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ON EXCEPTIONAL JORDAN DIVISION ALGEBRAS
A. A. ALBERT

In 1957 the author gave a construction of a class, of cen-
tral simple exceptional Jordan algebras £, over any field
of characteristic not two, called cyclic Jordan algebras. The
principal ingredients of this construction were the following:

(I) A cyclic cubic field & with generating automorphism
S over .

(II) A Cayley algebra €, with & as center, so that € has
dimension eight over &, and dimension 24 over .

(III) A nonsingular linear transformation 7' over { of
¢, which induces S in &, and commutes with the conjugate
operation of G,

(IV) An element g in ¢, and a nonzero element 7 of R,
such that g = gT and gg = [7(7S)(7S?]™'. Thus g is nonsingular.
Also the polynomial algebra @ = $[g] is either a quadratic field
over ¥ or is the direct sum, ® = ¢,F D ¢,F, of two copies ;T of .

(V) The properties [g(xy)T] = [g@T)l(yT) and «T3 =
g 'zg, for every x and y of G,

In the present paper we shall give a general solution of
the equations of (V), and shall determine T in terms of two
parameters in € = R[g] satisfying some conditions of an arithme-
tic type. We shall also provide a special set of values of all
of the parameters of our construction, and shall so provide a
proof of the existence of cyclic Jordan division algebras with
attached Cayley algebra € a division algebra,

The existence of a transformation 7" with the two properties
of (V) for some element g = g T, in the Cayley algebra € which
satisfies (IV), was demonstrated by the author in the 1957 paper!
only in the case where © is not a field, and consequently € is
a split algebra, In that case it was proved that cyclic Jordan
division algebras do exist, for certain kinds® of fields . Thus
the case where & is a field, and € may possibly be a division
algebra, remained.

If % is any element of an exceptional Jordan division algebra 9,
and k is not in $, the subalgebra {[k] is a cubic field over . The
algebra O is then a cyclic Jordan division algebra if and only if an

Received April 7, 1964. This paper was sponsored in part by the National Science
Foundation under NSF Grant GP208 and by the Esso Educational Foundation.

1 See our A construction of exceptional Jordan division algebras, Annals of Math.
67 (1958), 1-28.

2 The actual result is that § cannot be a finite field, an algebraic number field,
or indeed any field such that, if ® is an associative division algebra of degree three
over its center & then every nonzero element of & is the norm of an element of D.
Moreover, if T is such that there exists such a division algebra ® over o, and
is an indeterminate over &, then there exists a cyclic exceptional Jordan division
algebra over § = Fly).
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element k& of £ exists such that F[k] is a cyclic cubic field. Indeed
the field & of our construction is then isomorphic to the field F[k]. It
is not known whether such an element %k always exists, but we shall
be able to construct £ even when a cyclic F[k] may not exist. Indeed,
let & be any element of  not in ¥, Flk] be noncyclic, and & be a
scalar extension of ¥ isomorphic to F[k]. Then there is a quadratic
extension field Flw] of F, such that M = & x Flo] = K(w) is a splitting
Jield of the cubic minimum function of % over . Then I is a normal
field of degree six over %, and the automorphism group of M over F
is generated by automorphisms S and J such that S®= J*= I, and
JS = S2J. The field & is the fized field of M under J, and w can be
selected so that wJ = —w, @ is in §. The field F[w] is the fixed field
of M under S, and S generates the automorphism group of the cyclic
field M of degree three over Flw].

The ingredients of our cyclic construction may then be taken as a
portion of the ingredients of a construction of what may now be called
bicyclic Jordan division algebras. We shall also call M a bicyclic field.

We replace & by the field 9t as the center of €, and T will induce
S in M. Then we will have the following additional properties:

(VI ) There is a nonsingular linear transformation P over i of ©
which induces J in the center I of €, and commutes with the conjugate
operation of €. Then g = gP, and so F[g] is a quadratic algebra over .

(VII) The property gl(xy)P] = [g(yP)|(xP) holds for every x and y
of €.

(VIII) The transformations P and T are related by TP = PT,
and P* = I is the identity transformation.

We shall give a complete determination of P. Indeed our determi-
nation of 7 depends on a normalization of a basis of €. As usual €
has a basis of elements generated by basal elements u, v, w where
Slul=3lgl =S, w>*=p+0 in §, v is selected so that wv + vu =0
and v* =@ # 0 in M, w is selected so that uw + wu = vw + wv =0
and w* =+ #0 in MM (where M = & in the cyclic case). In the
normalization it is shown that v can be selected so that vT = av + w
for @ in M[u] = 8* (where L* becomes £ = R[u] in the cyclic case).
Since P? = I we show that v can actually be selected so that vP = v.
With this choice the equations determining T also determine P completely
and no new parameters are introduced. With this determination of T
and P our results provide a construction® of all exceptional Jordan

8 Qur construction certainly does provide a form for all exceptional Jordan division
algebras and so provides a means of studying the properties of such algebras. It
does not settle the question as to whether there are any bicyclic algebras which are
not also cyclie, nor does it give a general solution of the arithmetic restrictions on
the defining parameters. The latter problem is not really an algebraic problem and
can hardly be expected to be solved without exact specification of the field 3.
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division algebras.

2. The algebra  and a subalgebra €. A ecyclic exceptional
Jordan algebra  can be described in terms of the ingredients given
in (I)-(V). Let & range over all elements of the cyclic field 8, and «
range over all elements of the Cayley algebra €. Then 9 consists of
all three-rowed square matrices

13 w g(vo)T*
(1) A:A(g,x):( v &S T
\eT2g (BT ES

This set is closed with respect to the operation A-B defined in terms
of the ordinary matrix product AB by 24-B = AB + BA. Then it may
be seen that  is a Jordan algebra. Let

(2) G =3lgl, L=Rgl=8x6,

so that € is a commutative associative algebra of dimension six over .
When @ is a field so is £, and & is a cyclic field over & with a generating
automorphism 7' induced by g7 = g, £T = £S for every element of the
cyclic cubie field & over $H.

The set B, of all matrices A(&, n) with £ in & and » in 8, is a
subalgebra of . It is a special Jordan algebra of dimension 3 + 6 = 9
over . Let

(3) D= A@,0), E=A40,1),

where 0 is any element generating & = $(0) over F. We first derive
the following result.

THEOREM 1. The subalgebra of O generated by D and E 1is B.
The cyclic assoctative algebra B* = (8, S, g7 over ®, has center ©,
and B* has an involution J such that J fixes every element of & and
gJ = g. Then B* is the associative envelope of B, and B 1s tsomorphic
to the set of all elements A = AJ of B*.

For the mapping & — A(, 0) is an isomorphism of & onto the set
&, of all matrices A(£, 0). Then K, is a cyclic field of degree three
over ¥ isomorphic to &, and it has a generating isomorphism S, over
& defined by [A(E, 0)]S, = A(ES, 0). Let B, be the special Jordan
subalgebra of © generated by D and E so that %, contains &, = F[D].
Then B, contains
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0 7 9(rSHHSY)
(4) 24¢,00-E=| v 0 7S = A(0, )
g8* (S 0
where p = & + £S. If &+ £S then 7 = 0. For otherwise nS* = £S* 4 & =

0 and so p — nS* = £S — £S* = (§¢ — £S)S = 0 contrary to our hypothesis.
But then the enveloping associative algebra B; of B, contains the matrix

0 r g(rS)
(5) [A®S’, 0)][A(0, n)] = ( v 0 S )= c,
g (S ¥S 0

where ¢ = n(nS*)~* # 1. Thus B contains

0 1 o0
(6) Y=[A(1—#,0)]"(E—C)=<0 0 1>,

gt 0 0
where Y?® = g'I. It follows that By contains gI and so contains &
and £, = K[g]. Thus B contains the cyclic associative algebra B, =

Q + &Y + Y2 = (%, To,97?), where the generating automorphism T,
of &, over {[g] is defined by

a O 0 aT 0 o
(7) YA(a, 0) = Y(O aT O ) = A(a, 0)T,Y = ( 0 aT? O)Y )
0 0 aT? 0 0 a

for every a in ¥,. Let us also define a mapping J by

a 0 0 a 0 0
[A(a,O)]J:(O aT 0 )J:(O aT )
0 0 aT® 0 0 aT?
0 0 Sy
(Y)J:(’Y 0 0 )
0 S 0

and we see that

0 0 gyv/v O 0
(9) (Y)J_—_(l 0 0)(0 vS O):Y—lA(“/,O).

0 1 o/\0 0 S

It is easily verified that J is an involution of B} and we note that
(YJ) = gv(vS)(vSHI = (9)*I = (Y?¥)J. It is also easy to verify that &
is the center of the algebra B}¥. Note that, when & is a field By is
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contral simple over &, However, in the g-split case, where & is not
a field, B} is a direct sum of two cyclic central simple algebras over .

The general element X of Bf can be expressed uniquely in the
form X = A(a, 0) + A(b, 0)Y + (Y)JA(e, 0) for a,d,cin 8. Then X =
XJ if and only if a =@ and b=¢. Thus a =a = £ is in &,

10) AG,0Y=(0 T o0 [0 o 0 0 T
0 0 b7 \g 0 BT 0 0

[u—y
|

b 0 O 0 1 0 0 bO)

=}

and we see that

0 0 gvS®» /b 0 0
v 0 0 0
0 S 0 0 0 b1
0 0 g(vSHbT*

=7 0 0

0 ()T 0

Hence A(b, 0)Y + YJA(b, 0) = A(0,b). We have shown that the set of
all elements X = XJ of B is B. But B* 2B 2B 2B, and so

B 2 B*, It follows that B* = B = B} is our cyclic algebra. This
proves the theorem.

(YJ)A(®, 0) =

(1D

THEOREM 2. If ® is a field and © is a division algebra the
algebra B* is a division algebra.

It is well known* that the enveloping associative algebra $B* of a
Jordan algebra B of dimension 9 over a field § is either (B*)*, where
B* is an associative division algebra, or is the set of J-symmetric
elements of an associative division algebra B* of degree three over a
quadratic field ®. Here J is an involution over § of <7 * which does
not leave the center & of B* elementwise fixed. When 9 is a Jordan
division algebra so is B and, when & is a field, the envelope B* is
known to be a division algebra. However, when & is not a field, the
algebra ®B has a representation by the set of all matrices

12 A 0
(0 AJ) ,

for matrices A in an associative division algebra ® with an involution
J moving some element of its quadratic center over .
We know that if B* = (8, S, ¢7?) is a division algebra so is its

4 See Section 3 of the reference in 2.
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square B = (8, S, ¢7%) = (8, S, h), where I = |v(¥S)(vS")¢’]"* = (99)9~* =
gg~'. Hence g # g. Also By (8, S, —h) since —h is the product of A
by the norm (—1)* of —1. Thus —gg'+# 1 and we can state this
result as follows.

LEMMA 1. Let © be a Jordan division algebra, and & = Flu] be
a field, so that & ts the center of the cyclic assoctative algebra © =
(8, S, h), where h = gg=t. Then D is a division algebra and g =
N+ u for w=p#01in F and »#=0 in F.

Note, in closing, that ©®© is isomorphic to the square of the cyclic
algebra B*, and hence (8, S, g-g—?!) is isomorphic to B*.

3. Some properties of €. The structure theory for Cayley
algebras € implies that, if € = &[u] is a quadratic subalgebra over &
of € generated by an element u such that 4= p % 0 in €, then the
space 8 = €,, of all elements z of € such that zu + uz = 0, contains
elements v and w such that

(13) =09, wh =, vw + wv =0

for elements @+ 0,9 =0 in & Then B =8 + wl + (vw) =
v + &w + Lvw), and € = & + 3. Indeed za = @z for every a of &
and z of 8 where, if ¢ = a + Su for « and B in &, then @ = a — Su.
For all such selections of v and w the space O = & + v is a quaternion
subalgebra of € with an involution x = a + bv— % = & — bv. Then
multiplication in € is given by

(14) (@ + yw)(x, + y,w) = 22, + Yyv + Yo + yTHw ,

for all @, %, 9, ¥, in O. We shall use this relation frequently in our
computations.

We are assuming that u* = p # 0isin §. Let "= J(1 o) so that
Q, = I'u] = e + ¢,]" for pairwise orthogonal idempotents e, and e,
whose sum is the unity element of €. Let 2 = K1/ p), so that &, =
e.f2 + ¢,2, where we know that e, = ¢, €, = ¢, and thus ez = ze¢, ez =
ze, for every zin 3,. Then 8, = 8, + 8u, where 8, = .3, = B¢, and
B = .3, = Bee,. We also know that, if x, is any nonzero element
of 3, this space has a basis ,, ¥, = 2, 7T, 2, = #, T2 over £. Similarly,
if x, is any element not zero in 3, the elements ., ¥ = a7, 2y =
o T? = y,T form a basis of 3, over £. Moreover, if we select any x,
we can take

Lo1 = YR Y = me = 2%y »

(15) 2
2y = T T* = @il «
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Then we have the properties given by

T10%o1 = YY1 = 2% = 06,

(16)

L0 = Yol = RuRw = 06
(17) Yo = TiRu = Yo = Yo = Z¥a = 21You = 0,
(18) Tl = CaRn = YuRo = Yulo = 2aln = 2uYw = 0,
(19) LYo = —0Z%y, YRy = — 0Ty, 2%y = —O0Yy «
(20) a;, =0, €t;; = Q;€; = Qyj e0;; = a6, =0

for ¢ 7, ¢ and 7 equal to 0 or 1 and a;; in 3;;. We now have the
following result.’

THEOREM 3. Let © be the cyclic exceptional Jordan algebra over
5 consisting of the matrices of (1) where (I)-(V) hold, and g be the
element of Property IV so that g =N+ u for X #0 in F, w*=p#0
in § and uT = u. Suppose that 2= R0/ p), so that L, = Qu] =
.2 + ¢,2 for orthogonal idempotents e, and ¢, and that B is the set
of all elements z in € such that zu + uz = 0, from which 3o = By + Bu,
where 3, = e.8, = Boe, and 3By = €2, = Bpe,. Then, of z 1is any
element of B which has nonzero components z,, and z,, the space 8
has a basis z, 2T, xT?, zu, (zu)T, (zu)T? over K.

For z = z,, + 2y, & contains ¢, and the space over 2 spanned by
the six elements given contains z,, (7 )e, = (26,)T = 2, T and (zT*%)e, =
(ze))T* = 2z,,T*. Similarly our space contains 2z, 2,7, 2,7>. But then
3o 1s spanned over 2 by the six given elements and so they span 3.
Since the dimensions of 8 over & and 3, over Q are six these elements
form a basis for each set.

In the case where ® is a field we can strengthen our result as
follows:

THEOREM 4. Let & be a field and z be any nonzero element of 8.
Then z, 2T, 2T, zu, (zu)T, (zu)T? form a basis of 3 over K.

For it suffices to show that if 25 0 is in 8 then 2z is not in 3,
or in B8, where we are assuming that ¢, and ¢, are not in &. By
symmetry it suffices to show that no element z,, of 8, is in 8. Let
2, be in 8 so that z,T = ¥, and z,,T? = z,, are in 8. But y,z, = %y
is in € and in 8, and so must be in 8. Hence w2, = o¢, must be
in € and in 2, and so must be in 8 It follows that ge, = ge, is in &

5 The discussion up to this point is that of Section 13 of the reference in 2.
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and so oe, + g¢, = ¢ is in ¥ and must be in &, ¢, is in £ contrary to
our hypothesis that € is a field and e, is a singular idempotent of 2,.
This completes our proof.

4. A normalized basis of €. Let x = 2, + 2, where %, =
(@, T)x,T? and z,, is any nonzero element of 8,,. Then we have

(21) T = Xy + Ty = o€ £~ 0 (c in &) .
Also 2T = 9y + ¥, and (¢T)* = ¢S. But

2(@T) + (@T)x = (@ + Co) Yro + Yo) + W0 + Yo) @10 + To1)
= Tyl + Yo + Coln + YauZo = 0 .

‘We have thus proved the existence of an element z in 3, such that
(22) Z2+gpe+0, 2T =a,2 +w,,

for a, in £, and w, in 8, with the property that zw, + w,z = 0, and
w: =, #* 0. When 2 =% we actually have a, =0 and take v =z,
w = vT = w,, and have

wl = 2y + 2y = Tyl + Yula = (xm + xm)(ym + ym)vw .

We now turn to the case where & is a field.

We are assuming that $ is a division algebra, and that & = F[g]
is a quadratic field. Let ¢, -+-,q, be a basis of 3 over &, so that
m = 18. The general element of 3 is z=n¢, + -+ + 9,9, for
independent indeterminates 7; over & (and hence over &;). Then

(23) 2 =@, + ) Nn)

is a polynomial in %, «--, 7, with coefficients in §. This polynomial
is not identically zero since, in fact, there exist values 7); of the »; in
&, such that z=12,2=0 # 0, where z is given by (21). We now
observe that there must be a basis of the Cayley algebra €, over 4 =
K@y, ¢+, 1,), consisting of 1, wu, 2, uz, w,, ww,, 2w, (u2)w,, and B, =
24 4+ (uR)Ad 4+ wed + (uw)d + (2w + [(uz)wy]4. Then the elements
h of wed + (uwy)d + (w4 + [(uz)w,]4 all have the property that
hz + zh = hu + uh = h(uz) + (uz)h = 0. Hence

(24) 2T =az+ w,,

where a, is in A[u], w, is in 8,, w,z + 2w, = 0. The coefficients of a, are
in 4, and so are the quotients of two fixed polynomials of &[n,, -, 7,]
by a polynomial ¢, <-+,7,). The coordinates of w, are also in 4
and so are the quotients of polynomials in &%,, - -+, 1,,] by a polynomial

@M1, *+*, V). Then wi = (n,, +++, NP, +++, 7). We know that
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there exist values of 7,, « -+, %, in &, such that the corresponding element
2, # 0 has the property 2,7 = w, for wy, + z,w, = 0, and w} = +, #= 0.
But then ¢@,p,v is a polynomial in &(z,, -« +, 1,,) not identically zero, and

we can find values 7, of the 7; in & such that, if v = 9,¢; + *++ + 000>
then

(25) v»=p#0, w =4 #0, w+ wv =20,
T = av + w (@ in & @, in &) .
We state this result as follows:

LEMMA 2. If properties (I)-(V) hold the Cayley algebra € 1is
generated by mnonsingular square roots w,v,w such that (25) holds
and the product formula (14) is valid for every =, %, ¥y, ¥y, of O =
& + u + v8& + (wv)8.

This normalization will permit us to determine the transformation 7.

5. A determination of 7. We are assuming that 27 = 2T for
every « of €, and that’® [(xy)T']lg = («T)[(yT)g] for every x and y of G.
This latter relation is equivalent to [(¥Z)T'1g = FT)[(ZT)J] and thus
our pair of relations is equivalent to the pair

(26) «T=2T, gl@y)T]=I[gT)lyT) (x,y in C).

Since g is nonsingular, and g7 = ¢ it follows that, if d is any element
of & = &[¢] = &[], then

@7 @do)T = @T)T), (xd)T = @T)dT),

for every x in € and d in & Thus we may write the second relation
of (26) as

(28) gl@y)T] = [9(ey)]T = [(g2) Ty T) ,
and also as
(29) [((z9)T1g = @Dl T)g]l = DlyaT] = [(an)7]T .

Our algebra € is a Cayley algebra over the cubic extension field
& of §, and © = & + L is a quaternion subalgebra of € over & The
set 8 of all elements z in € such that zu + uz = 0 is the space

(30) 8= + Qw + Lvw) = v8€ + we + (vw)& = €,

of dimension 6 over & Then our multiplication table (14) implies that

6 In 2 our product relation of (V) was given on page 15 in what we see here is
the equivalent form [(xy)Tf] = (xT)[yT)f], where f = (;S2)g.
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(hv)w = h(vw) ,

@D vw + wv = v(vw) + (vw)v = wvw) + (vw)y =0,

for every element % in & We now have the following trivial result.

LEMMA 3. Let T be defined so that aT = aS for every a of K,
uT = u, T is in B for every « of 8. Then T = ZT for every x of €.

This result is an immediate consequence of the fact that z =
—x, 2T = —aT = T for every « in 3.

We have already assumed that (25) holds and we also know from
Theorem 4 that

(32) vT* = (aTa)v + (aT)w + wT

and that 3 = % + Q@T) + {wT?. It follows that

(33) wT = bv + cw + d(vw) ,

where b, c,d are in & and d = 0. We shall now derive the following

principal result.

THEOREM 5. Let vT and wT be defined by (25) and (33) for a,
b,e,d im & and d # 0. Then (28) holds only if

(34) (w)T = g~'g[—(dv)v + (dap)w — b(@S)y(vw)] ,
where the relations
(85) ¥ =9S —aap, Y(PS)= (bbpS — ddy)p, c¢= —abpy.

Conversely, let T be defined by uT = u, aT = aS for every a of K,
(25), (33), (34) and by

he + b + hw + hy(vw)T

(36) = T + b,T@T) + (h,T)wT) + (hT)[(vw)T],

so that xT = ZT for every x of €. Then the multiplicative relation
(28) holds in €.

For proof we compute [gvT)|(wT) = (gav + gw)[bv + cw + (dv)w]
by the use of (14) to obtain
BN [9wD)wT) = glabp + &) — (dgv)v + ([dFap)w + [glacb)v]w .

If (26) holds we have [g(vT)|(wT) = g[(vw)T], and so the right member
of (37) must be an element of 8. Thus abp + ¢y = 0 = ¢y + @by and
our formula in (35) for ¢ has been verified. Equation (37) is the result
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of a computation which remains valid if we replace g throughout by
unity and the result is

(38) WTYwT) = —dyv + dapw + (@& — b)(vw) .
We now observe that the square of any element of 3 is computed
by the use of the formula
(39) hv + haw + hy(vw)* = h1k—1¢ + hzﬁf‘/f = hsﬁ:%?“/’ .
Hence (vT) = adp + v = v*T = T = »S. Also
(wTY = bbop + céyr = ddpy = bbp + a@bbp*y~" — ddpg
= bbyp(yr + adp) — ddpy = bbppSy~" — ddoy
= (bbpS — ddy?)py—t = w'T = S .

This completes our proof of (35). We also compute ac — b=
—a@bpyr~t — b = —byY(pad@ + ), and we use (35) to obtain

(40) b — ac = by (pS) .
This yields the formula
(41) [gD)(wT) = gl—(dy)v + ([dap)w — b(@S)yr(vw)] .

If (26) holds we have g[(vw)T] = [g(»T)](wT), and we use (41) to
obtain (34).

Conversely, let T be defined as in the statement of our theorem.
Then (41) holds and (34) implies that g[(vw)T] = [g(vT)|(wT). We
compute (wT)(vT) and see that the relation

(42) @T)wT) = —(wT)(vT)

is a consequence of the properties we have assumed. It follows immedi-
ately that every element of € is uniquely expressible in the form x =
Ry + B (vT) + ho(wT) + hf(wT)wT)] for by, hy, ks, by in 8. Moreover
[A(T)(wT) = A[(vT)wT)] for every h in 2. Also the space 3 =
LwT) + wT) + @T)wT)] and (36) defined T uniquely. If x =
hw 4+ haw + hy(vw) is in B then (39) yields »?, and

el = (hT)wT) + (hT)wT) + (hT)[(vw)T]

implies that (2T)* = [(hh)T](»*T) + [(hoh) TN w*T) + [(hshs) T (vw)*T.
We also observe that

(43) adlvw)T] = [g(wT)|(wT) = qL(vTHwT)],
from which

(vw)T = (¢ PITHwT)] ,

44
“h [(00)TT = [(@T)wT)F = —@TYwTY .
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Thus [(vw) T = —(@S)(¥S) = [(vw)*]T. We have shown that (#T)* =
«*T for every = in 3.

It should be clear that the linearity of the second relation in (26)
in « and ¥ implies that, to prove (26), we need only derive it for basal
elements of €. Let xy + yx = 0 for elements x and ¥ of 3 so that
gl(ey)T] = [g(xT)|(yT). Then if &~ is in & we have

9l(hayy]T = g[h(@y)IT = g[hT(xy)] = (AT)[g(2y)T] = hT[(9=T)(yT)]
= [hTg(xT)(yT) = [(h2)TI(yT) .

Similarly, if k£ is in 8, the relation g¢[(zy)T] = [g(xT)](yT) implies that
glze)]T = [9(xT)](ky)T. The relation g[(hx)(kx)]T = [g(h)T][(k2)T]
follows from the fact that g[(hx)(kx)]T = g[hka®]T = g(hkTx*T) and
[g(h2) T1(ka) T = [(gh T T)[(kT)(xT)] = gh Tk T(xT)* = g(hk) T#*T. Thus
it suffices to prove (26) for « and y elements selected as a distinct pair
of the elements v, w and vw. We have already derived this result for
2 =v and y = w. The relation glv(vw)]T = [g(wT)](vw)T follows since
glv(vw)]T = g(pw)T = (gpS)wT while

g D[(vw)T] = [g(vD)]gg* T)wT) = g(wT)(95~)(T)-(wT)]
= [gg7'(wT)g(wD)(wT) = [gwT)(wT) = gpS(wT)

as desired. The remaining verifications are of a similar nature and will
not be given here.

Let us note that we have really shown that the definition of »T,
and of vT"* via the definition of w7, have determined 7T uniquely. Thus
we really only need to find the effect of the fact that 7% = g~'gx to
complete our conditions on the defining parameters a, b, d. We shall
see here that the property v7T° = g~'vg will imply that «T° = g~'xg
for every « of G.

6. The property ¢T° = g~'zg. We have already seen that

(45) 1% = (aTa + b)v + (@T + c)w + d(vw) .
Then
vT* = g7vg = ¢g7'gv
(46) = (@T?aT + bT)(av + w) + (@T?) + (c¢T)[bv + cw + d(vw)]

+ dTgg{—d(yv — apw) = by~ 'pS(vw)] .
Equate coefficients of v, w and vw respectively to obtain the conditions
(47) @TaT + bT)a + (@T? + e¢T)b = gg~[1 + d(dT)v],
(48) aT?*aT + bT + (aT? + ¢T)c + dagg=dT)p =0,

and
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(49) aT? + ¢T = d(dT)bggv'pS .

Thus (aT* + ¢T)c = —abbd'dTgg "y *pSep, and (48) becomes aT?aT +
bT = y=adTgg 'pd-(bbpS — dd+*), while (35) yields

(50) aT?aT + bT = v Sagg~*d-(dT) .
Then (47) becomes
a@ vy Sgg—d-dT + d-'dTbbgg—'y'pS
= gg'd-'dTya@yS + bbpS) = gg (L + ddTvy) ,

arld this is equivalent to dT(a@yS + bbpS — ddvy?®) = dy. Replace
bbpS —ddy* by @S to get

dTagyS — 44Sp~ = (AT)ySe adp + ¥) = @T)¥SepSe~ = dy .
We have proved the important property that
(51) s=dyp =sT.

Equation (51) is an invariance property imposing a condition on d.
We shall now show that (50) determines b in terms of @ and . In fact

bT = ag—'d*dTySvy~ — (@T?)(aT)

= gg v pl(vp)1Say Syt — (aT*)aT) = gg'p(@S)"a(aT)(al?) .
Hence
(52) b=ggpSp7al” — a(T),
and we obviously have
(53) b= g7 'pS*p~aT* — a(@T) .
We form

P'bb = [Gg7pS'aT” — pa(aT)|lgg'pS*aT* — pa@T)]
= (@S)(@@)T* + aa(aa) Te' — ppSlgga@TNaT?) + g7 a(al)(aT?)] .
Thus
PPSbb = pSPpS(p — ¥S?) + P(PS — Y)(PS* — ¥S)
— ppSpSigg~'a@T)@T?) + g7~ 'a(aT ) (aT?)]

= 2ppSpS* — (PSPS*YS* + PS*pyr + PPpS+rS)
+ PSS — [ppSeS’gg—aaTal* + gg—a(aT)(aT)] .

But

PP (¥8) = P(@S)b — (dpy)dpy) = P'PSbb — s5 .
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Hence s5 = ¢*(@S)bb — pyS and we obtain

85 = 209SP* — (pPS¥S + PSPS*S* + PS’pyr)

54 S
® — p(@S)@S)gg'a(aT)(aT?) + gg~'a(aT)(@T?] .

Let us write
(55) t= _g_ . v(h) = hhTYRT),  ph)=h+ hT + hT*

for every element % in ¥ so that y(h) is the norm and p(h) the trace
in Lover ., Now + = @S — adp, and Jo(@S?) = @p(@S?) — adp*(PS?).
Then we obtain the formula

(56) —s8 = V(@) + W(pa)T* + tvlp@T )] — tplppa(pSiat—)] .

But the norm form of the cyclic algebra ® = (8, T, ¢) over ® is the
function

A(x) - A(ho + hy + hy')
= Y(ho) + tu(hy) + tW(h;) — tplhy(h, T )R, T?)] .

Hence (56) implies that

(87)

(58) s§=4d@), —v=9llea)T"ly + 9@l y" .

Conversely, let d be an element such that s = dpy = sT, and let
s5 = A(x) where (58) defines x. Then we have seen that (50) defines
b so that (52) holds. Also (50) is the result of using (49) in (48) and,
if (48) and (49) hold, then (47) is equivalent to s = sT. It follows that
the condition vT® = ¢g~'vg is equivalent to the definition (52) of b, to
s = dpy = (dpy)T, and to s§ = 4(x) providing that we can show that
(49) holds. Replace dTd @Sy~ = (dpy) T(dpg)~'p(¢S)~* by the value
@(¢S)~* in (49) and we have the relation

(59) (¥S)(aT? + ¢T) = %(q)z?) .

Use (35) to see that

(60) (¥S)(cT) = —@T)OTXPS) ,
and so (59) becomes

(61) ¥SaT* — @T)OT)(@S) = %@6) :

By (52) and (53) this relation is equivalent to

¥S(aT?) — @T)PS)[gg'p(@S)"'a — (aT)(aT?)]
= g97'plgg eS¢~ T* — a@T)] = pS’aT* — gg~—'pa(aT) .
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This is then equivalent to SaT? + [(a@)TeSlaT? = S*aT?, that is,
to [vS + (e@)TeS — pS°1aT? = [v + adp — @S]TaT? = 0. This is true
by (35).

The definition of T given by (36) implies that xT° = g~z¢ if and
only if vT? = g~vg, wT?® = g~*wg, and (vw)T® = g~ (vw)g. But vT =
av + w implies that v7T* = aTvT + wT,vT®* = aT*vT* + wT*? = g~'gv,
wI? = (¢7'gv)T = (aT*THT = g*g(av + w) — a(g~'gv) = g~'gw as de-
sired. Then

g (ow)T* = glg(vw)]TT* = g'lg(vT)(wT)]T*
= glg’ (T wT*]T = [g*(v T?)|wT*

and

(vw)T? = g=%@)[(9vg) (g 'we)] = 97°@)[(¢7'Tv) (g~ 'Tw)]
= 9@ (g Tv)w] = g7%9)'T*¢*(vw) = g~'G(vw)

as desired. We have proved the following result.

THEOREM 6. Let the conditions of Theorem 5 hold, and let b =
G9 'pS'p7aT? — a(aT), dyrp = (dyrp)T = s for an element s in & such
that ss 1s the norm Ad(x) im the cyclic algebra (8, T, gg~*) with x =
—p — [(pa)T?ly — [@p@T)]y’. Then Property V holds in €.

7. The norm condition. Let us begin with some properties of
associative division algebras. Let © be an associative division algebra
whose center is a quadratic field F[g] = ©. We form a quadratic ex-
tension /" = F[g*], where g* = A + 1 p, o that the mapping a — a*
of ® onto I" determined by g — ¢g* is an isomorphism leaving ¥ element-
wise fixed. We then take the direct product ® x I" which is an algebra
over I'. The algebra &, = & x [ is the direct sum &, = ¢,/" P e,l,
where the mapping ® — we, is an isomorphism over § of D onto De,,
and ¢, and ¢, are orthogonal idempotents such that ¢, + ¢, =1 is the
unity element of ® and of &. If & is any element of & its image he,
is in ¢®, = el. The algebra ® has a norm form 4(x) on D to &,
and D, has a corresponding norm form A(xe,) on De, to Ge,, and indeed
A(xe,) = d(x)e,, Then hin & is the norm & = 4(x) of an element x of
D, if and only if he, = A(xe,).

We now consider our exceptional Jordan division algebra © with
attached Cayley algebra € containing the subfield & = Flg]. We form
$ x I', and have split ® and €. We have already selected a basis of
€ with v, T, vT?, uv, u(vT), u(vT? a basis of 3 over &. Then e,
e,(vT), e,(vT? are left linearly independent in the quadratic extension
e, = Lre,, and so are eb, e (vT), e,(vT?). We take x,, = €0, Yy, = €, T =
e,(vT), 2,y = 2, T* = €,(vT*) and have T
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Ty = Y12y = [,(vT)][e,(vT?)] = (e,0v + e;w)(eb)v + (e,0)w + (e, d)(vw)
= [es(ac — b)v]w + (e,av)[(edv)w] + (ew)[(e,dv)w]
= [e(ac — D)v]w + (ead)w — ey(ydw) .

Since ¢, = ¢; and e,¢, = ¢;¢, = 0 we see that

L10%01 = (elv)[el(ac - b)v‘w] + (611))[(600,&90)’1,0] - (elv)[(eo(i"‘/f)v]
= —edyp = —e,5 = ge, ,

where o is the parameter of (16). It is known’ that  is a division
algebra if and only if 9, = (8, T, g-g Ve, is a division algebra, and
o # A(x,) for any x, in D,. Also $ is a division algebra if and only if
9r is a division algebra. Hence we may state the condition that 9 be
a division algebra in all cases as follows.

THEOREM 7. Let the conditions of Theorems 5 and 6 be satisfied,
so that the exceptional Jordan algebra is defined over § as the set
of matrices in (1) where D = (8, T, 97) s a cyclic associative algebra,
and D 1s either a division algebra or a direct sum of two division
algebras. Then s a division algebra tf and only tf s = dpy is
not the norm of any element of D.

We shall pass on now to a construction of a class of wmoncyclic
exceptional Jordan division algebras.

8. Bicyclic algebras. Let © be an exceptional Jordan division
algebra over its center %, and k£ be an element of © not in . The
Jordan subalgebra of © generated by k is a field & = F[k]. We have
already considered the case where &, is cyclic over . Assume then
that & is not a cyclic field. Then there is a normal splitting field N =
B0, w] of degree six over F of 8. The automorphism group of M over
% is isomorphic to the symmetric group on three letters, and is generated
by two automorphisms S and J, where S® = J?> =1 and JS = S%J. The
fixed field of M under S is a quadratic field 2 = F[w], where

(62) =, oS =w, wJ = —w ¢ in ).

The fixed field of 9 under J is a cubic field & = F[0], and & isomorpic
over ¥ to R, under the mapping induced by k— 0. Then M = 2[F]
is cyclic over 2, and its galois group over 2 is generated by the
automorphism S.

We now form the algebra 9, and consider it as an algebra over £2.
It is cyclically generated and all of our properties of such algebras hold.
It has an automorphism J induced by the automorphism J of 2, and

? See Theorem 9 of 2.
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J is defined so that it leaves $ elementwise fixed. Then g = H x M
is reduced, and 9g, has automorphisms S and J such that  is the set
of all elements of gy fixe by S and J.

The algebra © has three pairwise orthogonal idempotents e, e, ¢,
such that

63) eS=e¢, eS=e¢, eS=e¢, eJ=¢, eJ=¢, eJ=e,.
Then
(64) k= e, + (6S)e, + (68%e, ,

and its easy to verify that the element k of $ has the required property
that k = kS = kJ.

It is known® that 9, is a division algebra if and only if  is a
division algebra. We recall that 9, is the algebra of all matrices A =
A(E, x) of (1), and that & ranges over all elements of M, x over all
elements of a Cayley algebra € over M. Then A = e, + (€S)s, +
(ESYe;, + 2, + (€T')y, + (®T'U)y, for linear transformations 7, U, V over
Q2 of €, where T, U, V all induce S in M. Also 2,,S = (@T)y, ¥:S =
YU), 258 = (V)y, so that ,8° = 2, = @TUV),. Thus

(65) TUV =1, V=46U, xU = f(&T) , 2T =xT,
and we also know that
g=9T, f=@S)9, =18,

=\—1 __ 2 T 782
@) =78, ff= 505

(66)

We have, of course, already derived the properties of T.

The transformation J determines linear transformations W, P, W,
on € over ¥, all inducing J in M, and so mapping ¢, onto ¢, ¢, onto
¢, and e, onto itself. Then

(67) Zpd = (@W),;, Y = WYP)ys , 2 = @Wo)ys «
Since J? is the identity we clearly have the properties
(68) Wy= W-1, P?=1T,.

We next compute 2,,JS = (@W),,S = (@ WV),, = (8% = @TU )] =
(xTUW", and we have shown that

(69) TUW-t=WV.

We also have ¥,JS = (YP)yS = WPU)y = 4,5 = UV) o = (UVW )y,
from which

8 See Theorem 2 of 2,
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(70) PU=UVW = T-'W,

a result equivalent to the main result connecting W and P, that is,
the relations

(71) W= TPU.

Finally, 2,JS = @W),S = @WT), = 2,38 = RVT)y] = (2VTP),,
and we have shown that

(72) W='T = VTP.

In view of (65) formula (69) is equivalent to V-'W—= (WV)'= WV,
and (65) also implies that V=*W—T = TP, V='W~ = TPT-*. Thus (69)
follows from (65), (72), and the fact that P* = I. By (71) we see that
(72) is equivalent to (TPU)*T = U'P= VTP,P= UVTP. This is
automatically satisfied since TUV = UVT = 1.

LEMMA 4. The relations x;;JS = x,;8? hold if and only if W =
TPU.

We next use the multiplicative formulas
(73) 29012-%3 = (xy)IS ’ 2”12‘?/13 = 7(9—72/)23 ’ 21713'?/23 = 5(“’?7)12 .
We have already used the fact that

0 e f
(74) 7‘=A(0,6)=612—]—e23+f13=<’7’6 0 6),
Yof de 0

where r is in 9, and so r = S a result equivalent to eT = ¢, eU = f.
Then r» = rJ = (eW); + (eP)y + (W), and so

(75) eW=f, eP=e.

Apply J to the first relation of (73) to obtain 2(9@£y23)J = (xy)d =
[(xy) W-I]u = 2(9012J)’ (y23J) =2(z W)ls'(yP)2s = 5[(:1'} W)(yP)]m and we have

(76) (@) W= = 3z W)(yP) .

Apply J to the second relation of (73) to obtain 22, %) = [Y(ZY)w] =
(Y[(@EY)Pls = 2@ W )s- (W), = Y[(yW )@ W)],, and we have
(717) O N@Y)P] = vy W )W) .

Finally, the application of J to the third relation of (73) yields
2(9013'?/23)J = 3(“717)14'] = (SJ)[(xg) W]w = z(xW_l)m(yP)zs - [(xW_l)(yP)]m
and we have derived the final condition
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(78) @W=)wP) = oJ[(xy) W] .
We substitute * =y = e in (76), (77) and (78) to see that
(79) eW-=4f, vJ = Yoff, 0Jf = of .
Hence
(80) v =8, 0=20J.

We next replace x or ¥ in our relations by ¢ to obtain

(81) yW==0ofP), aW>=0d@=W)
from (76),
(82) VJ@P) = v0) W),  (W)yP) = vyW)f
from (77), and
(83) aW==o(aW), JyP)=gWw
from (78).
The relation xW— = d(x W) is equivalent to
(84) W= o¢"1.

The first relation of (81) is then equivalent to

(85) yW = f(yP)

But the second relation of (83) is equivalent to yW = f(yP). Hence
we have

(86) yP=9P, yW=f@GP).

Multiply the first relation of (82) by f to obtain (vS?)(v0)'f(ZP) = ff(xa W),
a relation satisfied by (86). The second relation of (82) is equivalent
to YF(yW-) = vS*HP) = vof(yW), and so all of our relations are
satisfied if (84), (85), and (86) all hold.

By (78) we have (W) (yP) = [0f(ZP)|(yP) = of(yZ)P. Replace T
by v and ¥ by « to obtain

87) Sfl@y)P] = [f(yP)l(=P) .
We also know that

(88) FW =67

by (79), and (85) yields

(89) 07% = f(fP) .

Multiply by F to obtain f= 0fffP, fP = - fF)~f = 6-"10(vS")-'f =
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7(vS*»Yf. Then g = (vS?~f implies that g = v"*fP, and gP = (vJ)~f =
(vS»Yf. We have derived our second invariance property, that is, the
relation

(90) gP=yg.

Hence ¢ is fixed by both P and T.

Relation (76) is equivalent to 8f(xy)P = o[ f(@P)|(JP) a relation which
is clearly a form of (87). Relation (77) is equivalent to vJ(Zy)P =
Yo[(yP) f_][f(y—P)]. This is equivalent to (vS*)(xy)P = 7o[(yP)fI[f(xP)].
Since ff = vS*(vY)™* our relation is equivalent to

flf@y)Pl = f-[fyP)(=P)] = [(yP)FILA(=P)] .

This result will follow when we derive the following result.

LEMMA 5. The relation fl(fy)x] = Wf)(fx) holds in € for every
x and y of €.

For the relation is trivially satisfied if %,/ and ¥ are in an
associative subalgebra of €. Since it is linear in x and y it will clearly
hold if it holds for xu + ux = yu + uy = 2y + yx = 0. Thus it suffices
to verify the relation for y = av, * = bw, where a and b are in Mfg].
But then (14) implies that

flfav-bw)] = fl(fa)v-bw] = Fl(bfa)v-w] = [ f(bfa)l(vw)

and

[(@)fILAbw)] = [@f)ll(fO)w] = [(Fb)(af)-vIw = (Fbaf)(vw)

and we have proved the relation.

We have now shown that the relations imposed by the conditions
(63) on the idempotents of g, and the fact that $ is the set of all
elements of Dy, fixed by S and J, will imply that there exists a linear
transformation P on € over & inducing J in M and such that

(91) FP=a2P, gP=g, aP'=2x, YP=vJ=78
for every x of €. We also have shown that
(92) gl(xy)P] = [g(yP)|(xP)

for every « and y of €. By (85) we have yW = f(yP), and by (71)
and (65) we have yW = yTPU = f(yTPT). But then TPT = P, that is,

(93) xTP = «PT—,

for every « of €, We have also seen that © consists of all matrices
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A, x) = AE, 0) + q(x) = [A(&, 2)]J where ¢(%) = @, + (T )y + (€T U)y
sothat &£ = &J isin R and q(z) = [¢(x)]J = @TUW), + (TP)y + (W )ss.
This occurs if and only if the first of the relations

94) oT=2oTP, aW = a2TPU = «TU , sTUW=1¢g,

holds for every x of €. The remaining two relations are consequences
of xW = 2TPU.

Conversely, let « range over all elements of € such that T = «TP
and let  be the set of all corresponding matrices A(&, ) for &= &J
in 8 Then A(§ 0)- A, 0) = A(&n, 0) where &7 is in & if £ and 7 are
in & Also 2A4A(, 0)-q(x) = q(y), where y = (¢ + ES)x. Then yT =
(ES + ES)2T and yTP = (ESJ + ES*J)xTP = (S* + ES)J(xT) = yT, and
so a(&, 0)-g(x) is in ©. But then O is a Jordan algebra over % of Oy
if and only if [g(x)]’ is in © for every xT = aTP, since 2¢(x)-q(y) =
[a(z + T — [a(@)] — [a(»)]. It is easy to show that [¢(z)]' = A(B, 0) +
q(y), where B = v(xZ%) + [v(22)]S* = v(«Z) + [v(xZ%)]J = BJ since our
assumption that 7 = TP = xPT~* implies that

(95) xP = aT*, (axx)P = (xP)(xP) = @T*)(xT?) = (22)T" .
Now 2x,-(xTU),; = (yT),s by (73), Wher?

(96) yT = v2(«TU) .

Also

2[0,- @TU) ) = 22« (xTU) ] = 2TUW) 5+ (W),
= YT ) = WTP)y

by (67) and (68) and we use (73) to obtain
97) yTP = v@xTUWYaW) =yT

by (94), and our proof of closure is complete. Since € has dimension
8 over M, and thus has dimension 48 over $, the dimension of the
subspace fixed by P is 24. Hence the space of all elements x of €
such that T = TP is 24 and this confirms the fact that © has
dimension 27. We state our result as follows.

THEOREM 8. Let the relations of (91), (92) and (93) hold for every
x i the Cayley algebra € over the field M = Klw], and O be the set
of all matrices A€, x) for € in & and 2T = 2TP in €, so that O is
a subspace over § of the algebra g, of all threerowed J-Hermitian
matrices with elements in €. Then 9 is a Jordan subalgebra of gy
and g, = H X M.

We now pass on the determination of all transformations P with
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the properties we have found as a consequence of the fact that O is
the set of all elements in $ x M fixed by S and J.

9., Determination of P, The relation (92) implies that
(98) (ax)P = (xP)(aP) , (xa)P = (aP)(xP) ,
for every xz of € and a in
(99) £ = Wg] = Mfu] .

But (98) implies that, if €, is the set of all elements x of € such that
au + ux = 0, then w(xP) + (xP)u = 0. Hence

(100) cP=¢,.

We seek to determine P so that (91), (92), (93) all hold. Let us
first derive a certain normalized basis of €. We have already seen that
P induces J in M, and so leaves K elementwise fixed, and also leaves
% fixed. Also M = Klw], where @’ = in §; and wJ = —w. Thus
the effect of P on ¥&* = MJu] = K[u, »] is completely known. But every
element x of €, has the form 2 = x, + x,w, where 2%, = ¢ + P and
22, = (x — *P)o = (¢ — P){"'w, and we see that x, = 2, P and x, = «,P.
It follows immediately that €, has a basis of elements u,, ---, u; over
M where u; = u,P for ¢t =1, ---,6. We also saw in (24) that the
general element © = &u, + -+ + &u, of €, has the property that

(101) 2T = a,x + w, , w,x + 2w, =0,

Here the & are independent indeterminates over I, a, is in X, ---, &)
and

¥ =) =opE, - -, &),
wi - "/f(x) = w(ély Sty 56)

for o(x) and y(x) in W&, -+, &). There is thus a polynomial (g, - - -, &)
in M(&,, «--, &) which is the product of the numerator and denominator
polynomials of ¢(x) and +(x) and which is not identically zero by the
argument used to derive (25). But if we select values «; in § of the
&, such that n(a,, - -+, &) #= 0 as we can always do we obtain an element
Y = AU, + -+ + &u; such that

(102)

v =P, vI'=av+w,

103
(103) w+ wv =0, »=g, w =,

where a is in M[u], @ and y are nonzero elements of . Then the
multiplicative formula of (14) holds for products in our Cayley algebra €
over M where, as before, the quaternion algebra O = M + MWu + Mv +
W(uv).
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Relation (92) implies that
(104) (xP)* = 2°P ,

for every ® of © and, in particular, for all elements of €, where in
faet #* is in the center Wt of €. Hence our normalization implies that
P = (vP)* = v*, that is,

(105) p=@d .

Let us now utilize the relations derived in our determination of the
transformation 7. We can use (32) and (33) to write

(106) v1? = hv + kw + d(vw) ,
where (562) implies that

(107) h=b+a@l) =L @D
g P

and that

(108) k=aT +ec.

From (50) we have
ET = aT* + ¢T = (dT)d " (bg)g v (pS)
= (dpy)(dpy) Tp(yS)(bg)g™ = Gg'p(S)~'b ,

since s = dpy = sT. Hence we have derived the consequence
(109) k= (kT)T* = i?’TSZ(ETZ) :
g

We now apply P to vT to get vTP = vPT*=vT*'=vT°T3=
gvTHg™ = (av + w)P = (@P)v + wP. Hence

(110) wP = L[hv + kw + d(vw)] — @P)v .
g
However, we may actually show that
(111) wP = Lkw + d(vw)] .
g

for vw is in €, and so is (vw)P. Then ¢[(vw)P] = g[(wP)v] is in €,
and so the term in v of wP must vanish. Thus ¢g(g)*h —aP =0=
(p&)T°p~ — @P and so we have

(112) (ap)P = (ap)T" .
By (104) we square the value of wP in (111) and obtain
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(113) v = (kk — ddo)y .

Moreover, g[(vw)P] = [(g°gk)w]v + [(g*°g~'d)(vw)]v. However, if ¢ is in
M[u] we know that (tw)v = —(tv)w = —E(vw), and [t(vw)]v = [(Tv)w]v =
—({p)w. Thus g[(vw)P] = —ggk(vw) — g?g~'dpw and so we have
found that

(114) (vw)P = — —gzlc—('vw) — g—zd?ﬂ .
g

2

Let us now derive a consequence of (112). We first see that
(115) ®=@d, oS = pJS = pS*J pS? = pSJ .
Then (112) implies that

aP =aT' 25 TP =aPT* = aT %S,
P PS*

aT:P = aPT = a-%_.
@S

Also (107) implies that ¢b = gg~(ea@)T* = (pa)aT), and so (pb)P =
g97'pa — (pa)PaTpS(pS*) ™ = gg~—'pa = (pa) T*(S*)(ap) T, from which
we have

(117) (Pb)P = (pb)T .
We also use (109) to see that
Yk = gg(pb)T* = gg~(pbP)T = gg (b T*P,

(116)

that is,
(118) (k)P =k, kP=qy(yJ) k.
We now apply P to (111) and use P? = I to see that
w = [gg (®P)[(wP) — G~ dP)(vw)P] = Gg kP97 k)
+ (957'd)(vw)] — (G dP)(Gg")(dp)w + (Fg~)k(vw)] .
Then
(119) (kP)d = (gg~)’kdP .

Use (118) to obtain v(vJ)d = (§g~YdP, g*dy = g¥(d+)P. Since s = dpyr
and ¢ = P we have shown that

(120) (gs)P = ¢'s
We also see that (wP)P = w implies that
(121) 1 = k(kP) — ddP(gg—")p .



ON EXCEPTIONAL JORDAN DIVISION ALGEBRAS 401

But (kP)k = (vJ)y(kk) and dP = (gg—)*dv-(yJ)™?, so that our relations

imply that (121) is equivalent to (113). We have proved that our

defining formulas for wP and (vw)P imply that wP? = w holds if and

only if the condition (112) on a, (113) on 4/, and (120) on s all hold.
Conversely, let the element 2 defined by

(122) T =0y + a® + a,w + a(vw) (a; in 2%)
be the general element of €, and define the transformation P by
(123) 2P = a,P + (a,P)v + (@,P)(wP) + (a,P)[(vw)P] ,

where wP is given by (110), and (vw)P by (114). Assume also that
the conditions ¢ = @J, (112), (113), and (120), hold, so that wP? = w
and vP* = v. Also, from ¢ = ¢J, we have (vP)* = P, we have (wP)* =
w? from (113), and [(vw)P] = (vw)’P from (114) and (113). Since % is
in €, if and only if a, = 0 it follows from (123) that € P = €,.

Since (92) is linear in « and y, it will hold if and only if it holds
for @ = qx,, y = ry,, Where ¢ and » are in ¥*, and x, and y, are any
of the elements 1,v,w, or vw. If % =y, =2 then [(gz)(r2)]P =
[(g7)z*]P = [(g7)P](z’P), since 2* is in £* when 2z is in €,. But
[(r2)Pll(qz)P] = (FP)zP)(@P)2P) = (FP)(¢P)(zP)* = [(¢7)P](2’P) for z =
v, w, or vw, and so (92) holds for x, = y,. It also holds for 2, =1 or
9, = 1 since it then becomes (98), which is a consequence of (123).

Let us then turn to the cases where x, # ¥, and x, and y, are selected
to be v, w or vw. We shall let ¢ and » be in 2* in all cases, and begin
by computing gl(qu)(rw)]P = gl(rqv)w]P = glre(vw)]P = [(grq)P](vw)P.
We also compute

[(g(rw)P)(qv)P = {(g7)Pgg—'[kw + d(vw)](qPv) = (g'g*T Pkw)(@P)v
+ [(ggTPA)vw)][(FPy] = —[g°g~X(r P)k(¢P))(vw)
— [7*97(rP)d(gP)plw = g(rq)P[(vw)P],
and have verified (92) for 2, = v and y, = w.
We next compute g[(qv):-r(vw)]P = g[(qv)-(Fv)w]P = g(pgewP) =
g(rq)Pp(wP). We also compute
[g7P(ow) P|[(gP)v] = [(@PW][(FP)@°g " dp)w + (FPg*g~k)(vw)]
= (g 'dpTPgPv)w + (qPv)[(rPg*g—"kv)w]
= (rPg’g'kqPp)w + ¢g-'dprPqP(vw) = [g(rq)PJwP
and have shown that (92) holds for x, = v, ¥, = vw.
Our third stage is the computation of
glqw-r(ow)]P = glqw-(Fo)w]P = g[—Tvgy]P = —gl(rg)Pl(vJ)v .
Also
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—glr(vw)|P-(qw)P = —[g(¥P)(vw)P][(7P)(wP)]
= [g°g (FP)dpw + (¢° - rP-kv)w)[(TP- g7 'k)w
+ (qP-gg~'dv)w] = g*g (FP)dp(¢P)gg kv
— ' (FP)k(¢P)gg~'depyr
— (¢P)gg'dg'g—(r P)dpv
+ (aP)gg kg’ G (r P)levryr
= —(qr)Pgldgp — kklvy = g(qr)P(yJ)v

by (118), and (92) holds for %, = w and y, = vw.

If 2,=w and y,=v we have g[(qw)(rv)]P = —g[(rv)(qw)]P =
—g(rq)Pl(vw)P]. Also (g7Pv((GP)wP = —[(gP)(wP)][(g7P)v]. Write
9 =0, = rg " so that gP = q,Pg, and 7P = (¥,P)g~, while

lg(FPpll(@PywP] = —[g(qw)P][(rw)P)(rw)P = —gl(rw)(q.w)]P
= —Mryq)P(vw)P = —g(rq)P[(vw)P] .

The case x, = vw,y,= v is taken care of similarly. Probably the
simplest procedure for the case x, = vw, ¥y, = w is the type of compu-
ation used in the case x, = w, y, = vw.

We now turn to the property TP = xPT-'. We first turn to a
rather immediate consequence of the basic property g(ay)T = g(xT)yT).

LemMMA 6. If 2 and y are in € then [(gx)y]T' = g[(xT Yy T)].
If also x or y is tn 8* then (xy)T = (T WyT™).

For gl(zy)T] = [g(e)]T = [g(xT)[(yT) and so [g-(«T)yTH|T =
(gx)y and our result follows.

Let us now observe that the relation ®7P = xPT* holds for « in
L*, Since the relation is linear it suffices to derive it for x = ¢z where
q is in % and z = v, w, vw. But (@2)TP = [(¢T)=T)|P = (2TP)(qTP)
and (¢qz)PT—* = |(2P)(qP)]T * = (zkPT~)(qPT~") = zPT(qTP), so then
it suffices to prove the result for x = v, w or vw. There thus remains
only the case x = vw. We form

99l(vw) TP] = glg(vw) TP] = g-[g(vw) T |P = g[(gv)T(wT)]P
= [g(wT)TP](gv)TP] = [(gw)TP]l(qv) TP]
= [(@w)PT"|l(gn)PT™] .

Thus

g{(g)[(vw) TP} = [g(Gw)P-(gv)P]T~* = {g-[(gv)(@w)|P} T
= {g-[(ggv)w]P}T~* = glgg(vw)|PT~* = g(g9)[(vw)PT"]

and our proof is complete.
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The only remaining property is ®P* = 2. This holds for z in %,
for « = v, and for x = w as we have already seen. Also (123) implies
that ©P? = « for all » if and only if the relation holds for x = v, w, vw.
There thus remains the case z = vw, and we compute gg[(vw)P?] =
glg(vw) PP = gl(gw)Pv]P = (gv)[(gw)P*] = (gv)(gw) = (ggv)w = gg(vw),
and our proof is complete. We have proved the following fundamental
result.

THEOREM 9. Let a basis of € be selected so that vP = v. Then
P is completely determined by the relation vT = av + w as in (111),
(114), (112), (123), where (112), (113) and (120) hold. Conwversely, if
we define P by vP = v, (111), (114), (122), (123) where (112), (113) and
(120) hold then P satisfies Properties VI, VII and VIII,

This completes our determination of P. We close our discussion
with the proof of the existence theorem referred to in our Introduction.

10. Construction of a special class of algebras. We shall now
construct a class of cyelic exceptional Jordan division algebras in which
€ is a division algebra. We shall assume that vT = w, that is, a =
b=¢=10 and so

(124) vl =w, wT = d(vw) .
As a consequence our relations become
(125) b=@S, YS =S = —pydd = —p(pS)dd .

Then, if s = dpy, we have the value
(126) s§ = dd(py) = dd|p(PS)] = —p(pS)pS* .

We need to satisfy the condition that s is not a norm in the ecyeclic
algebra € = (8, T, gg~'), where ¢ is in Flu], w> = p in F, Flu] is a field,
® is a division algebra, and € is a division algebra.

Assume first that §, is a real algebraic number field, and that &,
is a cyclic cubic extension of $, such that there is a prime ideal 7 of
8, for which &, X . is unramified over the m-adic extension ,. of
Bo- We select a negative element p of %, such that = = w7, for conju-
gate prime ideals of F(uw) with 4’ = p. There is an element % which
is in the ldeal m, and is in neither 7! nor 7,. Take g = h(h)' and see
that the cyclic algebra (&, S, g) is a division algebra. Sois (¥, S, gg?)
since gg—' = ¢g*. Observe that gg = 1 is the norm of v=* if v is any
element of norm 1 in &,. Hence Property IV holds.

Every ecyclic cubic extension of a real field is totally real. Let 8
be a totally positive element of &, so that 5, S and B8S* are all positive,
and define
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BS
127 = P9
(127) P 3
Then ¢, @S, S* are all negative, and
(128) P(PS)(@S?) = —1.

The Cayley algebra €, = &, + &v + Kw -+ &(vw) has negative para-
meters %’ = p, v* = 9 and w’ = @S = 4, and so has a totally positive
norm form over the real field & Hence €, is a division algebra.

We shall now select s. We assume that 7 is an indeterminate over
K[u], and take F = Fo(n), & = K1), L= K(u), E=C, X F, D =D, X F.
Then 9 is an associative division algebra, and € is a Cayley division
algebra. Write

(129) s=1T%
n—u

Since s is not in F(u) we know that s+ 1+#0,s—10. But
) —uw)s =7+ u, (s — 1) = u(s + 1), and the indeterminate

ea(z)

is in ¥,(u, s). Hence s must alse be an indeterminate over &(u). But
then it is known® that s is not the norm of an element z in ©. Also
ss=1. But d = s(py)" where s5 =1 and so dd = (p¥)* = [p(@S)] =
[p(@S)][p(pS)(@S")]@S*. By (128) we have pS* = S = —p(pS)dd
and (35) holds. This completes our construction of £ and O is a Jordan
division algebra, is cyclic, and is such that € is a division algebra.
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9 This is proved on page 27 of 2.





