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ON EXCEPTIONAL JORDAN DIVISION ALGEBRAS

A. A. ALBERT

In 1957 the author gave a construction of a class, of cen-
tral simple exceptional Jordan algebras §, over any field g
of characteristic not two, called cyclic Jordan algebras. The
principal ingredients of this construction were the following:

( I ) A cyclic cubic field S6 with generating automorphism
S over §.

(II) A Cayley algebra (£, with Sϊ as center, so that & has
dimension eight over ίϊ, and dimension 24 over §.

(III) A nonsingular linear transformation T over % of
(£, which induces S in ίϊ, and commutes with the conjugate
operation of K.

(IV) An element g in (£, and a nonzero element p of $t,
such that g — gT and #£ = [r(r^)(r^2)]~1 Thus # is nonsingular.
Also the polynomial algebra ® == f?[flf] is either a quadratic field
over gf or is the direct sum, © = e& ® eag , of two copies e$ of g.

(V) The properties [g(xy)T] = \g(xT)](yT) and xT* =
g~xxg, for every cc and ?/ of (£.

In the present paper we shall give a general solution of
the equations of (V), and shall determine T in terms of two
parameters in S = ®[g] satisfying some conditions of an arithme-
tic type. We shall also provide a special set of values of all
of the parameters of our construction, and shall so provide a
proof of the existence of cyclic Jordan division algebras with
attached Cayley algebra K a division algebra.

The existence of a transformation T with the two properties
of (V) for some element g = gT, in the Cayley algebra (£ which
satisfies (IV), was demonstrated by the author in the 1957 paper1

only in the case where (S is not a field, and consequently (£ is
a split algebra. In that case it was proved that cyclic Jordan
division algebras do exist, for certain kinds2 of fields §. Thus
the case where (S is a field, and (£ may possibly be a division
algebra, remained.

If k is any element of an exceptional Jordan division algebra ξ>,
and k is not in %, the subalgebra g[ά] is a cubic field over gf. The
algebra ξ> is then a cyclic Jordan division algebra if and only if an

Received April 7, 1964. This paper was sponsored in part by the National Science
Foundation under NSF Grant GP208 and by the Esso Educational Foundation.

1 See our A construction of exceptional Jordan division algebras, Annals of Math.
6 7 (1958), 1-28.

2 The actual result is that 3? cannot be a finite field, an algebraic number field,
or indeed any field such that, if © is an associative division algebra of degree three
over its center $ then every nonzero element of g is the norm of an element of 2).
Moreover, if $o is such that there exists such a division algebra Φ over §fo, and η
is an indeterminate over So, then there exists a cyclic exceptional Jordan division
algebra over % = &0O7).
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element k of ξ> exists such that %[k] is a cyclic cubic field. Indeed
the field $ of our construction is then isomorphic to the field $[k]. It
is not known whether such an element k always exists, but we shall
be able to construct ξ> even when a cyclic g[fc] may not exist. Indeed,
let k be any element of ξ> not in g> %[k] be noncyclic, and S be a
scalar extension of % isomorphic to %[k]. Then there is a quadratic
extension field g[ω] of g, such that 3JΪ = S x g[ω] = $(ω) is a splitting
field of the cubic minimum function of k over g . Then SOI is a normal
field of degree six over g, and the automorphism group of 2Ji over %
is generated by automorphisms S and J such that S* — J2 — I, and
e/S = SV. The field $ is the fixed field of 9JΪ under J, and ω can be
selected so that ωJ— —ω, ω2 is in g . The field %[ω] is the fixed field
of 2JΪ under S, and S generates the automorphism group of the cyclic
field 9JΪ of degree three over %[co].

The ingredients of our cyclic construction may then be taken as a
portion of the ingredients of a construction of what may now be called
bicyclic Jordan division algebras. We shall also call 3JΪ a bicyclic field.

We replace $ by the field 2Jί as the center of (£, and T will induce
S in 2Jϊ. Then we will have the following additional properties:

( VI ) There is a nonsingular linear transformation P over g of (£
which induces J in the center SDΪ of (£, and commutes with the conjugate
operation of (£. Then g = gP, and so %[g\ is a quadratic algebra over g

(VII) Tfcβ property g[(xy)P] — [g(yP)](xP) holds for every x and y
o/S.

(VIII) The transformations P and T are related by TP = PT~\
and P2 — I is the identity transformation.

We shall give a complete determination of P. Indeed our determi-
nation of T depends on a normalization of a basis of S. As usual (£
has a basis of elements generated by basal elements u, v, w where
g[u] — g[#] = @, u2 — p Φ 0 in %, ^ is selected so that uv + vu = 0
and v2 = 9 ^ 0 in 3Ji, w is selected so that ww + ww = vw + ttw = 0
and w2 = ψ Φ 0 in 5Dΐ (where 2JΪ = ® in the cyclic case). In the
normalization it is shown that v can be selected so that vT = av + w
for α in 9Jl[^] = 8* (where 8* becomes 8 = ®[u] in the cyclic case).
Since P2 = I we show that i; can actually be selected so that vP = v.
With this choice the equations determining T also determine P completely
and no new parameters are introduced. With this determination of T
and P our results provide a construction* of all exceptional Jordan

3 Our construction certainly does provide a form for all exceptional Jordan division
algebras and so provides a means of studying the properties of such algebras. It
does not settle the question as to whether there are any bicyclic algebras which are
not also cyclic, nor does it give a general solution of the arithmetic restrictions on
the defining parameters. The latter problem is not really an algebraic problem and
can hardly be expected to be solved without exact specification of the field 3\
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division algebras.

2. The algebra ξ) and a subalgebra (£• A cyclic exceptional
Jordan algebra ξ> can be described in terms of the ingredients given
in (I)-(V). Let ξ range over all elements of the cyclic field $, and x
range over all elements of the Cayley algebra (£. Then φ consists of
all three-rowed square matrices

( 1 ) A = A(ξ, x) = \ yx ξS

\xT2g~x (7x)T

This set is closed with respect to the operation A-B defined in terms
of the ordinary matrix product AB by 2A-B = AB + BA. Then it may
be seen that ξ> is a Jordan algebra. Let

( 2 ) ® = g[ff], 2 = % ] = « x ® ,

so that £ is a commutative associative algebra of dimension six over § .
When © is a field so is 8, and 2 is a cyclic field over (S with a generating
automorphism T induced by gT — g, ξT — ξS for every element of the
cyclic cubic field & over g

The set 33, of all matrices A(ξ, η) with ξ in $ and η in S, is a
subalgebra of ξ>. It is a special Jordan algebra of dimension 3 + 6 = 9
over g . Let

( 3 ) D = A(Θ,O), E = A(O,1),

where θ is any element generating & = %(θ) over g. We first derive
the following result.

THEOREM 1. The subalgebra of ξ> generated by D and E is S3.
The cyclic associative algebra 33* = (8, S, g'1) over ©, has center ®,
and 33* has an involution J such that J fixes every element of & and
gj — g9 Then 33* is the associative envelope of 33, and 33 is isomorphic
to the set of all elements A — AJ of 33*.

For t h e mapping ξ —> A(ξ, 0) is an isomorphism of 5£ onto t h e set
^o of all matrices A(ξ, 0). Then $£0 is a cyclic field of degree t h r e e
over g isomorphic to $£, and it has a generat ing isomorphism So over
g defined by [A(ξ, 0)]S0 = A(ξS, 0). Let 33O be t h e special Jordan
subalgebra of £> generated by D and E so t h a t 33O contains ί ϊ 0 = %[D].
Then 330 contains



380 A. A. ALBERT

0 η g(lS2)(ηS2)\

( 4 ) 2A(ξ,0).E = l yy 0 ηS \ = A(0,η)

V (yτj)S 0 /

where η = ξ + fS. If f ^ fS then 97 Φ 0. For otherwise TyS2 = ξS2 + f =
0 and so 77 - τyS2 = ξS - ξS2 = (ξ - ξS)S = 0 contrary to our hypothesis.
But then the enveloping associative algebra 33* of 330 contains the matrix

(5)

where μ — ηtyS2)"1 Φ 1. Thus S3* contains

μS
0

1

0

0

1

/

0\

1 '
0/

0

( 6 ) Y=[A(l-μ,0)]-\E-C) = [ 0

where Y3 = βf"1/. It follows that 330* contains gr/ and so contains ©
and 80 = &o[0] Thus S30* contains the cyclic associative algebra ^ =
So + 20Y + SQ^ 2 = (So, TQ^-1), where the generating automorphism To

of So over g[#] is defined by

(
0

for every a in So. Let us also define a mapping J by

and we see that

( 9 ) (Y)J = I 1 0 O J J O Ύ S 0 | = 7 - ^ ( 7 , 0 ) .

/ 0

It is easily verified that / is an involution of SSf and we note that
(Yjγ = gy(yS)(yS')I = (g)-1! = (F8)/. It is also easy to verify that (8
is the center of the algebra 53]". Note that, when © is a field 33* is
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contral simple over ©. However, in the #-split case, where (S is not
a field, 33? is a direct sum of two cyclic central simple algebras over %.

The general element X of 33? can be expressed uniquely in the
form X = A(a, 0) + A(b, 0)Y + (Y)JA(c, 0) for α, 6, c in 80. Then X =
XJ if and only if a — a and b = c. Thus α = a = £ is in $),

(10) A ( 6 , 0 ) F = | 0

.0

and we see that

(YJ)A(b, 0) -

(11)

Hence A(b, 0)Y + YJA(b, 0) = A(0, b). We have shown that the set of
all elements X = XJ of S3* is 33. But 33* 3 33O* 3 33? 3 33, and so
33? 3 33*. It follows that 33* = 33O* = 33? is our cyclic algebra. This
proves the theorem.

THEOREM 2. If ® is a field and & is a division algebra the
algebra 33* is a division algebra.

It is well known4 that the enveloping associative algebra 33* of a
Jordan algebra 33 of dimension 9 over a field % is either (33*)(+), where
33* is an associative division algebra, or is the set of J-symmetric
elements of an associative division algebra 33* of degree three over a
quadratic field @. Here J is an involution over % of ^ * which does
not leave the center © of 33* elementwise fixed. When ξ> is a Jordan
division algebra so is 33 and, when @ is a field, the envelope 33* is
known to be a division algebra. However, when @ is not a field, the
algebra 33 has a representation by the set of all matrices

for matrices A in an associative division algebra S) with an involution
J moving some element of its quadratic center over g .

We know that if 33* = (8, S, g~λ) is a division algebra so is its

4 See Section 3 of the reference in 2.
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square SB? = (8, S, g~2) - (8, S, h), where h = [j^S^yS*)?]-1 = (gg)g~2 =
gg~x. Hence g Φ g. Also S3? (8, S, —h) since — /& is the product of h
by the norm ( — I)3 of — 1. Thus —gg"1 Φ 1 and we can state this
result as follows.

LEMMA 1. Let & be a Jordan division algebra, and © = %[u] be
a field, so that ® is the center of the cyclic associative algebra 5) =
(8, S, h), where h — gg'1. Then S) is a division algebra and g —
λ + u for v? — p Φ 0 in % and λ Φ 0 in %.

Note, in closing, that ® is isomorphic to the square of the cyclic
algebra 35*, and hence (8, S, g*g~λ) is isomorphic to 35*.

3* Some properties of (L The structure theory for Cay ley
algebras (£ implies that, if 8 — &[u] is a quadratic subalgebra over 8
of (£ generated by an element u such that u2 = p Φ 0 in 8, then the
space 3 = ®tt> of all elements z of (£ such that zu + uz = 0, contains
elements t; and w such that

(13) V2 — φ , w2 — ψ , VW + WV = 0

for elements <p =£ 0, ψ ^ 0 in ®. Then 3 = v2 + ^ 8 + (vw)% =
Sv + 8 ^ + 2(vw), and (£ = 8 + 3 Indeed ^α — dz for every α of 8
and z of 3 where, if a — a + /Su for α: and /S in $, then α = a — /3u.
For all such selections of v and w the space O = 8 + 2v is a quaternion
subalgebra of (£ with an involution x = a + bv -+ x = a — bv. Then
multiplication in © is given by

(14) (cc + i/wXa?! + yxw) = xxτ + ^^a/r + (yxχ + ^ J w ,

for all x, xl9 y, y1 in O. We shall use this relation frequently in our
computations.

We are assuming that u2 = p Φ 0 is in g . Let Γ = g(l/^o") so that
®Γ — Γ[u] — eλΓ + e0Γ for pairwise orthogonal idempotents ex and e0

whose sum is the unity element of ®. Let Ω = $t{Vp), so that 8 β =
exΩ + eoi3, where we know that ex — eQ, e0 = eλ and thus eλz = ze0, eQz —
zex for every z in QΩ. Then QΩ = S ω + 3oi, where 3io = V£Ω = 3ί2 0̂ and
•Soi = eo3β = Sflβi We also know that, if xlQ is any nonzero element
of Qm this space has a basis x1Q, y10 = α^T, «ω = α?10T

2 over Ω. Similarly,
if x01 is any element not zero in ,S01 the elements x01, y01 — x01T, zQi =
x01T

2 = ^/01Γ form a basis of Q01 over β. Moreover, if we select any xi0

we can take

(15) _ _
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Then we have the properties given by

\1-1) ^IOI/OI — ^IO^OI

( l o ) ^oil/io = ^01^10 — Ί/01^10 = l/oi ^io = = ^01^10 = 0̂1̂ /10 ~ "

(20) < = 0 , ^ α ^ = α.A = α^ , e.α^ = α ^ = 0

for i ^ i, i and j equal to 0 or 1 and α^ in 3 ϋ We now have the
following result.5

THEOREM 3. Let *£> 6β ίfee cyclic exceptional Jordan algebra over
% consisting of the matrices of (1) where (I)-(V) hold, and g be the
element of Property IV so that g — λ + u for λ Φ 0 in %, u2 — p Φ 0
in g and uT — u. Suppose that Ω = &(V p), so that 2Ω = Ω[u] =
eβ + βoί3 /or orthogonal idempotents ex and e0, and that 2 is the set
of all elements z in (£ such that zu + uz — 0, from which $Ω — Q10 + Q01,
where Qw = e±QQ = %Ωe0 and 3oi = e0ΩΩ = QΩe19 Then, if z is any
element of 3 which has nonzero components z10 and z01, the space ,3
has a basis z, zT, xT\ zu, {zu)T, (zu)T2 over ίϊ.

For z = z10 + z01, 2Ω contains e0, and the space over Ω spanned by
the six elements given contains z10, (zT)eQ = (zeQ)T = z10T and (zT2)e0 =
(zeQ)T2 — z10T

2. Similarly our space contains z01, z01T, z01T
2. But then

3.Q is spanned over Ω by the six given elements and so they span $•
Since the dimensions of ,8 over ίΐ and QΩ over Ω are six these elements
form a basis for each set.

In the case where © is a field we can strengthen our result as
follows:

THEOREM 4. Let & be a field and z be any nonzero element of 3
Then z, zT, zT2, zu, (zu)T, (zu)T2 form a basis of 3 over $.

For it suffices to show that if z Φ 0 is in 3 then z is not in Qm

or in 3oi where we are assuming that ex and e0 are not in ©. By
symmetry it suffices to show that no element z10 of Q10 is in 3 Let
x1Q be in 3 so t h a t x1QT = y10 and x10T

2 = z10 are in 3 But y10z1Q = x01

is in (£ and in 3oi and so must be in 3 Hence x10x01 = σeλ must be
in & and in 2Ω and so must be in S. It follows that σe1 — σe0 is in S

The discussion up to this point is that of Section 13 of the reference in 2.
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and so σe1 + σe0 — σ is in £ and must be in B, eλ is in £ contrary to
our hypothesis that £ is a field and eλ is a singular idempotent of 2Ω.
This completes our proof.

4* A normalized basis of (£• Let x — x10 + sc01, where x01 =

0T
2) and #10 is any nonzero element of 3 1 0 . Then we have

(21) x2 — xwx01 + ôî io — σe Φ 0 (σ in

Also α Γ = y10 + yQ1 and (#T) 2 = σS. But

x(xT) + (a T)α = (x10 + aOi)(l/io + 2/oi) + (l/io +

— îol/io "i" l/io^io + ^oil/oi "i" l/oi ̂ oi = = "

We have thus proved the existence of an element z in 3Ω such that

(22) z2 Φ φe Φ 0 , ^ Γ = azz + wf ,

for az in 8 β and ^ z in 3<2 with the property that zwz + wzz = 0, and
<w\ — ψz Φ 0. When Ω = g we actually have α2 = 0 and take v = z,
w — vT — wz, and have

wT = ^ω + z01 = xloτ/lo

We now turn to the case where @ is a field.
We are assuming that φ is a division algebra, and that © = %[g]

is a quadratic field. Let qu , gm be a basis of 3 over $, so that
m = 18. The general element of Q is z = ^ A + + )?mgm for
independent indeterminates ^ over ffl (and hence over SlΩ). Then

(23) z* = φ(η» -*,VJ

is a polynomial in ηlf , ̂ m with coefficients in g. This polynomial
is not identically zero since, in fact, there exist values fji of the Ύ]i in
BΩ such that 2 = x, z2 — σ Φ 0, where x is given by (21). We now
observe that there must be a basis of the Cayley algebra &Λ over A —
&(yi, ,Vn)f consisting of l,u, z,uz, w0, uw0, zw0, (uz)w0, and $Λ =
zΛ + (uz)A + w0A + (uwo)A + (zwo)^ί + [(uz)wo]A. Then the elements
Λ of w0A + (uwo)A + (zwo)A + [(uz)w0]J all have the property that
hz + zh = hu + uh = h{uz) + (uz)h = 0. Hence

(24) zT = αβ« + ws ,

where α2 is in A[u], wz is in $Λ, wzz + ^^ 2 = 0. The coefficients of az are
in A, and so are the quotients of two fixed polynomials of St[τ]l9 , τjm]
by a polynomial ^1(^1, , τ]m). The coordinates of wz are also in J
and so are the quotients of polynomials in ®[ηu , 7}m] by a polynomial
9>a(%, , Vώ Then w2 = ψ(τjL9 , τjm)[φ2(ηu , ^m)]~2 We know that
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there exist values of ηu , rjm in $iQ such that the corresponding element
ZQΦ 0 has the property z0T = w0 for wozo + zQw0 = 0, and w\ — ψ0 Φ 0.
But then φφλφ2ψ is a polynomial in $fc(%, , ηm) not identically zero, and
we can find values ηiQ of the rji in £B such that, if v = ^OQΊ + + 7]mOqmf

then

Ϊ;2 = <p ^ 0 , tί;2 — Ί / Γ ^ O , ΪW + wv — 0 ,

vT — av + w (a in 8; 9?, f in fi) .

We state this result as follows:

LEMMA 2. / / properties (/)-(F) Λoίd ίΛβ Cayley algebra (£ is
generated by nonsingular square roots uf v, w such that (25) holds
and the product formula (14) is valid for every x9 xl9 y, yx of £) —

This normalization will permit us to determine the transformation T.

5* A determination of ΓΦ We are assuming that xT — xT for
every x of K, and that6 [(xy)T]g = (a?Γ)[(2/Γ)^] for every x and y of E
This latter relation is equivalent to [(yx)T]g = (^Γ)[(^Γ)^] and thus
our pair of relations is equivalent to the pair

(26) ύT = xT , g[(xy)T] = [g(xT)](yT) (a?, » in K) .

Since βf is nonsingular, and gT — g it follows that, if d is any element
of 8 = R[g] = Λ[%], then

(27) (da?)Γ = (dT)(xT) , (a?d)Γ = (xT)(dT) ,

/or βverj/ a; w K α^d d in S. Thus we may write the second relation
of (26) as

(28) g[(xy)T] = [g(xy)]T = [(gx)T](yT) ,

and also as

(29) l(xy)T]g = (xT)[(yT)g] = (xT)[(yg)T] = [(xy)g]T.

Our algebra £ is a Cayley algebra over the cubic extension field
$ of g, and O = 8 + $>v is a quaternion subalgebra of (£ over $. The
set 3 of all elements z in (£ such that zw + ^2; = 0 is the space

(30) 3 = Si; + 2w + S(vw) = ^8 + ^ 8 + (vw)2 = ©w

of dimension 6 over B. Then our multiplication table (14) implies that

6 In 2 our product relation of (V) was given on page 15 in what we see here is.
the equivalent form [(xy)Tf] = (xT)[yT)f], where / = (rS*)g.
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(31) (hV^W

vw + wv — v(vw) + (vw)v — w(vw) + (vw)v = 0 ,

for every element h in S. We now have the following trivial result.

LEMMA 3. Let T be defined so that aT = aS for every a of ί£,
uT = u, xT is in Q for every x of 3- Then xT = xT for every x of £ .

This result is an immediate consequence of the fact that x —
~x, xT — —xT — xT for every x in Q.

We have already assumed that (25) holds and we also know from
Theorem 4 that

(32) vT2 = (aTa)v + (aT)w + wT ,

and that 8 = S>v + 2(vT) + 2(vT2). It follows that

(33) wT = bv + cw + d{vw) ,

where 6, c, d are in 2 and d Φ 0. We shall now derive the following
principal result.

THEOREM 5. Let vT and wT be defined by (25) and (33) for a,
δ, c, d in S and d Φ 0. T7&e% (28) fcoMs only if

(34) (t w)Γ = g-χg[

where the relations

(35) ψ = <pS — aaφ , ^(ψS) = (bbφS - ddf2)φ , c =

Conversely, let T be defined by uT — u, aT — aS for every a of $,
(25), (33), (34) and by

h0 + hxv + h2w + hd(vw)T
( 3 6 ) = h0T + ^ Γ ί i Γ) + (h2T)(wT) + (Λ 8Γ)[(I;M;)Γ] ,

so that xT — xT for every x of (£. Then the multiplicative relation
(28) holds in (£.

For proof we compute [g(vT)](wT) = (βrα'y + gr^)[6?; + cw + (cϊ^)w]
by the use of (14) to obtain

(37) [g(vT)](wT) = g(abφ + cf) - {dgf)v + {dgaqήw + [g(acb)v]w .

If (26) holds we have [g(vT)](wT) = g[(vw)T]f and so the right member
of (37) must be an element of 3 Thus abφ + cf — 0 = cψ + abφ and
our formula in (35) for c has been verified. Equation (37) is the result
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of a computation which remains valid if we replace g throughout by
unity and the result is

(38) (vT)(wT) = —dψv + daφw + (ac - b)(vw) .

We now observe that the square of any element of Q is computed
by the use of the formula

(39) hxv + h2w + h^vwf = hjtλφ + h2h2ψ — h3h3φψ .

Hence {vTf = aaφ + ψ = v2T = φT = φS. Also

(wTf — bbφ + ccψ — ddφψ = 66"̂ ? + aabbφ2^1 — ddφφ

— bbψ^φiψ + aaφ) — ddφψ — bbφφSψ'1 —

= (bbφS - ddψ^φψ-1 = w2T =

This completes our proof of (35). We also compute ac — b —
^ — b = —bψ~\φaa + ^ ) , and we use (35) to obtain

(40) 6 - ac =

This yields the formula

(41) [g(vT)](wT) = ̂ [ -

If (26) holds we have g[(vw)T] = [g(vT)](wT), and we use (41) to
obtain (34).

Conversely, let T be defined as in the statement of our theorem.
Then (41) holds and (34) implies that g[(vw)T] = [g(vT)](wT). We
compute (wT)(vT) and see that the relation

(42) (vT)(wT) = -(wT)(vT)

is a consequence of the properties we have assumed. It follows immedi-
ately that every element of (£ is uniquely expressible in the form x =
h0 + h^vT) + h£wT) + h3[(vT)(wT)] for hQ, h19 h2, h3 in S. Moreover
[h(vT)](wT) = K[(vT)(wT)] for every h in 8. Also the space 3 =
2(vT) + 2(wT) + 2[(vT)(wT)] and (36) defined Γ uniquely. If x =
/^^ + /&2w + h3(vw) is in 3 then (39) yields $2, and

xΓ = (h^XvT) + (h2T)(wT)

implies that (α T)2 - [(feA)Γ](^2Γ) + [(h2h2)T](w2T) + [
We also observe that

(43) q[(vw)T] = [g(vT)](wT) = q[(vT)(wT)\ ,

from which

(vw)T = (q
( [ (w)Γ] 2 = [(vT)(wT)Y -
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Thus [(vw)T]2 = -(φS)(fS) = [(vw)2]T. We have shown that (xT)2 =
x2T for every x in $•

It should be clear that the linearity of the second relation in (26)
in x and y implies that, to prove (26), we need only derive it for basal
elements of (L Let xy + yx = 0 for elements x and ί/ of 3 so that
g[(xy)T] = [flr(<cΓ)](yT). Then if h is in 8 we have

g[(hx)y]T = <7[/φψ)]T = flf[ΛΓ(αv)] = (£T)[</(^)T] = KT[(gxT)(yT)]

= [hTg(xT)](yT) =

Similarly, if k is in 8, the relation #[(#2/)T] = [g(xT)](yT) implies that
g[x(ky)]T = [g(xT)](ky)T. The relation g[(hx)(kx)]T = [g(hx)T][(kx)T]
follows from the fact that g[(hx)(kx)]T = g[hkx2]T = g(hkTx2T) and
[flr(Λa?)T](fcαj)Γ= [(ffλΓ)(αjΓ)][(AjΓ)(ajΓ)] - ghTkT(xT)2 = g{hk)Tx2T. Thus
it suffices to prove (26) for x and y elements selected as a distinct pair
of the elements v, w and vw. We have already derived this result for
x — v and y = w. The relation g[v(vw)]T — [g(vT)](vw)T follows since
g[v(vw)]T = g(φw)T = (gφS)wT while

[g(vT)][(vw)T] = [ff

T) = gφS(wT)

as desired. The remaining verifications are of a similar nature and will
not be given here.

Let us note that we have really shown that the definition of vT,
and of vT2 via the definition of wT, have determined T uniquely. Thus
we really only need to find the effect of the fact that xTz = g~xgx to
complete our conditions on the defining parameters a, b, d. We shall
see here that the property vT3 = g~xvg will imply that xTB — g~λxg
for every x of S.

6* The property xT3 — g~xxg. We have already seen that

(45) vT2 = (aTa + b)v + (aT + c)w + d(t w) .

Then

(46) = (αΓ2αT + 6T)(αv + w) + (αT2) + ( c T ) ^ + cw + d(vw)]

Equate coefficients of v, w and vw respectively to obtain the conditions

(47) (aT2aT + bT)a + (aT2 + cT)b = gg~\l + d(dT)ψ] ,

(48) aT2aT + bT + (aT2 + cT)c + dagg~\dT)φ = 0 ,

and
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(49) aT2 + cT = d'\dT)bgg-xf-^S .

Thus (aT2 + cT)c = -abbdr1dTgg-1ψ"2φSφy and (48) becomes aT2aT +
bT = ψ-'adTgg-'φd-'ψbφS - ddf2), while (35) yields

(50) αΓ2αΓ + 6T =

Then (47) becomes

d-'dT + d

and this is equivalent to dT(aaψS + 65<£>S — ddψ2) = cZn/r. Replace
bbφS—ddψ2 by φ^ψψS to get

dTaάfS - ffSφ-1 = {dT)fSφ-\aaφ + φ) = (dT)fSφSφ-1 = dα/r .

We have proved the important property that

(51) s

Equation (51) is an invariance property imposing a condition on d.
We shall now show that (50) determines b in terms of a and <p. In fact

bT = dg^d-'dTψSf-1 - (aT2)(aT)
1 - (aT*)(aT) =

Hence

(52) b = gg-'φS'φ-'aT2 - a(aT) ,

and we obviously have

(53) 6 = gg-'φS'φ-'aT2 - a(aT) .

We form

φ^bb = [gg-'φS'aT2 - φaiaT^gg^φS'aT2 - φa(aT)]

= (^S2)2(αά)T2 4- aa(aa)Tφ2 - ^S 2 [^- 1 α(άT)(άΓ 2 ) + ^ - ^ (

Thus

φ2φSbb = φSφS\φ - π/rS2) + φ(^S - f )(^S2 - f S)

= 2φφSφS2 - (φSφS2ψS2 + Ŝ2<̂ α/r + φφSfS)

+ pψ'ψ'S - [φφSφS'gg-'aaTaT2 + ^~1α(αT)(αΓ)2] .

But

= φ\φS)bb - (dφf){dφf) = φ2φSbb - SS .
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Hence ss — φ\φS)bb — φψψS and we obtain

SS = 2φφSφ2 - (φφSfS + φSφS2ψS2 + φS2φf)
(54)

φiφSXφSηigg^aiaTXaT2) +

Let us write

(55) t = 4r , v(h) = h(hT)(hT2) , μ(h) = fc + hT + &T2

for every element Λ- in 8 so that v(/&) is the norm and μ(h) the trace
in S over ©. Now ψ — φS — aaφ, and ψφ{φS2) = φ(φS2) — aaφ\φS2).
Then we obtain the formula

(56) - s s = v(<p) + tv{φa)T2 + Pv^αΓJί- 1 ] - t j u ^ φ f f α t - 1 ) ] .

But the norm form of the cyclic algebra ® = (S, Γ, t) over © is the
function

(51)

v(Λ) + tv{hλ)

Hence (56) implies that

(58) ss =

Conversely, let d be an element such that s = dφψ = sT, and let
ss — Δ(x) where (58) defines x. Then we have seen that (50) defines
b so that (52) holds. Also (50) is the result of using (49) in (48) and,
if (48) and (49) hold, then (47) is equivalent to s = sT. It follows that
the condition vT% = g~xvg is equivalent to the definition (52) of b, to
s — dφψ = (dφψ)T, and to ss — Δ{x) providing that we can show that
(49) holds. Replace dTd^φSψ-1 = (dφψ^idφξ^φiψS)-1 by the value

1 in (49) and we have the relation

(59) (tS)(αΓ2 + cT) = $-(φb) .
9

Use (35) to see that

(60) (fS)(cT) = ~(aT)(bT)(φS) ,

and so (59) becomes

(61) ψSaT2 - (άT)(bT)(φS) = Mφb).
g

By (52) and (53) this relation is equivalent to

M9S)-la - (aT)(aT2)]

- a(aT)] - φS
2aT2 -
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This is then equivalent to fSaT2 + [(aa)TφS]aT2 = φS
2aT\ that is,

to [fS + (aa)TφS - φS2]aT2 = [f + aaφ - φS]TaT2 = 0. This is true
by (35).

The definition of T given by (36) implies that xT3 — g~~ιxg if and
only if vT3 = g-'vg, wT3 = g^wg, and (vw)T3 = g~\vw)g. But vT =
av + w implies that vT2 = α2W + wT, vT3 = aT2vT2 + wT2 = βΓ1^,
wT3 = (g~ιgv)T = (aT2vT2)T = ^-^(α^ + ^) - aig^gv) = ^ " ^ as de-
sired. Then

and

ψv)w] = g~\gfg-2g\vw) = g~λg{vw)

as desired. We have proved the following result.

THEOREM 6. Let the conditions of Theorem 5 hold, and let b —
gg^φS^φ^aT2 — a(aT), dψφ — (dψφ)T — s for an element s in% such
that ss is the norm A(x) in the cyclic algebra (S, T, gg~τ) with x =
— ψ — [(φa)T2]y — [φ(aT)]y\ Then Property V holds in (£.

7* The norm condition* Let us begin with some properties of
associative division algebras. Let ® be an associative division algebra
whose center is a quadratic field %[g] = &. We form a quadratic ex-
tension Γ — S[^*], where g* — λ + Vp , εo that the mapping a—»α*
of @ onto Γ determined by ^ —> g* is an isomorphism leaving g element-
wise fixed. We then take the direct product S x f which is an algebra
over Γ. The algebra ®Γ = © x Γ is the direct sum ©Γ = βxΓ φ β0Γ,
where the mapping x —* xeλ is an isomorphism over % of ® onto Sβx,
and ex and e0 are orthogonal idempotents such that eλ -\- e0 — 1 is the
unity element of ® and of ©. If Λ- is any element of © its image hex

is in βi©Γ = exΓ. The algebra ® has a norm form J(cc) on ® to (S,
and ®! has a corresponding norm form Δ{xe^ on ®ex to ©e^ and indeed
A(xe^) — Δ(x)eλ. Then h in © is the norm h — z/(ίc) of an element x of
®, if and only if heλ — Δ{xe^).

We now consider our exceptional Jordan division algebra φ with
attached Cayley algebra (£ containing the subfield © = %[g\. We form
φ x -Γ, and have split © and (£. We have already selected a basis of
(£ with v, vΓ, 'yT2, w , %(vΓ), u(i;T2) a basis of 3 over ί£. Then exv,
eλ(vT), eλ(vT2) are left linearly independent in the quadratic extension
Sβj. = SΓβi, and so are eob, eQ(vT), eo(vT2). We take x1Q = e^, ί/10 = a?10Γ =
ex(vT), z1Q = α;10T

2 = e φ T 2 ) and have
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= (eλav + eλw){e}))v + {eλc)w + {exd){vw)

= [e^ac — b)v]w + (exav)[{eQdv)w] + (e1^)[(eodt;)^]

= \eλ{ac — b)v]w + (eoadφ)w — eQ(ψdw) .

Since e0 = βΊ and e ^ = e ^ = 0 we see that

# A = (^[e^ac - b)v-w] + (e1v)[(eoadφ)w] - (e^)[

— — exs — σeλ ,

where σ is the parameter of (16). It is known7 that § is a division
algebra if and only if ©x = (8, T,g*g~1)e1 is a division algebra, and
σ Φ A(x^ for any x± in 3)1# Also φ is a division algebra if and only if
§ Γ is a division algebra. Hence we may state the condition that ξ> be
a division algebra in all cases as follows.

THEOREM 7. Lei the conditions of Theorems 5 and 6 6e satisfied,
so that the exceptional Jordan algebra is defined over % as the set
of matrices in (1) where © = (8, Γ, gg^1) is a cyclic associative algebra,
and ® is either a division algebra or a direct sum of two division
algebras. Then ξ> is a division algebra if and only if s — dφψ is
not the norm of any element of S).

We shall pass on now to a construction of a class of noncyclic
exceptional Jordan division algebras.

8* Bicyclic algebras* Let ξ> be an exceptional Jordan division
algebra over its center g, and k be an element of £> not in g. The
Jordan subalgebra of ξ> generated by k is a field Sΐ0 = $[k]. We have
already considered the case where ί£0 is cyclic over %. Assume then
that $ is not a cyclic field. Then there is a normal splitting field 9Ji =
%[θ, ω] of degree six over g of $. The automorphism group of SDΐ over
% is isomorphic to the symmetric group on three letters, and is generated
by two automorphisms S and J, where S3 = J2 = I and JS = S2J. The
fixed field of 30Ϊ under S is a quadratic field Ω — %[o)\, where

(62) ω2 = ζ , ωS = ω , ω J = - ω (ζ in g) .

The fixed field of 2Ji under J is a cubic field ί£ = %[θ], and ί£ isomorpic
over g to $o under the mapping induced by k—>θ. Then 2JΪ — ί?[6*]
is cyclic over Ω, and its galois group over Ω is generated by the
automorphism S.

We now form the algebra φ f l and consider it as an algebra over Ω.
It is cyclically generated and all of our properties of such algebras hold.
It has an automorphism J induced by the automorphism J of Ω9 and

See Theorem 9 of 2.
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J is defined so that it leaves φ elementwise fixed. Then ξ>^ = ξ> x 50Ϊ
is reduced, and ξ>^ has automorphisms S and J such that ξ> is the set
of all elements of ξ)^ fixe by S and J.

The algebra ξ> has three pairwise orthogonal idempotents eu e2, eS9

such that

(63) eβ — e2 , e2S = e3 , e3S = ex , exJ = eλ , e2J = e3 , ezJ — e2.

Then

(64) k = ^

and its easy to verify that the element k of ξ> has the required property
that k = kS = kJ.

It is known8 that ξ>0 is a division algebra if and only if φ is a
division algebra. We recall that &Ω is the algebra of all matrices A —
A{ξ, x) of (1), and that ξ ranges over all elements of 501, x over all
elements of a Cayley algebra (£ over 501. Then A = ξe± + (ξS)θ2 +
(ξS2)es + x12 + (xT)23 + (xTU)u for linear transformations Γ, U, V over
Ω of K, where Γ, C/, F all induce S in Wl. Also α;12S = (xT)m y2BS =
(yU)u, z^S = (^F)12, so that x12S

3 = x12 - (^TC7F)12. Thus

(65) TUV=I9 V=dU, xU = f(xT), ^T = xT,

and we also know that

g = gT, f=(y&)g, δ = TS ,

We have, of course, already derived the properties of T.
The transformation J determines linear transformations W, P, Wo

on (£ over %, all inducing J in 501, and so mapping e2 onto β3, e3 onto
e2 and ex onto itself. Then

(67) x12J =

Since J 2 is the identity we clearly have the properties

(68) W0=W-\ P* = I.

We next compute x12JS = (xW^S = ( a W X , = (x12S
2)J = (xTU)nJ =

)^ and we have shown that

(69)

We also have y2ZJS = (yP)2BS = (»P^) M = y^S"J = (yUV)i2J= (yUVW)13,
from which

8 See Theorem 2 of 2,



394 A. A. ALBERT

(70) PU = UVW = T-'W ,

a result equivalent to the main result connecting W and P, that is,
the relations

(71) W = TPZ7 .

± l i l α l i y , Λ 1 3 e/O — \6 VV /12*^ — \Kf VV J. J23 — ^13*^ v — \Z V A /23«/ — \Z V JL ± )%$,

and we have shown that

(72) W-'T = VTP .

In view of (65) formula (69) is equivalent to V~λW~λ — (WV)~L — WV,
and (65) also implies that V^W^T = TP, V^ψ-1 = TPT~\ Thus (69)
follows from (65), (72), and the fact that P 2 = /. By (71) we see that
(72) is equivalent to (TPU^T = U~Ψ = VTP, P = UVTP. This is
automatically satisfied since TUV— UVT = I.

LEMMA 4. The relations XijJS — x^ S2 hold if and only if W' =
TPU.

We next use the multiplicative formulas

We have already used the fact that

Γ e f\
(74) r = A(0, e) = βu + «„ + /« = I 7β 0 β I ,

\7δf de 0/
where r is in ξ), and so r = r S a result equivalent to eT — e, ell = f.
Then r - rJ= (eW)13 + (eP)2S + (fW~% and so

(75) eW = f, eP=e.

Apply J to the first relation of (73) to obtain 2(x12-y23)J = (xy)13J =
1 ] . = 2(a?uJ), (ifcJ) = 2(^TF)13.(^P)23 = δ[(^T7)(^P)]12, and we have

(76)

Apply J to the second relation of (73) to obtain 2(xu-y13)J — [Ί{xy)^]J =

(7J")[(xy)P]23 = 2(xW)1B (yW'1)^ = y[(yW"1)(xW)]^ and we have

(77) (yJ)[(xy)P] =

Finally, the application of J to the third relation of (73) yields
2(Xn y23)J - δ(xy)uJ = (δJ)[(^)TΓ]1 3

and we have derived the final condition
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(78) (xW-'XyP) = δJ[(xy)W] .

We substitute x = y = e in (76), (77) and (78) to see that

(79) eW-^δf, yj=yδff, δJf = δf.

Hence

(80) yj=y& , δ = δj.

We next replace x or y in our relations by e to obtain

(81) yW-1 = δf(yP) , xW~x = δ(xW)

from (76),

(82) yJ(xP) = y(δf)(xW) , (yJ)(yP) =

from (77), and

(83) xW-1 = δ(xW) , f(yP) = yW

from (78).

The relation xW~x — δ(xW) is equivalent to

(84) W2 = δ-U .

The first relation of (81) is then equivalent to

(85) yW = f(yT)

But the second relation of (83) is equivalent to yW = f(yP). Hence
we have

(86) yP=yP, yW = f(yP).

Multiply the first relation of (82) by / to obtain (jS1)('yδ)-1f(xP) = ff(xW),
a relation satisfied by (86). The second relation of (82) is equivalent
to jFiyW^1) = yS2(yP) = Ίδf(yW), and so all of our relations are
satisfied if (84), (85), and (86) all hold.

By (78) we have (xW-^yP) = [δf(xP)](yP) = δf(yx)P. Replace x
by y and y by % to obtain

(87) f[{χy)P] = [f(yP)](χP).

We also know that

(88) fW = δ-'e

by (79), and (85) yields

(89) δ-*e = f(fP) .

Multiply by / t o obtain / = δfffP,fP = δ-
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7(7S2)-y. Then g = (7S2)-1/ implies that g - r " 1 /?, and gP = (7 J ) " 1 / =
(TS 2 ) " 1 / . We have derived our second ίnvariance property, that is, the
relation

(90) gP=g.

Hence g is fixed by both P and T.
Relation (76) is equivalent to δf(xy)P = δ[f(xP)](yP) a relation which

is clearly a form of (87). Relation (77) is equivalent to jJ(xy)P =
yS[(yP)f][f(yP)]. This is equivalent to (yS2)(xy)P = Ύδ[(yP)f][f(xP)].
Since / / = T S ^ T T ) " 1 our relation is equivalent to

f[f(χy)P\ = Hf(yP)][(χP)] = [{yP)f][f{χP)].

This result will follow when we derive the .following result.

LEMMA 5. The relation f[(fy)x] — (yf)(fx) holds in S for every
x and y of (£.

For the relation is trivially satisfied if x,f and y are in an
associative subalgebra of (£. Since it is linear in x and y it will clearly
hold if it holds for xn + ux — yu + uy = xy + yx — 0. Thus it suffices
to verify the relation for y — av, x = bw, where a and 6 are in 2JΪ[</].
But then (14) implies that

f[f(avbw)] =

and

l(av)f][fφw)] = [(af)v][(fb)w] - [(fb)(af)-v]w = (fbaf)(vw)

and we have proved the relation.
We have now shown that the relations imposed by the conditions

(63) on the idempotents of SQ^, and the fact that φ is the set of all
elements of ξ>^ fixed by S and J, will imply that there exists a linear
transformation P on (£ over g inducing J in 3JI and such that

(91) £P = ^ P , gP= g , xP2 = x ,

for every a? of (£. We also have shown that

(92) g[(xy)P] =

for every x and 7/ of (£. By (85) we have yW = f(yP), and by (71)
and (65) we have yW = yTPU = f(yTPT). But then TPT = P, that is,

(93) xTP = xPT-1,

for every x of (£. We have also seen that φ consists of all matrices
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A{ξ, x) == A(ξ, 0) + q(x) = [A(ξ, x)]J where q(x) = x12 + (xT)23 + {xTU)n

so that ξ = ξJ is in SB and g(α>) = [q(x)]J = (xΓί/T^-% + (^TP)23 + (αjTΓ)u.
This occurs if and only if the first of the relations

(94) xT=xTP, xW=xTPU=xTU, xTUW~λ = x ,

holds for every £ of (£. The remaining two relations are consequences
of a ΐF = xTP£7.

Conversely, let x range over all elements of (£ such that xT = a TP
and let ξ> be the set of all corresponding matrices A(|S x) for ξ = ξJ
in $. Then A(£, 0) A()?, 0) = A(ξη, 0) where ^ is in $ if f and η are
in S. Also 2A(f, 0) g(x) = g(τ/), where y = ( | + ξS)x. Then yΓ =
(ξS + | S > T and yΓP = (ξSJ + ξS2J)xTP = (ξS2 + ξS)J(xT) = yT, and
so α( | , O) g(ίc) is in ξ). But then ξ) is a Jordan algebra over g of &m

if and only if [q(x)Y is in ξ) for every xT — xTP, since 2q{x)*q(y) =
[«(« + 2/)]2 - t^(^)]2 - [̂ (̂ /)]2 It is easy to show that [q(x)f = A(/3, 0) +
q(y), where /9 = y(xx) + [j(xx)]S2 = y(xx) + [y(xx)]J = /9J since our
assumption that xT — xTP = xPT~x implies that

(95) xP=xT* , (xx)P = (xP)(xP) = (xT2)(xT2) = (xx)T2 .

Now 2x^{xTU)lz = (τ/T)23 by (73), where

(96) 2/T - jx(xTU) .

Also

2[a?u.(a?Γ^)1 8μ= 2x12J.(xTU)1ΆJ= 2(xTUW~%-(xW)u

= (yT)2BJ = (yTP)23

by (67) and (68) and we use (73) to obtain

(97) yTP = ΊixTUW-^ixW) = yT

by (94), and our proof of closure is complete. Since (£ has dimension
8 over SUi, and thus has dimension 48 over %, the dimension of the
subspace fixed by P is 24. Ήefice the space of all elements x of (£
such that xΎ — xTP is 24 and this confirms the fact that ξ> has
dimension 27. We state our result as follows.

THEOREM 8. Let the relations of (91), (92) and (93) hold for every
x in the Cayley algebra K over the field ϋUi = &[o)], and ξ> be the set
of all matrices A(ξ, x) for ξ in & and xT = xTP in (£, so that ξ> is
a subspace over % of the algebra ^m of all threerowed J-Hermitian
matrices with elements in (£. Then § is a Jordan snbalgebra of φ ^
and &m = ξ> x 2K.

We now pass on the determination of all transformations P with
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the properties we have found as a consequence of the fact that ξ> is
the set of all elements in ξ> x 2JΪ fixed by S and J.

9* Determination of P* The relation (92) implies that

( 98 ) (ax)P = (xP)(aP) , (xa)P = (aP)(xP) ,

for every x of (£ and a in

( 99) S* = 2 % ] = 27l[w] .

But (98) implies that, if (£M is the set of all elements x of (£ such that
xu + ux — 0, then %(#P) + (&P)w = 0. Hence

(loo) &up = <εw.

We seek to determine P so that (91), (92), (93) all hold. Let us
first derive a certain normalized basis of (£. We have already seen that
P induces J in 2JΪ, and so leaves B elementwise fixed, and also leaves
u fixed. Also 2JΪ = $[ω], where of = ζ in %\ and ω J = — ω. Thus
the effect of P on 8* = Wl[u\ — $t[u, ω] is completely known. But every
element x of (£tt has the form x = x1 + x2ω, where 2 ^ = a? + α P and
2x.2 = (x — xP)ω~x — (x — xP)ζ~1ω, and we see that xx = xλP and x2 — xJP.

It follows immediately that (£M has a basis of elements ulf , u6 over
2Ji where ut = ^ P for i = 1, •••, 6. We also saw in (24) that the
general element x = ξxuλ + + ξQu6 of Ku has the property that

(101) xT — axx + wx , wxx + xwx = 0 .

Here the ξ{ are independent indeterminates over 2JΪ, α,. is in S*^, , ξQ)
and

for φ(a?) and α/r(ίc) in (SJl(ξl9 , | 6 ) . There is thus a polynomial π(^ l f •••,&)
in 2Jl(^i, , £β) which is the product of the numerator and denominator
polynomials of φ{x) and ψ(x) and which is not identically zero by the
argument used to derive (25). But if we select values <2{ in g of the
ξi such that iz{aλ, , aQ) Φ 0 as we can always do we obtain an element
v — oί{ίLγ + + (XQUQ such that

v — vP , vT = av + w ,
(103)

W + WV — 0 , v2 = φ , w2 = ψ ,

where a is in 3Dΐ[w], <̂> and ^ are nonzero elements of SOΪ. Then the
multiplicative formula of (14) holds for products in our Cayley algebra (£
over 9Ji where, as before, the quaternion algebra © = 9Ji + -ϋiu +



ON EXCEPTIONAL JORDAN DIVISION ALGEBRAS 399

Relation (92) implies that

(104) (xP)2 = xΨ ,

for every x of (£ and, in particular, for all elements of (£w where in
fact x2 is in the center 3JΪ of (£. Hence our normalization implies that
v2P = (vPf = t;2, that is,

(105) φ = φJ .

Let us now utilize the relations derived in our determination of the
transformation T. We can use (32) and (33) to write

(106) vT2 = kv + kw + d(vw) ,

where (52) implies that

(107) h = b + α(αΓ) = LM1Ϊ1 ?

and that

(108) k = aT + c .

From (50) we have

kT = aT3 + cT= (dT)d-1(bg)g-1f-1(φS)

since s = dφψ — sT. Hence we have derived the consequence

(109) k = ( k T ) T 2 = J L &
gg ψ

We now apply P to vT to get vTP = 'yPΪ7-1 = vT-1 = vT2T~
g(vT2)g-x = (at; + w)P = (άP)v + κ)P. Hence

(110)

However, we may actually show that

(111) wP =-S-[kw + d(vw)] .
9

for vw is in (£M and so is {vw)P. Then g[(/y^)P] = g[(wP)v] is in

and so the term in v of wP must vanish. Thus gig^h — αP = 0

" 1 — ^^P a n ( i s o w e have

(112) (aφ)P= (aφ)T2 .

By (104) we square the value of wP in (111) and obtain
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(113) ψJ = (kϊc - ddφ)f .

Moreover, g[(vw)P] = [{g^g^fywty + [(g2g~1d)(vw)]v. However, if t is in
ϊΰl[u] we know that (tw)v = —(tv)w = —t(vw), and [ί(vw)]ι; = [(ίv)w]t; =
— (tφ)w. Thus f/[(ΐM0)P] = —ψg^ktyw) — ψg-^dφw and so we have
found that

(114) ( <
g2 g2

Let us now derive a consequence of (112). We first see that

(115) φ = cpJ , cpS = cpJS = ^S2J , φS2 =

Then (112) implies that

(116) ^

φS

Also (107) implies that φb = gg-\φa)T2 = (φa)(aT), and so (φb)P =
gg^φa - (φ^PaTφSiφS2)-1 = ^ ^ - ^ α = {φa)T\φS2)-\aφ)T, from which
we have

(117) (φb)P = {φb)T .

We also use (109) to see that

ψk = gg~\φb)T2 = gg~XφbP)T = gg~\φbT2)P ,

that is,

(118) (^AJ)P = t ^ , ^P = fifJ)-^ .

We now apply P to (111) and use P 2 = I to see that

+ (gg-tyivw)] - (gg-1dP)[(gg-1)2(dφ)w +

Then

(119) (kP)d =

Use (118) to obtain ψ(fJ)d = (gg-ydP, g*dψ = gz(dψ)P. Since s =
and <p = <pP we have shown that

(120) (g*s)P = tfs

We also see that (wP)P = w implies that

(121) 1 = k(kP) - SdP(β(rΎφ .
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But (kP)k = (fjy'fikk) and dP = (gg^fdfifJ)-1, so that our relations
imply that (121) is equivalent to (113). We have proved that our
defining formulas for wP and (vw)P imply that wP2 = w holds if and
only if the condition (112) on α, (113) on ψj, and (120) on s all hold.

Conversely, let the element x defined by

(122) x — a0 + axv + a2w + ad(vw) (a{ in 8*)

be the general element of (£, and define the transformation P by

(123) xP = a0P + (αxP)^ + (α2P)(wP) + (a3P)[(vw)P] ,

where wP is given by (110), and (vw)P by (114). Assume also that
the conditions φ = <pj, (112), (113), and (120), hold, so that wP2 = w
and vP2 = v. Also, from φ — φJ, we have (vPf = v2P, we have (wPf =
w2 from (113), and [(Ϊ W ) P ] 2 = ( w ) 2 P from (114) and (113). Since x is
in Kw if and only if α0 = 0 it follows from (123) that &UP = Ktt.

Since (92) is linear in x and y, it will hold if and only if it holds
for x = qx0, y — ry0, where q and r are in £*, and x0 and τ/0 are any
of the elements l,v,w, or vw. If α?0 = y0 — z then [(qz)(rz)]P =
[(qr)z2]P - [(gr)P](2;2P), since z2 is in S* when z is in (£tt. But
[(rz)P][(qz)P] = (rP)(zP)(qP)(zP) = (rP)(qP)(zP)2 = [(qf)P](z2P) for z =
v, w, or vtϋ, and so (92) holds for x0 = y0. It also holds for xQ = 1 or
y0 = 1 since it then becomes (98), which is a consequence of (123).

Let us then turn to the cases where x0 Φ yQ and x0 and y0 are selected
to be v, w or vw. We shall let q and r be in S* in all cases, and begin
by computing g[(qv)(rw)]P = g[(rqv)w]P = g[rq(vw)]P — [(grq)P](vw)P.
We also compute

[(g(rw)P)](qv)P = {(gf )Pgg~1[kw + d(v^)]}(gP^) = (g*g-ψPJcw){qF)v

+ [{g2g-l7rPd){vw)\[{qP)v] = -[g2g-\rP)k(qP)](vw)

- [g2g-\rP)d(qP)φ]w =

and have verified (92) for x0 — v and y^ — w.
We next compute g[(qv) r(vw)]P = gr[(gt;) (rv)^]P = g(pqφwP) =

g(rq)Pφ(wP). We also compute

[flfrP(i;w)P][(gP)v] - [(qP)v][(rP)(g2{Γ1dφ)w + (fP^flf-^Ki w)]

= (g2g~1dφrPqPv)w + (qPv)[(rPg2g~1kv)w]

_ (rPg2gikqPφ)w + g2g~ιdφrPqP{vw) —

and have shown that (92) holds for #0 = v, j / 0 = vw.
Our third stage is the computation of

g[qw-r(vw)]P — g[qw (fv)w]P = sf[—

Also
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-g[r(vw)]P-(qw)P= -[g(rP)(vw)P][(qP)(wP)]

= [g2g~\fP)dφw + (g'g-^rP

= -{qτ)Pg[dgφ - kk]vψ = g{qr)P{fJ)v

by (113), and (92) holds for £0 = w and y0 = Ϊ W .

If #0 = w and yQ — v we have <7[(gw)(ry)]P — — ̂ [(

-flf(rg)P[(vtt;)P]. Also (gfPv((qP)wP = -[(qP)(wP)][(grP)v]. Write
Q = QiSy r — TL^"1 SO that qP = q±Pg, and r P = (^P)^" 1, while

= -h{r1q)P{vw)P = -g(rq)P[(vw)P] .

The case χo = vw,y0 = v is taken care of similarly. Probably the
simplest procedure for the case x0 = vw9 y0 — w is the type of compu-
ation used in the case xQ — w,yQ~ vw.

We now turn to the property xTP = xPT~\ We first turn to a
rather immediate consequence of the basic property g(xy)T = g(xT)(yT).

LEMMA 6. If x and y are in K then [(gx)y]T~1 =
If also x or y is in £* then {xy)T~x =

For g[(xy)T] = [g(xy)]T = [g(xT)\(yT) and so
and our result follows.

Let us now observe that the relation xTP — xPT~λ holds for x in
S*. Since the relation is linear it suffices to derive it for x — qz where
q is in S* and z = v,w, vw. But (qz)TP = [(gT)(sΓ)]P = (zTP)(qTP)
and {qz)PT-χ = l(^P)(gP)]71-1 = {zPT^qPT-1) = zPT~\qTP), so the^
it suffices to prove the result for cc = v, w or w . There thus remains
only the case x — vw. We form

gg[(vw)TP] = g[g(vw)TP] =.g-[g(vw)T]P = g[(gv)T(wT)]P

= [g(wT)TP][(gv)TP] = [(gw)TP][(qv)TP]

- [(gw)PT-1][(gv)PT'ΐ\ .

Thus

g{(gg)[(vw)TP]} =

and our proof is complete.
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The only remaining property is xP2 = x. This holds for x in 8*,
for x — v, and for x — w as we have already seen. Also (123) implies
that xP2 — x for all x if and only if the relation holds for x — vy w, vw.
There thus remains the case x = vw, and we compute gg[(vw)P2] =
g[g(vw)P]P = g[(gw)Pv]P = (gv)[(gw)P2] = (gv)(gw) = (ggv)w = gg(vw),
and our proof is complete. We have proved the following fundamental
result.

THEOREM 9. Let a basis of (£ be selected so that vP — v. Then
P is completely determined by the relation vT = av + w as in (111),
(114), (112), (123), where (112), (113) and (120) hold. Conversely, if
we define P by vP = v, (111), (114), (122), (123) where (112), (113) and
(120) hold then P satisfies Properties VI, VII and VIII.

This completes our determination of P. We close our discussion
with the proof of the existence theorem referred to in our Introduction.

10 • Construction of a special class of algebras* We shall now
construct a class of cyclic exceptional Jordan division algebras in which
K is a division algebra. We shall assume that vT = w, that is, a =
b = c = 0 and so

(124) vT = w , wT = d(vw) .

As a consequence our relations become

(125) ψ = φS , ψS = φS2 = -φfdd = -φ(φS)dd .

Then, if s — dφψ, we have the value

(126) SS = dd(φir)2 = dd[φ(φS)]2 = -φ(φS)φS2 .

We need to satisfy the condition that s is not a norm in the cyclic
algebra (£ = (S, T, g^"1), where g is in %[u], u2 = ,o in g, g|V| is a field,
® is a division algebra, and K is a division algebra.

Assume first that g0 is a real algebraic number field, and that $E0

is a cyclic cubic extension of g0 such that there is a prime ideal π of
5ΐ0 for which ί£0 x %oπ is unramified over the π-adic extension g07Γ of
go- We select a negative element ,0 of go such that π = π1π1 for conju-
gate prime ideals of %0(u) with u2 — p. There is an element h which
is in the Ideal πx and is in neither π\ nor 7f1# Take ^ = h^i)"1 and see
that the cyclic algebra (80, S, g) is a division algebra. So is (So, S, flfg'"1)
since gg~τ = g\ Observe that gg — 1 is the norm of 7"1 if 7 is any
element of norm 1 in ί£0. Hence Property IV holds.

Every cyclic cubic extension of a real field is totally real. Let β
be a totally positive element of $ΐ0 so that β, βS and βS2 are all positive,
and define
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(127) φ=-^Γ

Then φ, φS, φS2 are all negative, and

(128) φ(φS)(φS2) = - 1 .

The Cayley algebra (£0 = 5?0 + &Qv + ^ o ^ + Sio(vw) has negative para-
meters u2 — p, v2 — φ and w2 — φS = ψ, and so has a totally positive
norm form over the real field Sϊ. Hence &0 is a division algebra.

We shall now select s. We assume that rj is an indeterminate over
fto[%], and take g = gofy), « = βoty), S = ffi(%), £ = Ko x g, ® - ®0 x g .
Then ® is an associative division algebra, and K is a Cayley division
algebra. Write

(129) s = V + u

Ύ] — U

Since s is not in %Q(u) we know t h a t s + 1 ^ 0 , s — 1 ^ 0 . But

(η — u)s = η + u, η(s — 1) = w(s + 1), and the indeterminate

(130) V =

is in go(tt, s). Hence s must alse be an indeterminate over &(u). But
then it is known9 that s is not the norm of an element x in ®. Also
ss — 1. But d = siφψy1 where ss = 1 and so dd — {φψ)~2 = [φ(φS)]~2 =
bί^ iSW-M^SX^S 8 ) ] " 1 ^ 2 . By (128) we have φS2 = α/rS = -φ(φS)dd
and (35) holds. This completes our construction of § and φ is a Jordan
division algebra, is cyclic, and is such that K is a division algebra.

UNIVERSITY OP CHICAGO

9 This is proved on page 27 of 2.




