in A_{i}\right\}$.

We define the mapping $i \rightarrow i^{\prime}$ by putting $A_{i^{\prime}}=\left\{x^{-1} \mid x \in A_{i}\right\}$.
Theorem 3. Every β-partition is a weakly normal α-partition.
Proof. Let $\pi: G=\bigcup_{i=1}^{h} A_{i}$ be a β-partition. Fix $z \in A_{k}$ and consider the equation $x y=z$, where $x \in A_{i}, x \in A_{j}$. Since this equation is equivalent to $y=x^{-1} z$, it has $Q_{i^{\prime} k j}$ solutions. Therefore every element of A_{k} is represented $Q_{i^{\prime} k j}$ times among the products $x y, x \in A_{i}, y \in A_{j}$, and so π is an α-partition. It is weakly normal by Lemma 2.

In the next theorem we again let A_{1} be the set of π containing e, and denote its cardinality by ν_{1}.

THEOREM 4. If π is weakly normal, and if ν_{1} is not a multiple of the characteristic of K, then $\mathfrak{U}_{\boldsymbol{\pi}}$ has a two-sided identity element.

Proof. By Lemma 1 each A_{i} is a union of right cosets of A_{1}. Hence $x A_{i}=A_{i}$ for any $x \in A_{1}$. Therefore, defining the elements a_{i} by (1), we have $a_{1} a_{i}=\nu_{1} a_{i}$. Similarly $a_{i} a_{1}=\nu_{1} a_{i}$, so that $\nu_{1}^{-1} a_{1}$ is a two-sided identity in \mathfrak{N}_{π}.

We conclude this section with some remarks and examples. Lemma 1 shows that if π is a weakly normal α-partition, then the set of π containing the identity element is a subgroup of G. If G is Abelian, then every α-partition is clearly strongly normal, and hence weakly normal by Theorem 1. Thus in this case the set containg e is always a subgroup. For non-Abelian groups this need not be so, as can be seen by considering the double coset decomposition $G=\bigcup_{i=1}^{h} H \alpha_{i} K$, where H and K are nonnormal subgroups of G. For example if $G=S_{3}$, the symmetric group on 3 letters, $H=\{e,(12)\}, K=\{e,(13)\}$, we obtain an α-partition into the two sets $A_{1}=\{e,(12),(13),(123)\}, A_{2}=\{(23)$, (132)\}. Here A_{1} is not a group.

An important class of weakly normal α-partitions can be constructed as follows. Let Γ be any group of automorphisms of G, and let the sets of π be the orbits of G under Γ, so that two elements $x_{1}, x_{2} \in G$
are in the same set of π if and only if $x_{1}^{\sigma}=x_{2}$ for some $\sigma \in \Gamma$. Then if z and z^{σ} are two elements of A_{k}, to every representation $z=x y$ with $x \in A_{i}, y \in A_{j}$ corresponds the representation $z^{\sigma}=x^{\sigma} y^{\sigma}$ and conversely. Hence π is an α-partition. Also $x_{1}^{\sigma}=x_{2}$ implies $\left(x_{1}^{-1}\right)^{\sigma}=x_{2}^{\sigma}$, so that if A_{i} is a set of π, so is $\left\{x^{-1} \mid x \in A_{i}\right\}$. Thus π is weakly normal. It is easily seen that π is strongly normal if and only if Γ is normalized by the group Γ_{0} of inner automorphisms of G. This last situation includes the partition of G into its conjugacy classes, for then $\Gamma=\Gamma_{0}$.
4. The case $G=Z_{p}$. We next determine all α-partitions of Z_{p}, the cyclic group of prime order p. We use the additive notation for Z_{p}, so that its elements are $0,1, \cdots, p-1$, and the group operation is addition $(\bmod p)$. It is convenient in this case to call the sets of the partition A_{0}, \cdots, A_{h} rather than A_{1}, \cdots, A_{h}, and to let A_{0} be the set containing the identity element 0 .

The only subgroups of Z_{p} are Z_{p} and $\{0\}$, and so by Lemma 1 , $A_{0}=Z_{p}$ or $A_{0}=\{0\}$. The first case gives rise to a trivial α-partition, so only the second case need be considered. If ε is any primitive p^{\prime} 'th root of unity, then the mapping $x \rightarrow \varepsilon^{x}$ maps Z_{p} isomorphically into the complex field, and by extension maps the group algebra $\mathfrak{N}(G)$ over the rational field Q homomorphically onto $Q(\varepsilon)$. Let η_{i} be the image of a_{i} under this mapping, so that $\eta_{i}=\sum_{x \in A_{i}} \varepsilon^{x}$.

Lemma 3. The η_{i} are algebraic integers of degree at most h.
Proof. By (1), $\eta_{i} \eta_{j}=\sum_{k=0}^{h} N_{i j_{k}} \eta_{k}$. Since $\eta_{0}=1=-\eta_{1}-\eta_{2}-$ $\cdots-\eta_{h}$, this can be written in the form $\eta_{i} \eta_{j}=\sum_{k=1}^{h}\left(N_{i j_{k}}-N_{i j 0}\right) \eta_{k}$; $(1 \leqq i, j \leqq h)$. Thus the vector $\left(\eta_{1}, \cdots, \eta_{h}\right)$ is an eigenvector of the $\operatorname{matrix}\left(M_{j_{k}}\right)=\left(N_{i j_{k}}-N_{i j_{0}}\right)(1 \leqq j, k \leqq h)$ with eigenvalue η_{i}. Since the $M_{j_{k}}$ are integers, it follows that η_{i} is an algebraic integer of degree $\leqq h$.

THEOREM 5. Let $\bigcup_{i=0}^{h} A_{i}$ be an α-partition of Z_{p} with $A_{0}=\{0\}$. Then
(i) $p \equiv 1(\bmod h)$
(ii) If g is a primitive root of p, then the classes A_{i} can be numbered so that A_{i} consists of all residues x with ind $_{g} x \equiv i(\bmod h)$; ($i>0$).
(iii) Conversely, for any h dividing $p-1$, the sets defined in (ii) form an α-partition of z_{p}.

Proof. Let C_{i} be the number of elements in A_{i}, and suppose for the sake of the argument that $c_{1}=\min _{1 \leq i \leq h} c_{i}$. Theorem 2 implies that
$Q \subseteq Q\left(\eta_{1}\right) \cong Q(\varepsilon)$, where $S=\left[Q\left(\eta_{1}\right): Q\right] \leqq h$. But $Q(\varepsilon)$ is a normal extension of Q whose Galois group $\mathbb{C S}$ is generated by the automorphism $\varepsilon \rightarrow \varepsilon^{q}$, and is cyclic of order $p-1$. By the fundamental theorem of Galois theory, the elements of $Q\left(\eta_{1}\right)$ are invariant under a subgroup \mathfrak{S} of (8) of order $t=(p-1) / \mathrm{s}$. Since a cyclic group has only one subgroup of given order, \mathfrak{F} is generated by the automorphism $\varepsilon \rightarrow \varepsilon^{g}$. From this it follows that if ε^{x} is a term of η_{i}, then $\varepsilon^{g_{s}}$ is also a term of η_{i}. Hence η_{i} contains the t distinct terms $\varepsilon^{x}, \varepsilon^{g^{s} x}, \cdots, \varepsilon^{g(t-1) s_{x}}$, so that $c_{1} \geqq t$. Hence $p-1=\sum_{i=1}^{h} c_{i} \geqq h c_{1} \geqq h t \geqq s t=p-1$. Equality must hold at each stage, and so $c_{1}=c_{2}=\cdots=c_{h}=t$, and $h=s$. Moreover each η_{i} is of the form $\eta_{i}=\varepsilon^{x_{i}}+\varepsilon^{g^{s_{i}}}+\cdots+\varepsilon^{g(t-1) s_{x_{i}}}$, and accordingly each A_{i} is of the form $A_{i}=\left\{x_{i}, g^{s} x_{i}, \cdots, g^{(t-1) s} x_{i}\right\}$. Renumbering the A_{i} if necessary, this is equivalent to assertion (ii).

To prove (iii) it suffices to apply the remark made at the end of $\S 2$, taking Γ to be the group of automorphisms of G generated by the mapping $x \rightarrow \mu x$, where μ is an element of order h in the multiplicative group of non-zero residues $(\bmod p)$.

The determination of the structure constants $N_{i j k}$ of the algebras \mathfrak{N}_{π} of Z_{p} is an interesting and difficult problem. For a survey of the known results, see [1].
5. The lattice of α-partitions. If π_{1} and π_{2} are any two partitions of G into disjoint sets, we will say that $\pi_{1} \leqq \pi_{2}$ if every set of π_{1} is contained in some set of π_{2}. This clearly defines a partial ordering, and the purpose of this section is to show that the set of all α-partitions of G is a lattice under this ordering. The following theorem is the key to the proof of this fact.

Theorem 6. Let π_{0} be a given partition of G. Then the set of α-partitions π satisfying $\pi \leqq \pi_{0}$ has a greatest element.

Proof. If π_{0} is itself an α-partition the theorem is clearly true. So we can suppose that there are three sets A_{i}, A_{j}, A_{k} of π_{0} such that not all elements of A_{k} are represented the same numbers of times among the products $x y, x \in A_{i} y \in A_{j}$. Thus A_{k} can be decomposed into sets $A_{k 1}, A_{k 2}, \cdots, A_{k \gamma}(\gamma \geqq 2)$, by putting two elements $u, v \in A_{k}$ in the same $A_{k \nu}$ if and only if u and v are represented the same number of times in the form $x y$. Call π_{1} the resulting partition of G. If π is an α-partition with $\pi \leqq \pi_{0}$, then A_{i} and A_{j} are both unions of sets of π. Therefore each $A_{k \nu}$ is a union of sets of π, so that $\pi \leqq \pi_{1}<\pi_{0}$. If π_{1} is an α-partition we are through; otherwise we can treat π_{1} in the same way as π_{0}, thus obtaining a partition $\pi_{2}<\pi_{1}$ with the property that any α-partition $\pi \leqq \pi_{0}$ is $\leqq \pi_{2}$. Proceeding in this manner
we obtain a chain $\pi_{0}>\pi_{1}>\pi_{2} \cdots$, which must terminate after a finite number of steps since G is finite.

Theorem 7. The α-partitions of G form a lattice L. The weakly and strongly normal α-partitions form sublattices L_{w} and L_{s} with $L_{s} \subseteq L_{w} \subseteq L$.

Proof. If $\pi_{1}: G=\bigcup_{i=1}^{h} A_{i}$ and $\pi_{2}: G=\bigcup_{j=1}^{k} B_{j}$ are any two α partitions of G, let π_{0} be the partition $G=\cup_{i, j} A_{i} \cap B_{j}$. Clearly any α-partition π satisfying $\pi \leqq \pi_{1}$ and $\pi \leqq \pi_{2}$ satisfyes $\pi \leqq \pi_{0}$ and conversely. Hence by Theorem 6 there is a greatest such α-partition, which we denote by $\pi_{1} \cap \pi_{2}$. It follows at once that any finite set π_{1}, \cdots, π_{m} of α-partitions have a meet $\pi_{1} \cap \cdots \cap \pi_{m}$. Therefore any two α-partitions π_{1}, π_{2} have a join $\pi_{1} \cup \pi_{2}$, namely the meet of all α partitions π such that $\pi_{1} \leqq \pi, \pi_{2} \leqq \pi$.

To prove the second part of the theorem, suppose that π_{1} and π_{2} are both invariant under a group Σ of automorphisms and antiautomorphisms of G. Then for any $\sigma \in \Sigma$ we have $\left(\pi_{1} \cap \pi_{2}\right)^{\sigma} \leqq \pi_{1}^{\sigma}=\pi_{1}$ and similarly $\left(\pi_{1} \cap \pi_{2}\right)^{\sigma} \leqq \pi_{2}$. Therefore $\left(\pi_{1} \cap \pi_{2}\right)^{\sigma} \leqq \pi_{1} \cap \pi_{2}$, and reasoning in the same way with σ^{-1}, we see that $\left(\pi_{1} \cap \pi_{2}\right)^{\sigma}=\pi_{1} \cap \pi_{2}$. This shows that $\pi_{1} \cap \pi_{2}$ is invariant under Σ, and the same is of course true of $\pi_{1} \cup \pi_{2}$.

The lattice of α-partitions of G conveys more information about G than its lattice of subgroups. A fuller account of this will be given elsewhere.

Reference

1. R. H. Bruck, Computational aspects of certain combinatorial problems, Proceedings of Symposia in Applied Mathematics, 6 (1956), 31-43.

[^0]: Received April 17, 1964. The author is an Alfred P. Sloan Fellow.

