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ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

This paper was received before the synoptic introduction
became a requirement,

1. Introduction. Let Q(2) be a meromorphic function with poles
2y, %, %3, + <+, the notation being so chosen that |z,| = |z, = |z = -+
If fe L(0, 1), define

1
e = res,, Q(2) S ft)e =it .
0
Then, the series ¢, is called the Cauchy Exponential Series (CES)
of f with respect to Q(r). If 2z, is of multiplicity m, then ¢, is a
polynomial in © of degree at most m — 1; if the poles are all simple,
with residue X\, at z,, we may write

(1) ¢, =\, S Ftyedt

and {c,}, independent of «, are called the CE constants.

Let C,:]z| = 7, be an expanding sequence of contours, none of which
passes through a pole of Q(z). Suppose C, contains n, poles of Q(z).
Then,

n

=

I
-

v

c,e’" = ——1—— S Q(z)dz Slf(t)e”’”‘”dt ,
277."1, Op 0
=1,, say.

Denote by C;, C; the parts of C, lying in the right, left half-planes
respectively. If Q(z) is approximately unity on C;, and is small on
C,, in the sense that

(2) S0+ (Q(z) — 1)dz S:f(t)e"x““dt = o(1)
(3) So_ Q) g:f(t)e“”—"dt — o(1)
as p — co, uniformly for x€[0, 1], then
— 1 ! z(z—1t)
L= So; dz SO F)e=0dt + o(l)

1 Sl Sf(@)sinr,(x —t) dt + o(1)
T Jo x—1
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uniformly in [0,1], and so the sums I, behave somewhat like the
partial sums of a Fourier series (F.s.). Indeed, when

QR =efer — 1

the CES is the F.s. of f.
In this paper, we shall suppose that

(4) Q@) = — 22 _ ca®)

e’a(z) + b(z) G(?)

where a(z), b(z) are relatively prime polynomials of degree %, and that
all the poles are simple. This case was investigated first by Fullerton
([1], 1-34), using a less convenient notation,

The large zeros of G(z) approximate to those of ¢* — ¢, where

(5) ¢ = —llliilrol° b(z)/a(z)

i.e. to the points {{ + 27pt}, { being the principal value of log c.
Hence there is a 0, 0 < 0 < 27, such that if r, = 2pm + 0, each point
of C, is at a distance greater than a positive constant from the zeros
of G(z) and of ¢ — ¢. This enables us to prove

THEOREM 1. Let fe L(0,1). Then, as p — oo,
5_,2 ¢, — e8%s,(x) — 0
y=1

uniformly for xe[0,1], where s, (x) is the pth partial sum of the
F.s. of f(t)es'.

We next show that there are % relations connecting the CE con-
stants.

THEOREM 2. Let feL(0,1). If ¢, is defined by (1), for
v=12, ..., then

(6)

o

(2 =0
B NF(@)

(r=20,1, -+, n — 1), where F(z) = e*G(z).
This naturally leads to the following question: if a sequence of

numbers {8,} satisfies >;.¢,5, =0, what is the nature of the 8, ?
The answer is given by

THEOREM 3. Let {B,} be a sequence of numbers such that
Seiel, =0 for every CES ZXece>*, Then, there are constants
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Oy *+*, &,_, sSuch that

n—1 o z'r
B, = Gy
= ME(2,)

Because of the relations (6), we cannot expect that, given a
sequence {c¢,} with >,]¢,|* < oo, there is a function fe L*0, 1) such
that (1) is true for each v. However, we can prove

THEOREM 4. If {¢,}, v > n, 18 a sequence with >,,..|c¢,|> < oo,
there s a function fe L*0,1) such that (1) is true for each v > n,
and upon defining ¢, <+, ¢, by (1), such that >, c,e™" converges in
mean to f.

Alternatively, we can alter every ¢, and so obtain a Riesz-Fischer
analogue. We have

THREOREM 5. Let {¢c,} be a sequence with >, |¢, | < . Then,
there are constants v, +++, Y, such that if

n—1 ,-),Tz:
d,,:Cy‘}'Tz:‘O G’(Z) ’
v

the mumbers d, are the CE constants of a function fe L0, 1).

We next investigate the problem of the uniqueness of CES. We
prove

THREOREM 6. If >5,d.e™ = f(x) almost everywhere im [0, 1],
then there are constants a,, *++, 0,_, such that

(! ot s oz
(7) do= | feas + 5 S

Finally, the question arises whether it is possible to generalise the

function Q(z) given by (4), so that the CES of f is uniformly equi-
convergent with a F.s. The functions

_ ea(z) + B(z)
PO = e T

where «(z), B(z) are polynomials of degree =, are obvious generalisa-
tions. As Rez— <, P(z) tends to a number w, # 0; as Rez — — oo,
to w, # 0. Suppose w, # ®,, and define

1

m{P (2) — Wy} ;

Qi) =
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then Q,(z) satisfies (2), (3). If the CES of f with respect to @Q.(2) is
uniformly equiconvergent in |0,1] with ¢® multiplied by the F.s. of
J(t)e ¢, for each fe L(0, 1), then

a®) = waz) and  B(R) = 0.b®),
so that P(z) = (0, — 0,)Q() + ®,. We omit the proof.

2. Proof of Theorem 1. In (4), write

Q@) = —%— 1 R@);

e —c¢
then

_ —e{ca(z) + b(z)}
B&) = — o ocm

By the choice of C,, there is a positive constant A such that, on C,,

le* —c¢| > Amax(|e], 1)
|G(2)| > Amax (|ez"|,|2"]) .

Further, by (5),
ca(z) + b(z) = O(|z" 7))
as |z|— o. Hence,

ez(x—l)

§0+ R(2)dz S F(H)e =t = O(SO+

»

- °<So;

= o(1)

sz: Ftye—=dt D

2(x—1)
¢ dz l)
2

as p — oo, uniformly for # < 1. Similarly,

[, Bz | se=—at = o] _

»

=(l,;

= o(1)

—‘i;sz:f(t)e”““”dt')

=)

as p — oo, uniformly for x = 0.
Since, for large p, the number of zeros of ¢ — ¢ inside C, differs
from 2p + 1 by at most 1 and

S:f(t)e(§+2zmi)(z—t)dt — 0(1) ,



ON A CLASS OF CAUCHY EXPONENTIAL SERIES 409

it follows that

S oo = 1 g ¢ dzgl F(&)er==vdt + o(1)
y=1 2wt Jop €f — ¢ 0

Y O

= e¢"s,(x) + o(1)

as p — o, uniformly in [0, 1], and this completes the proof.
3. The proof of Theorem 2 will depend upon
Lemma 1. For »r=20,1, -+, n — 1,

z’re—~zt .
gop _——F(z) dz = o(1)

as p — o, boundedly for 0 <t <1,

Proof. Define C}, C; as in §1; then, for »r =0,1, «++,n — 1,

et S
So; o T O(Sw'z edz])

?

O<S”/2 L eXD (—tpcos 0)d0> w=r,

—7

I

_ O(S:’Z exp (—tp sin 0)d0>

ol (-2

which is o(1) as p — oo, boundedly for ¢t > 0. Similarly,

z're~zt .
=

boundedly for ¢ < 1. Hence the result.

4. Proof of Theorem 2. Since the zeros of F(z) are simple,

zre~zt z:en—zvt

TR T Fla)

hence, by Lemma 1, for » =0,1, .-+, n — 1,

np zre—zvt
v — o1
2P Y

as p— oo, boundedly for0 <t < 1. By the ChOlce of Cp, Npry — Np = 2
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for large p, and so, since the terms are o(l) as v — co, we may re-
place n, by p in the above summation. If we multiply by f(¢) and
integrate over [0, 1], we have (6).

5. We now prove

LeMMA 2. Let a(z) = S0 a42*, and b(z) = ., b,2%. Then,

n—1 n

0 =
(8) zazwﬁwwm+wmmWwam:{ v
=0 k=r+1 0

G'(z) v=p
Proof. Write the left-hand side of (8) as
(9) < + Ay
then,
2 = 3+ ) S aidk
If v+#p,

“(/ — b(zv) _ b(zu)z+jzvz{a(zv) —_ a(zu)} .

A = a(z)

b
v 2

since G(z,) = G(z.,) = 0, (9) is zero. If v =g, (9) is
S (b + aue i + alz)e
k=1

= b'(2.) + e(a'(2,) + a(2.))
=G'(z) .

This proves the lemma.

6. Proof of Theorem 3. We have >:,¢,8,=0 for every
sequence {c,} of CE constants, i.e.

S8 [ Femat = 0
v=1 0
for every fe L(0,1). Hence, by a well-known theorem (2], §279),

(10) S 3 Be-tdE — 0

1—z v=1

as p — co, boundedly for z€[0,1]. We recall (8); if we multiply by
Bxe ™ and sum from vy =1 to v = p, where p is greater than an
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assigned integer p, we obtain

n—1 P n
BTG @) = S 3N, 3 (b + a)ed

=r+

+ a(z,k)e’p Sl o—7ut ﬁ Bvxvezy(t—l)dt
0 y=1
n—1
= ZO L,z + A4, , say.
Let
¢p(t) — Zp‘ l@y)\wezv(t—l) ,
v=1
0,(x) = SO 6,(t)dt = S

By (10), @,(x) — 0 as p — <, boundedly for x€[0,1]. Thus,

1 P
S Bae ™t
—x V=1

1

Ay = afz,)e’r S:e—zﬂ”gb,,(t)dt

I

az)e{o,We s + 2, | oo Bt}
= 0(1) as p— oo,

Hence, since ¢°G(z) = F(z),

n—1

(11) % er Ry = IBI»J“MF’(Z#) + &

where the numbers {L,,,} are independent of ¢, and ¢, — 0 as p— <.
Giving p distinct values f, - -+, #,, (11) yields a regular system
of n linear equations for L, ---, L, ,,. The solution is

L ;s:_:{ {,BHN,%F'(Z%) + E#i}A::T)

" det (27"
where 4" are cofactors of elements in the (r + 1)th column of the
matrix (zi;%), (4,7 =1,2, ---,n). The only nonconstant terms in this
expression for L,, are ¢,, which are o(l) as p— --. Hence, for
r=20,1,---,n» —1, {L,,} converges, to «, say. Letting p--»co
in (11), we have the result.

7. To prove Theorem 4, we require three lemmas.
LEmMMA 3. If p > n, there are numbers d,, ++-, d, such that

o 4 3 detr
k=1
18 its own CES.
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Proof. We shall show that there are numbers d,, ---,d, such
that, if

S(x) = e7»® + éldke“k“ ,
then, for pt¢{1, ---, n, p},
(12) S:S(x)e—wdx ~0.
Since the functions e*®, ..., ¢*»% ¢*»" are linearly independent, and by
Theorem 1, the CES of S(x) converges everywhere in (0,1) to S(x),

it will then follow that S(x) is its own CES.
For p + k,

0 2, — %

e *r{a(z,)b(2.) — a(2.)b(21)}
a(2)a(z.) (2, — 2u)

_ e0(2y, 2,) say.
a(z,)a(z.)

Thus, if p¢{l, ---,n,p}, and d,, --+, d, are any » numbers, the left-
hand side of (12) is

e~ {a(z,,, ) 4 & dy0(2, 2) }

a(z) U alz,) = alz)
_ e-—z’u' n
= W{O(zm 2.) + kZ;l 0,0(24, zn)}
=1, say, where 6, = M‘—.
a(z)

The symmetric polynomial

a(x)b(y) — a(y)b(x)
€ —y

oz, y) =
can be expressed in the form

:%Pr(x)y’

where P,(x) is a polynomial in = of degree at most n — 1. Then,

_ el S
L= ey P+ BaRe)

This is zero for each p¢{l, ++-, n, p} if
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Pz) + SL0.P.(z) = 0 r=0,1,-+,n—1),
k=1
which happens if
z;—{»iﬁ,cz,tzo (r=0,1,---,n—1).
k=1

Since this system of % linear equations for the unknowns 6, ---, 4, is
regular, the lemma follows.

COROLLARY. Given the constants ¢, .y, -+, ¢, of Theorem 4, there
are numbers ¢, « -, ¢ such that

n »
Ty(x) = 3, cPes® -+ 3, ce”
k=1 V=n+1
18 its own CES.
LeMMA 4. The mnumbers ¢, -«-, ¢ are unique and, for
k=1,2,---,n, the sequence {¢'} converges.

Proof. By Theorem 2, the numbers ¢{”, :--, ¢i?’ satisfy the regular
system of linear equations

c”z] . ez, a (A

e N 4 n Zn v
NF(z) NER) v LE)

(r=0,1,---,2—1), and so are determined uniquely. Since 3,.,|c,[*< oo,
and

IMF'(2)] > K| 2]
where K is a constant,

! C\Ry
N F(2,)

converges, for ¥ = 0,1, ---, n» — 1. Hence, by an argument used in
the proof of Theorem 3, {c¢{”} converges, for k =1,2, -+, n.

LEMMA 5. There is a positive constant A such that if {a,} s
any finite set of mumbers, then

g’ | Sa,0 Pde < AS |a, | .
0

This may be proved by an argument similar to that of Lemma 3

of [3].
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Proof of Theorem 4. Let p, ¢ be integers such that
Then,
q
S ocent .
+1

Ty(w) — Tyl@) = 33,6 — e)ese + >

80
q>p>n.

By Lemma 5, there is a constant 4 > 0 such that
o q
RN
y=p+1

[T, - T@Pdo = A{3 o — o
0 k=1

Hence, by Lemma 4, {T,(x)} converges in mean to a function fe L*(0, 1).
Since T,(x) is its own CES,

Let v > n.
¢, =\, S: T, (x)e**dx (p = v).
Hence,
¢, =\, lim SO T (x)e- das
=N\, S:f(x)e“’v"dx .
Define ¢,, < -+, ¢, by this formula; then,
¢, = lim ¢’ (k=1,2,.-+,m),

poroco

and >\, c.e”* converges in mean to f. This completes the proof.
If we multiply (8) by ¢, and sum

9. Proof of Theorem 5.
from v =1 to v = p, where p is greater than an assigned integer f,

n
. 21 (awe™ + by)zi—*

we obtain
» n—1 P
cG'(z,) = 220> ¢,
r=0 v=1 =2+
1 P
+ a(z)e’ | et > cevidi
0 v=1
say.

(13)
= __% + //4 ’
S ce™ converges in mean to a funetion

Since > l¢, [P < oo,
fe LX0,1). Hence,
.//Z;; — d#G’(zlL) as P — co
where
d, =, S F(t)e—utdt
0

Next,
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71

(14) =S - A S e S e + bs

r=0

._.

where

0, = ¢ i (ae™ + bzt

k=r+1

Since
5_,‘ (aze™ + bzt = O™

the summation over y in (14) converges, as p — co, to 7, say. The
result now follows upon writing

N+ 0, =7 .

10. Before establishing the uniqueness theorem, we prove two
lemmas.

LemMmaA 6. If >5.,d.e>" = flx) almost everywhere in [0, 1], and
d, = O(v™?), there are constants c,, «++, 7,_, such that (7) is satisfied
forv=1,2,+--.

Proof. We have (13), with ¢, replaced by d,. We may write
this as

dﬁ@@:ﬁM@%+MGmﬂ}w{my—idﬂ@w
r=0 0 v=p+1

Since

vp4

1 oo 3
| 3 devat = 0 3 14,])
0 1 V=p+1
= o(1) as p— =,

and {M,,,} converges, to o, say, for r = 0,1, ---, n — 1, we obtain (7).
LEMMA 7. If the series >.3.,0, s convergent, then

iby ( sinh z, > g

y=2 z,h

as k] 0.

Proof. By a classical result, it is sufficient to show that

. sinh 2,k \* _ _
(i) <__z;h——> 1 as 2|0, for v=2,3,
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& <sinh 2yl )2 _ <sinh z2,h )2
v= 2yl zh

is bounded as % | 0. It is evident that (i) is satisfied; (ii) may be
established by the method of Theorem 1 of [4].

11. Proof of Theorem 6. The hypothesis of convergence implies
that d, = o(1). If we define

(15) () = 3, L0

this series is uniformly and absolutely convergent, in [0, 1]. Now

U(x + 2h) + (x — 2h) — 20 (x) _ 2 d.e® ,(smh 2,0 )
4n* z2,h

and hence, by Lemma 7, the second generalised derivative of ¥(x)
equals f(x) — d.,e” almost everywhere in [0,1]. It follows that

V(z) = So dt S (Fw) — de)du + 1z + m

where [, m are constants. Since

d,jz, = o(v™),

we may apply Lemma 6 to the series (15). Thus, there are constants
®, **+, &,_, such that

dy _, S v (t)e “dt+§ a2,

16
4o > G'(z,)

for v=2,3, .-
If we integrate by parts twice, we can write (16) in the form

_ syt 0y
dy =, Sf(t)e dt + 5 g

where o, *++, 0,,, are constants. Since G'(z,) ~ —b,z2,
d,= o) and S ft)e=dt = o(1)
0

we have
O"n = an+1 = O ’

and for v = 2, 3, ---, we have (7). Finally, by Theorem 1 and Lemma 1,

g{ g S()e'dt + TZ_: Gg(:)} ev®
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is summable (C, 1) almost everywhere in [0, 1] to

f(x) _{ S f(t)e‘zltdt € Z ,rzl } Pt
G'(z)
so that we have (7) for v = 1, and the proof is complete.
In conclusion, the authors wish to express their gratitude to
Professor S. Verblunsky of Belfast, for his helpful criticism and advice.
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