ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. Anderson and G. H. Fullerton

This paper was received before the synoptic introduction became a requirement.

1. Introduction. Let $Q(z)$ be a meromorphic function with poles $z_{1}, z_{2}, z_{3}, \cdots$, the notation being so chosen that $\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq\left|z_{3}\right| \leqq \cdots$. If $f \in L(0,1)$, define

$$
c_{,}, v^{z, x}=\operatorname{res}_{z,} Q(z) \int_{0}^{1} f(t) e^{z(x-t)} d t
$$

Then, the series $\sum c_{\nu} e^{z_{2} x}$ is called the Cauchy Exponential Series (CES) of f with respect to $Q(z)$. If z_{ν} is of multiplicity m, then c_{ν} is a polynomial in x of degree at most $m-1$; if the poles are all simple, with residue λ_{ν} at z_{ν}, we may write

$$
\begin{equation*}
c_{\nu}=\lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t \tag{1}
\end{equation*}
$$

and $\left\{c_{\nu}\right\}$, independent of x, are called the CE constants.
Let $C_{p}:|z|=r_{p}$ be an expanding sequence of contours, none of which passes through a pole of $Q(z)$. Suppose C_{p} contains n_{p} poles of $Q(z)$. Then,

$$
\begin{aligned}
\sum_{\nu=1}^{n_{p}} c_{\nu} e^{z_{\nu} x} & =\frac{1}{2 \pi i} \int_{o_{p}} Q(z) d z \int_{0}^{1} f(t) e^{z(x-t)} d t \\
& =I_{p}, \quad \text { say }
\end{aligned}
$$

Denote by $C_{p}^{\vdash}, C_{p}^{-}$the parts of C_{p} lying in the right, left half-planes respectively. If $Q(z)$ is approximately unity on C_{p}^{+}, and is small on C_{p}^{-}, in the sense that

$$
\begin{align*}
& \int_{o_{p}^{+}}(Q(z)-1) d z \int_{0}^{1} f(t) e^{z(x-t)} d t=o(1) \tag{2}\\
& \int_{o_{p}^{-}} Q(z) d z \int_{0}^{1} f(t) e^{z(x-t)} d t=o(1) \tag{3}
\end{align*}
$$

as $p \rightarrow \infty$, uniformly for $x \in[0,1]$, then

$$
\begin{aligned}
I_{p} & =\frac{1}{2 \pi i} \int_{\sigma_{p}^{+}} d z \int_{0}^{1} f(t) e^{z(x-t)} d t+o(1) \\
& =\frac{1}{\pi} \int_{0}^{1} \frac{f(t) \sin r_{p}(x-t)}{x-t} d t+o(1)
\end{aligned}
$$

Received March 4, 1963.
uniformly in $[0,1]$, and so the sums I_{p} behave somewhat like the partial sums of a Fourier series (F.s.). Indeed, when

$$
Q(z)=e^{z} / e^{z}-1
$$

the CES is the F.s. of f.
In this paper, we shall suppose that

$$
\begin{equation*}
Q(z)=\frac{e^{z} a(z)}{e^{z} a(z)+b(z)}=\frac{e^{z} a(z)}{G(z)} \tag{4}
\end{equation*}
$$

where $a(z), b(z)$ are relatively prime polynomials of degree n, and that all the poles are simple. This case was investigated first by Fullerton ([1], 1-34), using a less convenient notation.

The large zeros of $G(z)$ approximate to those of $e^{z}-c$, where

$$
\begin{equation*}
c=-\lim _{|z| \rightarrow \infty} b(z) / a(z) \tag{5}
\end{equation*}
$$

i.e. to the points $\{\zeta+2 \pi p i\}, \zeta$ being the principal value of $\log c$. Hence there is a $\delta, 0<\delta<2 \pi$, such that if $r_{p}=2 p \pi+\delta$, each point of C_{p} is at a distance greater than a positive constant from the zeros of $G(z)$ and of $e^{z}-c$. This enables us to prove

Theorem 1. Let $f \in L(0,1)$. Then, as $p \rightarrow \infty$,

$$
\sum_{\nu=1}^{n_{p}} c_{\nu} e^{z_{\nu} x}-e^{\zeta^{x}} s_{p}(x) \rightarrow 0
$$

uniformly for $x \in[0,1]$, where $s_{p}(x)$ is the p th partial sum of the F.s. of $f(t) e^{-\zeta t}$.

We next show that there are n relations connecting the CE constants.

Theorem 2. Let $f \in L(0,1)$. If c_{ν} is defined by (1), for $\nu=1,2, \cdots$, then

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \frac{c_{\nu} z_{\nu}^{r}}{\lambda_{\nu} F^{\prime}\left(z_{\nu}\right)}=0 \tag{6}
\end{equation*}
$$

$(r=0,1, \cdots, n-1)$, where $F(z)=e^{-z} G(z)$.
This naturally leads to the following question: if a sequence of numbers $\left\{\beta_{\nu}\right\}$ satisfies $\sum_{\nu=1}^{\infty} c_{\nu} \beta_{\nu}=0$, what is the nature of the β_{ν} ? The answer is given by

Theorem 3. Let $\left\{\beta_{\nu}\right\}$ be a sequence of numbers such that $\sum_{\nu=1}^{\infty} c_{\nu} \beta_{\nu}=0$ for every CES $\Sigma c_{\nu} e^{z_{\nu} x}$. Then, there are constants
$\alpha_{0}, \cdots, \alpha_{n-1}$ such that

$$
\beta_{\nu}=\sum_{r=0}^{n-1} \frac{\alpha_{r} z_{\nu}^{r}}{\lambda_{\nu} F^{\prime}\left(z_{\nu}\right)} .
$$

Because of the relations (6), we cannot expect that, given a sequence $\left\{c_{\nu}\right\}$ with $\sum_{v=1}^{\infty}\left|c_{\nu}\right|^{2}<\infty$, there is a function $f \in L^{2}(0,1)$ such that (1) is true for each ν. However, we can prove

Theorem 4. If $\left\{c_{\nu}\right\}, \nu>n$, is a sequence with $\sum_{\nu>n}\left|c_{\nu}\right|^{2}<\infty$, there is a function $f \in L^{2}(0,1)$ such that (1) is true for each $\nu>n$, and upon defining c_{1}, \cdots, c_{n} by (1), such that $\sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu x}}$ converges in mean to f.

Alternatively, we can alter every c_{ν} and so obtain a Riesz-Fischer analogue. We have

Theorem 5. Let $\left\{c_{\nu}\right\}$ be a sequence with $\sum_{\nu=1}^{\infty}\left|c_{\nu}\right|^{2}<\infty$. Then, there are constants $\gamma_{0}, \cdots, \gamma_{n-1}$ such that if

$$
d_{\nu}=c_{\nu}+\sum_{r=0}^{n-1} \frac{\gamma_{r} z_{\nu}^{r}}{G^{\prime}\left(z_{\nu}\right)}
$$

the numbers d_{ν} are the CE constants of a function $f \in L^{2}(0,1)$.
We next investigate the problem of the uniqueness of CES. We prove

THEOREM 6. If $\sum_{v=1}^{\infty} d_{2} e^{z_{\nu} x}=f(x)$ almost everywhere in $[0,1]$, then there are constants $\sigma_{0}, \cdots, \sigma_{n-1}$ such that

$$
\begin{equation*}
d_{\nu}=\lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t+\sum_{r=0}^{n-1} \frac{\sigma_{r} z_{\nu}^{r}}{G^{\prime}\left(z_{\nu}\right)} \tag{7}
\end{equation*}
$$

Finally, the question arises whether it is possible to generalise the function $Q(z)$ given by (4), so that the CES of f is uniformly equiconvergent with a F.s. The functions

$$
P(z)=\frac{e^{z} \alpha(z)+\beta(z)}{e^{z} \alpha(z)+b(z)}
$$

where $\alpha(z), \beta(z)$ are polynomials of degree n, are obvious generalisations. As $\boldsymbol{R e} z \rightarrow \infty, P(z)$ tends to a number $\omega_{1} \neq 0$; as $\boldsymbol{R e} z \rightarrow-\infty$, to $\omega_{2} \neq 0$. Suppose $\omega_{1} \neq \omega_{2}$, and define

$$
Q_{1}(z)=\frac{1}{\omega_{1}-\omega_{2}}\left\{P(z)-\omega_{2}\right\}
$$

then $Q_{1}(z)$ satisfies (2), (3). If the CES of f with respect to $Q_{1}(z)$ is uniformly equiconvergent in $[0,1]$ with $e^{5^{x}}$ multiplied by the F.s. of $f(t) e^{-\zeta^{t}}$, for each $f \in L(0,1)$, then

$$
\alpha(z)=\omega_{1} \alpha(z) \quad \text { and } \quad \beta(z)=\omega, b(z)
$$

so that $P(z)=\left(\omega_{1}-\omega_{2}\right) Q(z)+\omega_{2}$. We omit the proof.
2. Proof of Theorem 1. In (4), write

$$
Q(z)=\frac{e^{z}}{e^{z}-c}+R(z) ;
$$

then

$$
R(z)=\frac{-e^{z}\{c a(z)+b(z)\}}{\left(e^{z}-c\right) G(z)}
$$

By the choice of C_{p}, there is a positive constant A such that, on C_{p},

$$
\begin{aligned}
\left|e^{z}-c\right| & >A \max \left(\left|e^{z}\right|, 1\right) \\
|G(z)| & >A \max \left(\left|e^{z} z^{n}\right|,\left|z^{n}\right|\right)
\end{aligned}
$$

Further, by (5),

$$
c a(z)+b(z)=O\left(\left|z^{n-1}\right|\right)
$$

as $|z| \rightarrow \infty$. Hence,

$$
\begin{aligned}
\int_{\sigma_{p}^{+}} R(z) d z \int_{0}^{1} f(t) e^{z(x-t)} d t & =O\left(\int_{\sigma_{p}^{+}}\left|\frac{e^{z(x-1)}}{z} d z \int_{0}^{1} f(t) e^{-z t} d t\right|\right) \\
& =o\left(\int_{\sigma_{p}^{+}}\left|\frac{e^{z(x-1)}}{z} d z\right|\right) \\
& =o(1)
\end{aligned}
$$

as $p \rightarrow \infty$, uniformly for $x \leqq 1$. Similarly,

$$
\begin{aligned}
\int_{\sigma_{\bar{p}}^{-}} R(z) d z \int_{0}^{1} f(t) e^{z(x-t)} d t & =O\left(\int_{\sigma_{p}^{-}}\left|\frac{e^{z x}}{z} d z \int_{0}^{1} f(t) e^{z(1-t)} d t\right|\right) \\
& =o\left(\int_{\sigma_{p}^{-}}\left|\frac{e^{z x}}{z} d z\right|\right) \\
& =o(1)
\end{aligned}
$$

as $p \rightarrow \infty$, uniformly for $x \geqq 0$.
Since, for large p, the number of zeros of $e^{z}-c$ inside C_{p} differs from $2 p+1$ by at most 1 and

$$
\int_{0}^{1} f(t) e^{(\zeta+2 p \pi i)(x-t)} d t=o(1)
$$

it follows that

$$
\begin{aligned}
\sum_{\nu=1}^{n_{p}} c_{\nu} e^{z_{\nu}} x & =\frac{1}{2 \pi i} \int_{c_{p}} \frac{e^{z}}{e^{z}-c} d z \int_{0}^{1} f(t) e^{z(x-t)} d t+o(1) \\
& =\sum_{\nu=-p}^{n} \int_{0}^{1} f(t) e^{(\zeta+2 \pi i \nu)(x-t)} d t+o(1) \\
& =e^{\zeta x} s_{p}(x)+o(1)
\end{aligned}
$$

as $p \rightarrow \infty$, uniformly in $[0,1]$, and this completes the proof.
3. The proof of Theorem 2 will depend upon

Lemma 1. For $r=0,1, \cdots, n-1$,

$$
\int_{c_{p}} \frac{z^{r} e^{-z t}}{F(z)} d z=o(1)
$$

as $p \rightarrow \infty$, boundedly for $0<t<1$.
Proof. Define C_{p}^{+}, C_{p}^{-}as in $\S 1$; then, for $r=0,1, \cdots, n-1$,

$$
\begin{aligned}
\int_{\sigma_{p}^{+}} \frac{z^{r} e^{-z t}}{F(z)} d z & =O\left(\int_{\sigma_{p}^{+}}\left|z^{r-n} e^{-z t} d z\right|\right) \\
& =O\left(\int_{-\pi / 2}^{\pi / 2} \exp (-t \rho \cos \theta) d \theta\right) \quad\left(\rho=r_{p}\right) \\
& =O\left(\int_{0}^{\pi / 2} \exp (-t \rho \sin \theta) d \theta\right) \\
& =O\left(\int_{0}^{\pi / 2} \exp \left(-\frac{2 t \rho \theta}{\pi}\right) d \theta\right)
\end{aligned}
$$

which is $o(1)$ as $p \rightarrow \infty$, boundedly for $t>0$. Similarly,

$$
\int_{\sigma_{p}^{-}} \frac{z^{r} e^{-z t}}{F^{\prime}(z)} d z=o(1)
$$

boundedly for $t<1$. Hence the result.
4. Proof of Theorem 2. Since the zeros of $F(z)$ are simple,

$$
\operatorname{res}_{z \nu} \frac{z^{r} e^{-z t}}{F(z)}=\frac{z_{\nu}^{r} e^{-z \nu t}}{F^{\prime}\left(z_{\nu}\right)} ;
$$

hence, by Lemma 1 , for $r=0,1, \cdots, n-1$,

$$
\sum_{\nu=1}^{n_{p}} \frac{z_{\nu}^{r} \nu^{-z_{\nu} t}}{F^{\prime}\left(z_{\nu}\right)}=o(1)
$$

as $p \rightarrow \infty$, boundedly for $0<t<1$. By the choice of $C_{p}, n_{p+1}-n_{p}=2$
for large p, and so, since the terms are $o(1)$ as $\nu \rightarrow \infty$, we may replace n_{p} by p in the above summation. If we multiply by $f(t)$ and integrate over $[0,1]$, we have (6).
5. We now prove

Lemma 2. Let $a(z)=\sum_{k=0}^{n} a_{k} z^{k}$, and $b(z)=\sum_{k=0}^{n} b_{k} z^{k}$. Then,

$$
\sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{k=r+1}^{n}\left(b_{k}+a_{k} e^{z \nu}\right) z_{\nu}^{k-r-1}+a\left(z_{\mu}\right) e^{z_{\mu}} \int_{0}^{1} e^{\left(z_{\nu}-z_{\mu}\right) t} d t= \begin{cases}0 & \nu \neq \mu \tag{8}\\ G^{\prime}\left(z_{\mu}\right) & \nu=\mu\end{cases}
$$

Proof. Write the left-hand side of (8) as

$$
\begin{equation*}
\mathscr{L}+\mathscr{N} ; \tag{9}
\end{equation*}
$$

then,

$$
\mathscr{L}=\sum_{k=1}^{n}\left(b_{k}+a_{k} e^{z \nu}\right) \sum_{r=0}^{k-1} z_{\mu}^{r} z_{\nu}^{k-r-1} .
$$

If $\nu \neq \mu$,

$$
\begin{aligned}
& \mathscr{L}=\frac{b\left(z_{\nu}\right)-b\left(z_{\mu}\right)+e^{z_{\nu}}\left\{a\left(z_{\nu}\right)-a\left(z_{\mu}\right)\right\}}{z_{\nu}-z_{\mu}} \\
& \mathscr{H}=a\left(z_{\mu}\right) \frac{e^{z_{\nu}}-e^{z_{\mu}}}{z_{\nu}-z_{\mu}}
\end{aligned}
$$

since $G\left(z_{\nu}\right)=G\left(z_{\mu}\right)=0$, (9) is zero. If $\nu=\mu$, (9) is

$$
\begin{aligned}
\sum_{k=1}^{n} k\left(b_{k}+a_{k} e^{z_{\mu}}\right) & z_{\mu}^{k-1}+a\left(z_{\mu}\right) e^{z_{\mu}} \\
& =b^{\prime}\left(z_{\mu}\right)+e^{z_{\mu}}\left(a^{\prime}\left(z_{\mu}\right)+a\left(z_{\mu}\right)\right) \\
& =G^{\prime}\left(z_{\mu}\right)
\end{aligned}
$$

This proves the lemma.
6. Proof of Theorem 3. We have $\sum_{\nu=1}^{\infty} c_{\nu} \beta_{\nu}=0$ for every sequence $\left\{c_{\nu}\right\}$ of CE constants, i.e.

$$
\sum_{\nu=1}^{\infty} \beta_{\nu} \lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t=0
$$

for every $f \in L(0,1)$. Hence, by a well-known theorem ([2], § 279),

$$
\begin{equation*}
\int_{1-x}^{1} \sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} e^{-z_{\nu} t} d t \rightarrow 0 \tag{10}
\end{equation*}
$$

as $p \rightarrow \infty$, boundedly for $x \in[0,1]$. We recall (8); if we multiply by $\beta_{\nu} \lambda_{\nu} e^{-z_{\nu}}$ and sum from $\nu=1$ to $\nu=p$, where p is greater than an
assigned integer μ, we obtain

$$
\begin{aligned}
\beta_{\mu} \lambda_{\mu} e^{-z_{\mu}} G^{\prime}\left(z_{\mu}\right)= & \sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} \sum_{k=r+1}^{n}\left(b_{k} e^{-z_{\nu}}+a_{k}\right) z_{\nu}^{k-r-1} \\
& +a\left(z_{\mu}\right) e^{z_{\mu}} \int_{0}^{1} e^{-z_{\mu} t} \sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} e^{z_{\nu}(t-1)} d t \\
= & \sum_{r=0}^{n-1} L_{r, p} z_{\mu}^{r}+\mathscr{N}_{p}, \quad \text { say. }
\end{aligned}
$$

Let

$$
\begin{aligned}
\phi_{p}(t) & =\sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} e^{z_{\nu}(t-1)} \\
\Phi_{p}(x) & =\int_{0}^{x} \phi_{p}(t) d t=\int_{1-x}^{1} \sum_{\nu=1}^{p} \beta_{\nu} \lambda_{\nu} e^{-z_{\nu} t} d t
\end{aligned}
$$

By (10), $\Phi_{p}(x) \rightarrow 0$ as $p \rightarrow \infty$, boundedly for $x \in[0,1]$. Thus,

$$
\begin{aligned}
\mathscr{N}_{p} & =a\left(z_{\mu}\right) e^{z_{\mu}} \int_{0}^{1} e^{-z_{\mu} t} \phi_{p}(t) d t \\
& =a\left(z_{\mu}\right) e^{z_{\mu}}\left\{\Phi_{p}(1) e^{-z_{\mu}}+z_{\mu} \int_{0}^{1} e^{-z_{\mu} t} \Phi_{p}(t) d t\right\} \\
& =o(1) \quad \text { as } p \rightarrow \infty .
\end{aligned}
$$

Hence, since $e^{-z} G(z)=F(z)$,

$$
\begin{equation*}
\sum_{r=0}^{n-1} L_{r, p} z_{\mu}^{r}=\beta_{\mu} \lambda_{\mu} F^{\prime}\left(z_{\mu}\right)+\varepsilon_{\mu} \tag{11}
\end{equation*}
$$

where the numbers $\left\{L_{r, p}\right\}$ are independent of μ, and $\varepsilon_{\mu} \rightarrow 0$ as $p \rightarrow \infty$. Giving μ distinct values μ_{1}, \cdots, μ_{n}, (11) yields a regular system of n linear equations for $L_{0, p}, \cdots, L_{n-1, p}$. The solution is

$$
L_{r, p}=\frac{\sum_{i=1}^{n}\left\{\beta_{\mu_{i}} \lambda_{\mu_{i}} F^{\prime}\left(z_{\mu_{i}}\right)+\varepsilon_{\mu_{i}}\right\} \Delta_{i}^{(r)}}{\operatorname{det}\left(z_{\mu_{i}}^{j-1}\right)}
$$

where $\Delta_{2}^{(r)}$ are cofactors of elements in the $(r+1)$ th column of the matrix $\left(z_{\mu_{i}}^{j-1}\right),(i, j=1,2, \cdots, n)$. The only nonconstant terms in this expression for $L_{r, p}$ are $\varepsilon_{\mu_{i}}$, which are $o(1)$ as $p \rightarrow \infty$. Hence, for $r=0,1, \cdots, n-1,\left\{L_{r, p}\right\}$ converges, to α_{r} say. Letting $p \rightarrow \infty$ in (11), we have the result.
7. To prove Theorem 4, we require three lemmas.

Lemma 3. If $p \geq n$, there are numbers d_{1}, \cdots, d_{n} such that

$$
e^{z_{p x}}+\sum_{k=1}^{n} d_{k} e^{z_{k} x}
$$

is its own CES.

Proof. We shall show that there are numbers d_{1}, \cdots, d_{n} such that, if

$$
S(x)=e^{z^{p} x}+\sum_{k=1}^{n} d_{k} e^{z_{k} x}
$$

then, for $\mu \notin\{1, \cdots, n, p\}$,

$$
\begin{equation*}
\int_{0}^{1} S(x) e^{-z_{\mu} x} d x=0 \tag{12}
\end{equation*}
$$

Since the functions $e^{z_{1} x}, \cdots, e^{z_{n} x}, e^{z_{p} x}$ are linearly independent, and by Theorem 1, the CES of $S(x)$ converges everywhere in $(0,1)$ to $S(x)$, it will then follow that $S(x)$ is its own CES.

For $\mu \neq k$,

$$
\begin{aligned}
\int_{0}^{1} e^{\left(z_{k}-z_{\mu}\right) x} d x & =\frac{e^{-z_{\mu}}}{z_{k}-z_{\mu}}\left\{e^{z_{k}}-e_{\mu \mu}^{s}\right\} \\
& =\frac{e^{-z_{\mu}}\left\{a\left(z_{k}\right) b\left(z_{\mu}\right)-a\left(z_{\mu}\right) b\left(z_{k}\right)\right\}}{a\left(z_{k}\right) a\left(z_{\mu}\right)\left(z_{k}-z_{\mu}\right)} \\
& =\frac{e^{-z_{\mu}} \sigma\left(z_{k}, z_{\mu}\right)}{a\left(z_{k}\right) a\left(z_{\mu}\right)}, \quad \text { say. }
\end{aligned}
$$

Thus, if $\mu \notin\{1, \cdots, n, p\}$, and d_{1}, \cdots, d_{n} are any n numbers, the lefthand side of (12) is

$$
\begin{aligned}
\frac{e^{-z_{\mu}}}{a\left(z_{\mu}\right)}\left\{\frac{\sigma\left(z_{p}, z_{\mu}\right)}{a\left(z_{p}\right)}\right. & \left.+\sum_{k=1}^{n} \frac{d_{k} \sigma\left(z_{k}, z_{\mu}\right)}{a\left(z_{k}\right)}\right\} \\
& =\frac{e^{-z_{\mu}}}{a\left(z_{\mu}\right) a\left(z_{p}\right)}\left\{\sigma\left(z_{p}, z_{\mu}\right)+\sum_{k=1}^{n} \delta_{k} \sigma\left(z_{k}, z_{\mu}\right)\right\} \\
& =I_{\mu} \quad \text { say, where } \delta_{k}=\frac{a\left(z_{p}\right) d_{k}}{a\left(z_{k}\right)} .
\end{aligned}
$$

The symmetric polynomial

$$
\sigma(x, y)=\frac{a(x) b(y)-a(y) b(x)}{x-y}
$$

can be expressed in the form

$$
\sum_{r=0}^{n-1} P_{r}(x) y^{r}
$$

where $P_{r}(x)$ is a polynomial in x of degree at most $n-1$. Then,

$$
I_{\mu}=\frac{e^{-z_{\mu}}}{a\left(z_{\mu}\right) a\left(z_{p}\right)} \sum_{r=0}^{n-1} z_{\mu}^{r}\left\{P_{r}\left(z_{p}\right)+\sum_{k=1}^{n} \delta_{k} P_{r}\left(z_{k}\right)\right\}
$$

This is zero for each $\mu \notin\{1, \cdots, n, p\}$ if

$$
P_{r}\left(z_{p}\right)+\sum_{k=1}^{n} \grave{o}_{k} P_{r}\left(z_{k}\right)=0 \quad(r=0,1, \cdots, n-1),
$$

which happens if

$$
z_{p}^{r}+\sum_{k=1}^{n} \delta_{k} z_{k}^{r}=0 \quad(r=0,1, \cdots, n-1)
$$

Since this system of n linear equations for the unknowns $\delta_{1}, \cdots, \delta_{n}$ is regular, the lemma follows.

Corollary. Given the constants c_{n+1}, \cdots, c_{p} of Theorem 4, there are numbers $c_{1}^{(p)}, \cdots, c_{n}^{(p)}$ such that

$$
T_{p}(x)=\sum_{k=1}^{n} c_{k}^{(p)} e^{z_{k} x}+\sum_{\nu=n+1}^{p} c_{\nu} e^{z_{\nu} x}
$$

is its own CES.

Lemma 4. The numbers $c_{1}^{(p)}, \cdots, c_{n}^{(p)}$ are unique and, for $k=1,2, \cdots, n$, the sequence $\left\{c_{k}^{(p)}\right\}$ converges.

Proof. By Theorem 2, the numbers $c_{1}^{(p)}, \cdots, c_{n}^{(p)}$ satisfy the regular system of linear equations

$$
\frac{c_{1}^{(p)} z_{1}^{r}}{\lambda_{1} F^{\prime}\left(z_{1}\right)}+\cdots+\frac{c_{n}^{(p)} z_{n}^{r}}{\lambda_{n} F^{\prime}\left(z_{n}\right)}=-\sum_{\nu=n+1}^{p} \frac{c_{\nu} z_{\nu}^{r}}{\lambda_{\nu} F^{\prime}\left(z_{\nu}\right)}
$$

$(r=0,1, \cdots, n-1)$, and so are determined uniquely. Since $\sum_{v>n}\left|c_{\nu}\right|^{2}<\infty$, and

$$
\left|\lambda_{\nu} F^{\prime}\left(z_{\nu}\right)\right|>K\left|z_{\nu}^{n}\right|
$$

where K is a constant,

$$
\sum_{\nu=n+1}^{\eta} \frac{c_{\nu} z_{\nu}^{r}}{\lambda_{\nu} F^{\prime}\left(z_{\nu}\right)}
$$

converges, for $r=0,1, \cdots, n-1$. Hence, by an argument used in the proof of Theorem $3,\left\{c_{k}^{(p)}\right\}$ converges, for $k=1,2, \cdots, n$.

Lemma 5. There is a positive constant A such that if $\left\{a_{\nu}\right\}$ is any finite set of numbers, then

$$
\int_{0}^{1}\left|\Sigma a_{\nu} e^{z_{\nu} x}\right|^{2} d x \leqq A \Sigma\left|a_{\nu}\right|^{2}
$$

This may be proved by an argument similar to that of Lemma 3 of [3].
8. Proof of Theorem 4. Let p, q be integers such that $q>p>n$. Then,

$$
T_{q}(x)-T_{p}(x)=\sum_{k=1}^{n}\left(c_{k}^{(q)}-c_{k}^{(p)}\right) e^{z_{k} x}+\sum_{\nu=p+1}^{q} c_{\nu} e^{z_{\nu} x} .
$$

By Lemma 5 , there is a constant $A>0$ such that

$$
\int_{0}^{1}\left|T_{q}(x)-T_{p}(x)\right|^{2} d x \leqq A\left\{\sum_{k=1}^{n}\left|c_{k}^{(q)}-c_{k}^{(p)}\right|^{2}+\sum_{\nu=p+1}^{q}\left|c_{\nu}\right|^{2}\right\}
$$

Hence, by Lemma $4,\left\{T_{p}(x)\right\}$ converges in mean to a function $f \in L^{2}(0,1)$.
Let $\nu>n$. Since $T_{p}(x)$ is its own CES,

$$
c_{\nu}=\lambda_{\nu} \int_{0}^{1} T_{p}(x) e^{-z_{\nu} x} d x \quad(p \geqq \nu)
$$

Hence,

$$
\begin{aligned}
c_{\nu} & =\lambda_{\nu} \lim _{p \rightarrow \infty} \int_{0}^{1} T_{p}(x) e^{-z_{\nu} x} d x \\
& =\lambda_{\nu} \int_{0}^{1} f(x) e^{-z_{\nu} x} d x
\end{aligned}
$$

Define c_{1}, \cdots, c_{n} by this formula; then,

$$
c_{k}=\lim _{p \rightarrow \infty} c_{k}^{(p)} \quad(k=1,2, \cdots, n)
$$

and $\sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu, x}}$ converges in mean to f. This completes the proof.
9. Proof of Theorem 5. If we multiply (8) by c_{ν} and sum from $\nu=1$ to $\nu=p$, where p is greater than an assigned integer μ, we obtain

$$
\begin{align*}
c_{\mu} G^{\prime}\left(z_{\mu}\right)= & \sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{\nu=1}^{p} c_{\nu} \sum_{k=z+1}^{n}\left(a_{k} e^{r \nu}+b_{k}\right) z_{\nu}^{k-r-1} \\
& +a\left(z_{\mu}\right) e^{z_{\mu}} \int_{0}^{1} e^{-z_{\mu} t} \sum_{\nu=1}^{p} c_{\nu} e^{z_{\nu} t} d t \tag{13}\\
= & \mathscr{L}_{p}+\mathscr{A}_{p}, \quad \text { say. }
\end{align*}
$$

Since $\sum_{\nu=1}^{\infty}\left|c_{\nu}\right|^{2}<\infty, \quad \sum_{\nu=1}^{\infty} c_{\nu} e^{z_{\nu} t}$ converges in mean to a function $f \in L^{2}(0,1)$. Hence,

$$
\mathscr{l}_{p} \rightarrow d_{\mu} G^{\prime}\left(z_{\mu}\right) \quad \text { as } p \rightarrow \infty
$$

where

$$
d_{\mu}=\lambda_{\mu} \int_{0}^{1} f(t) e^{-z_{\mu} t} d t
$$

Next,

$$
\begin{equation*}
\mathscr{L}_{p}=\sum_{r=0}^{n-1} \delta_{r} z_{\mu}^{r}-\sum_{r=0}^{n-1} z_{\mu}^{r} \sum_{\nu=2}^{p} c_{\nu} \sum_{k=0}^{z}\left(a_{k} e^{r}+b_{k}\right) z_{\nu}^{k-r-1} \tag{14}
\end{equation*}
$$

where

$$
\delta_{r}=c_{1} \sum_{k=r+1}^{n}\left(a_{k} e^{r_{1}}+b_{k}\right) z_{1}^{k-r-1} .
$$

Since

$$
\sum_{k=0}^{r}\left(a_{k} e^{z \nu}+b_{k}\right) z_{\nu}^{k-r-1}=O\left(\nu^{-1}\right)
$$

the summation over ν in (14) converges, as $p \rightarrow \infty$, to η_{r} say. The result now follows upon writing

$$
\eta_{r}+\delta_{r}=\gamma_{r}
$$

10. Before establishing the uniqueness theorem, we prove two lemmas.

Lemma 6. If $\sum_{\nu=1}^{\infty} d_{\nu} e^{z_{\nu} x}=f(x)$ almost everywhere in $[0,1]$, and $d_{\nu}=O\left(\nu^{-2}\right)$, there are constants $\sigma_{0}, \cdots, \sigma_{n-1}$ such that (7) is satisfied for $\nu=1,2, \cdots$.

Proof. We have (13), with c_{ν} replaced by d_{ν}. We may write this as

$$
d_{\mu} G^{\prime}\left(z_{\mu}\right)=\sum_{r=0}^{n-1} M_{r, p} z_{\mu}^{r}+\lambda_{\mu} G^{\prime}\left(z_{\mu}\right) \int_{0}^{1} e^{-z_{\mu} t}\left\{f(t)-\sum_{\nu=p+1}^{\infty} d_{\nu} e^{z_{\nu}} t\right\} d t .
$$

Since

$$
\begin{aligned}
\int_{0}^{1} e^{-z_{\mu} t} \sum_{\nu=p+1}^{\infty} d_{\nu} e^{z_{\nu} t} d t & =O\left(\sum_{\nu=p+1}^{\infty}\left|d_{\nu}\right|\right) \\
& =o(1) \quad \text { as } p \rightarrow \infty,
\end{aligned}
$$

and $\left\{M_{r, p}\right\}$ converges, to σ_{r} say, for $r=0,1, \cdots, n-1$, we obtain (7).
Lemma 7. If the series $\sum_{y=2}^{\infty} b_{\nu}$ is convergent, then

$$
\sum_{\nu=2}^{\infty} b_{\nu}\left(\frac{\sinh z_{\nu} h}{z_{\nu} h}\right)^{2} \rightarrow \sum_{\nu=2}^{\infty} b_{\nu}
$$

as $h \downarrow 0$.
Proof. By a classical result, it is sufficient to show that
(i) $\left(\frac{\sinh z_{\nu} h}{z_{\nu} h}\right)^{2} \rightarrow 1$ as $h \downarrow 0$, for $\nu=2,3, \cdots$
(ii) $\sum_{\nu=2}^{\infty}\left|\left(\frac{\sinh z_{\nu+1} h}{z_{\nu+1} h}\right)^{2}-\left(\frac{\sinh z_{\nu} h}{z_{\nu} h}\right)^{2}\right|$
is bounded as $h \downarrow 0$. It is evident that (i) is satisfied; (ii) may be established by the method of Theorem 1 of [4].
11. Proof of Theorem 6. The hypothesis of convergence implies that $d_{\nu}=o(1)$. If we define

$$
\begin{equation*}
\Psi(x)=\sum_{\nu=2}^{\infty} \frac{d_{\nu} e^{z_{\nu}, x}}{z_{\nu}^{2}} \tag{15}
\end{equation*}
$$

this series is uniformly and absolutely convergent, in $[0,1]$. Now

$$
\frac{\Psi(x+2 h)+\Psi(x-2 h)-2 \Psi(x)}{4 h^{2}}=\sum_{\nu=2}^{\infty} d_{\nu} e^{z_{\nu} x}\left(\frac{\sinh z_{\nu} h}{z_{\nu} h}\right)^{2}
$$

and hence, by Lemma 7, the second generalised derivative of $\Psi(x)$ equals $f(x)-d_{1} e^{z_{1} x}$ almost everywhere in [0, 1]. It follows that

$$
\Psi(x)=\int_{0}^{x} d t \int_{0}^{t}\left(f(u)-d_{1} e^{z_{1} u}\right) d u+l x+m
$$

where l, m are constants. Since

$$
d_{\nu} / z_{\nu}^{2}=o\left(\nu^{-2}\right),
$$

we may apply Lemma 6 to the series (15). Thus, there are constants $\alpha_{0}, \cdots, \alpha_{n-1}$ such that

$$
\begin{equation*}
\frac{d_{\nu}}{z_{\nu}^{2}}=\lambda_{\nu} \int_{0}^{1} \Psi(t) e^{-z_{\nu} t} d t+\sum_{z=0}^{n-1} \frac{\alpha_{r} z_{\nu}^{r}}{G^{\prime}\left(z_{\nu}\right)} \tag{16}
\end{equation*}
$$

for $\nu=2,3, \cdots$.
If we integrate by parts twice, we can write (16) in the form

$$
d_{\nu}=\lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t+\sum_{r=0}^{n+1} \frac{\sigma_{r} z_{\nu}^{r}}{G^{\prime}\left(z_{\nu}\right)}
$$

where $\sigma_{0}, \cdots, \sigma_{n+1}$ are constants. Since $G^{\prime}\left(z_{\nu}\right) \sim-b_{n} z_{\nu}^{n}$,

$$
d_{\nu}=o(1) \quad \text { and } \quad \lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t=o(1)
$$

we have

$$
\sigma_{n}=\sigma_{n+1}=0
$$

and for $\nu=2,3, \cdots$, we have (7). Finally, by Theorem 1 and Lemma 1,

$$
\sum_{\nu=1}^{\infty}\left\{\lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu} t} d t+\sum_{r=0}^{n-1} \frac{\sigma_{r} z_{\nu}^{r}}{G^{\prime}\left(z_{\nu}\right)}\right\} e^{z_{\nu} x}
$$

is summable $(C, 1)$ almost everywhere in $[0,1]$ to

$$
f(x)-\left\{\lambda_{1} \int_{0}^{1} f(t) e^{-z_{1} t} d t+\sum_{r=0}^{n-1} \frac{\sigma_{r} z_{1}^{r}}{G^{\prime}\left(z_{1}\right)}\right\} e^{z_{1} x}
$$

so that we have (7) for $\nu=1$, and the proof is complete.
In conclusion, the authors wish to express their gratitude to Professor S. Verblunsky of Belfast, for his helpful criticism and advice.

References

1. G. H. Fullerton, Expansions of a function in a series of exponentials, Ph. D. Thesis (Belfast, 1959)
2. E. W. Hobson, The theory of functions of a real variable, vol. II, (Cambridge, 1926)
3. S. Verblunsky, On an expansion in exponential series (II), Quart, J. Math. (Oxford) (2), 10 (1959), 99-109.
4. -, A uniqueness theorem for the exponential series of Herglotz, Proc. Camb. Phil. Soc. 56 (1960), 220-232.

The University, Nottingham

