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A GENERALIZATION OF THE
COSET DECOMPOSITION OF A FINITE GROUP

BASIL GORDON

Let G be a finite group, and suppose that G is partitioned
into disjoint subsets: G = \Jf=1 Au If the Ai are the left (or
right) cosets of a subgroup H ϋ G, then the products xy, where
x 6 Ai and y € Aj9 represent all elements of any Ak the same
number of times. It turns out that certain other decomposi-
tions of G of interest in algebra enjoy this same property
we will call such a partition π an α-partition.

In this paper all α-partitions are determined in the case G
is a cyclic group of prime order p; they arise by choosing a
divisor d of p — 1, and letting the Ai be the sets on which
the d'th power residue symbol (x/p)d has a fixed value. It is
shown that if an α-partition is invariant under the inner
automorphisms of G (strongly normal) then it is also invariant
under the antiautomorphism x->χ-\ For such α-partitions
(called weakly normal) it is shown that the set Ai containing
the identity element is a group. An example shows that this
need not hold for nonnormal partitions.

1* For any ^-partition π, let JV^ denote the number of times each
element of Ak is represented among the products xy, xeAif yeA3 .
Then if 31 (G) is the group algebra of G over a field K, and if we
put

it is clear that a^ — Σ ϊ=i Nijkak. Therefore the vector space spanned
over K by alf , ah is a subalgebra 31* of 31 (G), with structure
constants Nίjk. Conversely, ifπ:G = \JΪ=1Ai is any partition of G into
disjoint subsets, and if the elements a4 defined by (1) span a sub-
algebra of 31 (G), then π is an α-partition.

In the case where π is the decomposition of G into the cosets of
a normal subgroup H whose order m is not divisible by the character-
istic of K, the algebra 3Ir is the group algebra 31 (G/H) of the
factor group G/H. For then the elements ajm form a group isomor-
phic to G/H, and are a basis of St*.

In this paper some of the elementary properties of ^-partitions

are developed. I plan in a second paper to discuss in more detail the

structure of the algebras 3ίr and their application to the representa-

tion of G by matrices.
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2 Normal partitions* Since the ^-partitions are a generaliza-
tion of the coset decomposition of G with respect to a subgroup H, it
is natural to begin the study of them by asking which ^-partitions
should be called normal. Several different definitions of normality are
possible, and two of them will be considered here. Note first that if
π is an ^-partition, and σ is an automorphism or anti-automorphism of
G, then the partition π0* obtained by applying σ to the sets of re, is
again an α-partition. If π = πσ, we will say that π is invariant
under a. This means that the sets of π are permuted among them-
selves by σ. If σ has the stronger property of mapping each set of
π onto itself, π is called setwise invariant under σ.

An α-partition π is called weakly normal if it is invariant under
the anti-automorphism σ: x —> x~\ On the other hand π is called
strongly normal if it is invariant under all inner automorphisms τ:
x —» t~λxt. It is easily seen that in the case where π is the left coset
decomposition of G with respect to a subgroup H, either type of
normality of π is equivalent to normality of H. The following theorem
explains the choice of terminology.

THEOREM 1. If π is strongly normal, then it is also weakly
normal.

Proof. Let π be strongly normal, let A{ be any set of π, and
let x be any element of Aim Suppose x~λ e Aj. If n is the order of
G, there exists a prime p such that p > n, p = — l(mod n), by
Dirichlet's theorem on primes in an arithmetic progression. Let Hi
be the group generated by the elements of Aif and denote its order
by m{. Consider the set S of all ordered (p + l)-tuples (£, xu x2, , xp)
with t e Hi, all xv e Aif and such that t"ιx~xt = xxx2 •••»,. The mapping
θ : (t, xl9 , xp) —> (ία?!, cc2, , α ,̂ αά) maps S onto itself, and so S is
decomposed into orbits by the cyclic group of mappings generated by
θ. Clearly the cardinality of the orbit of (ί, xlf , xp) is a multiple
of p unless xx — x2 — = xv. In this case we have t~ιx~xt = xf =
a Γ1, or equivalently έ" 1 ^ = a?lβ Therefore the number of such (p + 1)-
tuples is equal to the number of elements teHi such that t~λA{t — Aim

But every element te Hi has this property. Indeed, if t e A{ then
t~Ht — t, so that the assumed strong normality of π implies t~xAit =
At the same is then of course true for all t e H{.

From this we see that if N is the cardinality of S, then N = mi
(mod p). On the other hand it is immediately seen from the definition
of a strongly normal ^-partition that if y is any element of Aj9 then
the number of ordered (p + l)-tuples (t, xl9 , xp), teHif xyeA{ such
that t~xyt — xxx2 xp is also N. Since these (p + l)-tuples can be
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divided into orbits as above, we see that there are exactly m< solutions
of the equation t~λyt — xf — ccf1, where t e Hiy x1 e A{ (here we use
the fact that m^n < p). Hence all t e Hiy give rise to solutions of
this equation. Taking t — e we get y = ccr\ so that the inverse of
any element of A3 is in Aim Since the roles of A{ and AQ can be
interchanged, we have A, = {z*1 \ z e At}9 and the proof is complete.

In general weak normality does not imply strong normality. This
can be seen by considering the example where Aγ is a nonnormal sub-
group of G and A2 — G — Alt

3* Weakly normal partitions* In this section we obtain a
characteristic property of weakly normal α-partitions which is useful
in the further development of the theory. Let π : G = U ϊ=i A{ be any
decomposition of G into disjoint sets (not necessarily an α-partition).
Suppose that for any xeAi9 the cardinality of the xA3 Π Ak depends
only on ί, j , &(that is, does not depend on the particular x chosen from
A^ and for any y e Ah the cardinality of A{y Π Ak depends only on
i, j , k. We will use the tentative term β-partition to describe such
π's, and will prove that they are precisely the weakly normal <x-parti-
tions. Half of this can be proved at once.

THEOREM 2. Every weakly normal a-partition is a β-partition.

Proof. Suppose x e Ai9 and form the set xA3 Π Ak. The cardinal-
ity of this set is the number of solutions of the equation xy = z,
where y e Aj9 z e Ak. Since this equation is equivalent to x — zy~\
and since {y1 \ y e Aj} — A) for some j ' , the number of solutions is
Nkj,i9 which depends only on i, j , k. In the same way we see that
the cardinality of A{y Π Ak, where yeA3 , depends only on i, j , k, and
the proof is complete.

The proof that every /3-partition is a weakly normal α-partition is
somewhat more complicated, and we need two lemmas. For any β-
partition, let Qijk denote the cardinality of A{y Π Ak9 where yeA3 .

LEMMA 1. Suppose that the identity element e of G is in the
set Ax of a β-partition. Then A1 is a group. Each At is a union
of right cosets Axt9 teGf and also a union of left cosets tAu teG.

Proof. Since eAx = Al9 we must have xA1 — A1 for any x e Al9

which proves that A1 is a subgroup of G. For any other set A* we
have eA{ = Aif and therefore xA{ = A{ for all x e A19 Hence whenever
Ai contains an element t9 it also contains the right coset Axt. By the
same reasoning At contains the left coset tAl9 which completes the
proof.
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LEMMA 2. Let A+ he any set of a β-partitίon π. Then {or11 x e A^
is also a set of π.

Proof. Choose a fixed element yeAiy and let C be the set of π
to which y~ι belongs (of course C may coincide with A<). Then the
complex yC contains at least one number of A19 namely e. Hence if
x is any other element of Ai9 the complex xC must contain a member
of A19 Thus xc = w, where ceC and w e A19 Then x*1 = cwι is in
C by Lemma 1, which shows that C 2 {or11 x e A{}. By the same
reasoning A{ 2 {zr1 \ z e C), and hence C — {or1 \ x e A{}.

We define the mapping i —* V by putting Av = {ar11 x e AJ.

THEOREM 3. Every β-partition is a weakly normal a-partition.

Proof. Letπ: G = (J J=1 A<be a /9-partition. Fix ̂ e i f c and consider
the equation ccy = 2, where x e Ai9 xe Aj. Since this equation is
equivalent to y — or1;?, it has QifJej solutions. Therefore every element
of Ak is represented Q4,fcί times among the products xy, xeAi9 yeAj9

and so π is an α-partition. It is weakly normal by Lemma 2.

In the next theorem we again let A1 be the set of π containing
e, and denote its cardinality by vlm

THEOREM 4. If π is weakly normal, and if vx is not a multiple
of the characteristic of K, then 31* has a two-sided identity element.

Proof. By Lemma 1 each A< is a union of right cosets of Ax.
Hence xAi — Ai for any x e Ax. Therefore, defining the elements α̂
by (1), we have α ^ = vxa^ Similarly a^ — v^, so that ^r1 a1 is a
two-sided identity in Sίr.

We conclude this section with some remarks and examples. Lemma
1 shows that if π is a weakly normal α:-partition, then the set of π
containing the identity element is a subgroup of G. If G is Abelian,
then every ^-partition is clearly strongly normal, and hence weakly
normal by Theorem 1. Thus in this case the set containg e is always
a subgroup. For non-Abelian groups this need not be so, as can be
seen by considering the double coset decomposition G = U ?=1 Hajί, where
H and K are nonnormal subgroups of G. For example if G = Si9 the
symmetric group on 3 letters, H = {e, (12)}, K — {e9 (13)}, we obtain
an α-partition into the two sets Aι = {e, (12), (13), (123)}, A2 = {(23),
(132)}. Here A1 is not a group.

An important class of weakly normal α-partitions can be constructed
as follows. Let Γ be any group of automorphisms of G9 and let the
sets of 7Γ be the orbits of G under Γ, so that two elements xl9 x2eG
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are in the same set of π if and only if xf = x2 for some σ e Γ. Then
if z and zσ are two elements of Ak9 to every representation z = xy
with xe Ai9 ye Aj corresponds the representation z* = x^y* and con-
versely. Hence π is an α-partition. Also x* — x2 implies (scf1)0" = xl9

so that if Ai is a set of π, so is {or11 a? 6 AJ. Thus π is weakly normal.
It is easily seen that π is strongly normal if and only if Γ is normalized
by the group I\ of inner automorphisms of G. This last situation
includes the partition of G into its conjugacy classes, for then Γ = Γo.

4* The case G — Zp. We next determine all α-partitions of ZP9

the cyclic group of prime order p. We use the additive notation for
ZPf so that its elements are 0,1, •• , p — 1, and the group operation
is addition (mod p). It is convenient in this case to call the sets of
the partition AQ9 * 9Ah rather than Al9 •••, Ahf and to let AQ be the
set containing the identity element 0.

The only subgroups of Zp are Zp and {0}, and so by Lemma 1,
Ao = Zp or Ao = {0}. The first case gives rise to a trivial ^-partition,
so only the second case need be considered. If ε is any primitive p'ih
root of unity, then the mapping x —•> ε* maps Zp isomorphically into
the complex field, and by extension maps the group algebra SI(G) over
the rational field Q homomorphically onto Q(e). Let τjt be the image
of α< under this mapping, so that rji — Σ β e ^ *

LEMMA 3. The rji are algebraic integers of degree at most h.

Proof. By (1), ηfls - Σ Uo Nijkηk. Since η0 = 1 = - ηx - η2 -
• * — Vht this can be written in the form η η3- = Σik=i(Ni3 k — Nijo)ηk

(1 ^ if 3 ^ h). Thus the vector (ηl9 •• ,τ)h) is an eigenvector of the
matrix (Mjk) = (Nijk — Nij0) (1 ^ i , fc g h) with eigenvalue ^<# Since
the Mjk are integers, it follows that Ύ]ι is an algebraic integer of degree
g h.

THEOREM 5. Let \J J=o -A< 6β α^ a-partition of Zp with Ao = {0}.
Then

( i ) p = 1 (mod h)

(ii) If g is a primitive root of p, then the classes Ai can be
numbered so that A{ consists of all residues x with indgx = i(moά h)
(i > 0).

(iii) Conversely, for any h dividing p — 1, the sets defined in
(ii) form an a-partition of zp.

Proof Let C< be the number of elements in Ai9 and suppose for
the sake of the argument that cx = min ci# Theorem 2 implies that
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Q e QtyO S Q(e), where S = [Q(^): Q] g h. But Q(e) is a normal
extension of Q whose Galois group ® is generated by the automorphism
ε —> ε9, and is cyclic of order p — 1. By the fundamental theorem of
Galois theory, the elements of QOyO are invariant under a subgroup
ξ> of © of order t — (p — l)/s. Since a cyclic group has only one
subgroup of given order, ξ> is generated by the automorphism ε —> e°*.
From this it follows that if εx is a term of ηί9 then εgSχ is also a term
of )?;. Hence ^ contains the £ distinct terms ε% εffS:c, , eg{t~1)Sχ, so
that Cj. Ξ> £. Hence p — 1 = 2, J=1 ^ ^ fc^ ^ /?,£ ̂  s£ = p — 1. Equality
must hold at each stage, and so cx = c2 = = ch = £, and h — s.
Moreover each ^ is of the form ηt = ε^ + ε?Sa;ί + + εg{t~1)Sχ\ and
accordingly each A{ is of the form Ai — {xiyg

sxi,*^,g{t~l)sxi}. Re-
numbering the Ai if necessary, this is equivalent to assertion (ii).

To prove (iii) it suffices to apply the remark made at the end of
§2, taking Γ to be the group of automorphisms of G generated by
the mapping x—>μx9 where μ is an element of order h in the multi-
plicative group of non-zero residues (mod p).

The determination of the structure constants Nijk of the algebras
3ίff of Zp is an interesting and difficult problem. For a survey of the
known results, see [1].

5* The lattice of α-partitions* If πx and π2 are any two parti-
tions of G into disjoint sets, we will say that πx ^ π2 if every set of
7Γi is contained in some set of τr2. This clearly defines a partial order-
ing, and the purpose of this section is to show that the set of all
α-partitions of G is a lattice under this ordering. The following
theorem is the key to the proof of this fact.

THEOREM 6. Let πQ be a given partition of G. Then the set of
a-partitions π satisfying π ^ π0 has a greatest element.

Proof. If τr0 is itself an α-partition the theorem is clearly true.
So we can suppose that there are three sets Ai9 Ajf Ak of 7Γ0 such
that not all elements of Ak are represented the same numbers of times
among the products xy, xeA{ ye A3-. Thus Ak can be decomposed
into sets Akl, Ak2, • ,AkΊ{

rr ^ 2), by putting two elements u, veAk in
the same Akv if and only if u and v are represented the same number
of times in the form xy. Call π1 the resulting partition of G. If π
is an ^-partition with π ^ ττ0, then A* and Aj are both unions of sets
of π. Therefore each Akv is a union of sets of π, so that π ^ πt < π0.
If πι is an α-partition we are through; otherwise we can treat πx in
the same way as τr0, thus obtaining a partition π2 < πx with the
property that any <x-partition π ^ π0 is ^ π2. Proceeding in this manner
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we obtain a chain π0 > πλ > π2 , which must terminate after a finite
number of steps since G is finite.

THEOREM 7. The a-partitions of G form a lattice L. The
weakly and strongly normal a-partitions form sublattices Lw and Ls

with L s g L w g L.

Proof If πλ: G = \J J=1 A< and π2: G — \J j?=1 JSy are any two a-
partitions of G, let π0 be the partition G = U *,; -A* Π JB, . Clearly any
α-partition π satisfying π ^ πx and TΓ ̂  ττ2 satisfyes π ^ πQ and
conversely. Hence by Theorem 6 there is a greatest such α-partition,
which we denote by πλ Π π2. It follows at once that any finite set
πu ' > πm of α-partitions have a meet πx Π Π τrm. Therefore any
two α-partitions πu π2 have a join πt U ̂ 2» namely the meet of all a-
partitions π such that πx ^ π, π2 ^ π.

To prove the second part of the theorem, suppose that πt and π2

are both invariant under a group J£ of automorphisms and antiauto-
morphisms of G. Then for any σ e Σ we have {πx Π π3y g π?" = πx

and similarly (^ Π ̂ 2)°" ̂  ττ2. Therefore (πx Π TΓ̂ 0* ^ ^ Π π2, and rea-
soning in the same way with σ~\ we see that (πx Π π2)

σ = πx Π τr2

This shows that TΓJ. Π ̂ 2 is invariant under Σ, and the same is of
course true of τz1 (J ^2.

The lattice of ^-partitions of G conveys more information about
G than its lattice of subgroups. A fuller account of this will be given
elsewhere.
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