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ON #-ORDERED SETS AND ORDER COMPLETENESS

LiNo GUTIERREZ NOVOA

In this paper, the notion of an n-ordered set is introduced
as a natural generalization of that of a totally ordered set
(chain). Two axioms suffice to describe an n-order on a set,
which induces three associated structures called respectively:
the incidence, the convexity, and the topological structures
generated by the order. Some properties of these structures
are proved as they are needed for the final theorems., In
particular, the existence of natural k-orders in the “flats” of
an n-ordered set and the fact that (as it happens for chains)
the topological structure is Hausdorff.

The idea of Dedekind cut is extended to n-ordered sets and
the notions of strong-completeness, completeness, and condi-
tional completeness are introduced. It is shown that the S»
sphere is s-complete when considered as an n-ordered set. It
is also proved that E», the n-dimensional euclidean space, fails
to be s-complete or complete, but that it is conditionally
complete. It is also proved that every s-complete set is com-
pact in its order topology but that the converse is not true.
These results generalize classical ones about the structure of
chains and lattices.

II. n-Ordered sets. An element of the cartesian produet X"+
of a set X will be called an n-simplex and denoted by 6™ = (s,, s, = -+, 8,)
where s;€¢ X for every ¢. The class of even permutations of this
sequence is called an oriented =-simplex and denoted by |o"| =
| Sos 81, ==+, 8, |. The class of odd permutations is another oriented
n-simplex denoted by | — 0" | =| — (sy, S, *=+,8,)|. The set of all
oriented n-simplexes of X will be denoted by | X" |. In what follows
n-simplex will mean oriented n-simplex.

The join of two simplexes |o"| =|sy,8, *++,8,| and |7¢| =
[ty tyy ++=, %, | is the h + k& — 1 — simplex | sy, Sy, *+ =, Suy Loy 1y ===, &y |
and will be denoted by |o*, 7% |.

An n-ordered set is a pair (X, ¢,), where X is a set and ¢, is a

function from | X" | to the set {— 1,0,1} and which satisfies A, and
A,.

Ai.—For every |o"|e| X" |;p,| —0"| = —@,|0"|.
Before stating A, we introduce the following notation:

@i (Ony Tn) = P \ ti’ S1y 8y 0y S, i P [ tO? tu °0 ti—ly Soy t1+1’ Tty tn |
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A, —If @ (0", ") =0 for ¢+ =0,1, -« m; then @, |0" | @, |7"| = 0.

D,.—The simplex |[z"'| is said to be an upper bound for the set
{wgyael}c X if @, | %, 7| = 0 for every aec l. If all the relations
are strictly > then | 7" | is a proper upper bound. Similar definitions
for lower bounds using = and <.

D,.—The n-order ¢, is open from above (from below) if every
finite subset of X has a proper upper bound (lower bound).

T..—If @, is an open from above (or from below) wm-order of X
then the following transitive property holds:

If @, | S0y 81y =0y Sity Ty Sitay =**y S| = 0 for all 4 and some x € X then:
P. 0" = 0.

Proof. Apply A, to the pair |z, 7|, |0o"| where |7""| is a
proper bound for {s;} U {x}

ExXAMPLES.
(a) In the vector space V™ over the reals define:

Pp—1 | Voy U1y 0y Vps | = sign of det. | v, vy, *++, Vpos

The function ¢,_; is an n—1-order of V".

(b) In the same space define:

@ | Voy V3 ¢+, v, | =sign of det. |v; —v,], 1 =1,2, -+, m. @, is an
n-order of V™.

(¢) The function of example (a) restricted to the sphere | V| =1
gives an n-1 order of the nm-1-sphere.

(d) Any 1l-order satisfying the transitive property of T is
equivalent to a chain if we define: ¢, |a, b | to be — 1,0 or 1 according
to @ > b, a =0 and a < b respectively.

(e) A field G is said to be n-ordered if it is also an m-ordered

set and the mappings: f,: ¢ — ax and g,: ¢ — @ + 2 are order-automor-
phisms for any a # 0.
If we ecall: [o"]|=]|S,S,---,S,];|ac"| =|aS, aS,---aS,|, and
la + 0" =|a+ S,a+ S, ---,a + S,|, then the definition means
exactly that ¢,|0" | @, |a0”|and ¢, | 0" | @, |a + ™| depend only on a.
The following examples can be given:

(e;) The real numbers field is a 1-ordered (open) field. (This is
a well known result).

(e,) The complex numbers field is a 2-ordered (open) field if we
define for any |o*| = | a, @y, &, |:
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111

14(0* . '
G where A(c%) = fao a,

P47 = T4

a, a, a,

@ being the complex conjugate of «, || the modulus of «a.

(e;) The field of quaternions, considered as a 4-dimensional vector
space over R and with the 4-order of example (b) above becomes a
4-ordered (noncommutative) field.

(f) The n-order of V" given in example (b) makes an m-ordered
vector space out of V™ in the sense that the mappings f,: * — ax
and g,: ®— 2 + y are order-isomorphisms for any ac R, a+# 0 and
any y€ V*. This example can be generalized as follows:

(g) Let V be any linear space over the ordered commutative field
K, and BC V any Hamel base for V. If N={b,0, ---,0,} is any
finite subset of B: we can make V into an w-ordered vector space by
defining @, (Vy, Vi, ++-, V) =+ 1, —1 or 0 whenever det (V/— Vi)
is >, < or =0 in K(V7 is the coefficient of b; in the expression of
V; in terms of the base B)

The independence of the axioms follows from the following examples:

In the set {a, b, ¢} define: @, |a,b,¢| =@,|b,a,¢| =1 and @, =0
elsewhere. This system satisfies A, but not A,.

In the set {a,b, c, d, ¢} define:

‘732‘67616”2@216;0,0"1:Tzlevcsb\ZQE'dya,bl
=@, |d,b,c| =09, |d, c,a|l =p,|a,c,b] =1

and define ¢, on the remaining simplexes according to A,;. This
system satisfies A, but not A,.

ITI. Consequences of the Axioms,

D,.—Two elements x, y of W are said to be equivalent if for
every |z '|e| X" we have: @,|2, 7" | =9¢,|y, 7" "|. They are
conjugate if @,|z, 7| = —@,|y, 7" "|. The relation between
equivalent elements is an equivalence relation and the set of equivalence
classes can be m-ordered in the usual way. For this set the following
axiom holds.

A;.—There are no distinct equivalent points.
From now on we assume (X, ¢,) satisfies A,, 4, and A, and call (X,
®,) a reduced m-ordered system. An easy consequence of A, is:

C;.—An element x € X has at most one conjugate x*.

D,.—A simplex |o*|, k =< n, is said to be singular if for every
| z»~*=*| we have: ¢, |c*, a"**| = 0. In particular |o™| is singular
if: @, 0" =0.
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The following theorems follow easily and are stated without proof:

T,.—x* nonsingular, s the conjugate of =, tf and only if |z,
x* | 18 singular.

T,.— Any simplex with repeated elements is singular.

T,.—There is at most one singular 0-simplex.

Ts.—If © +# y, for some | 7" 7' |: @, | %, T | # @, |y, T |.

We have also:

Ts—If @, (0", ") =<0 for 1 =0,1,2, ---,nthen ¢, | 0" | p, | T" | <
0. (Compare A,)

Coe.—If O(0",7") =0for1=20,1,2,---,n then @, | 0" | @, | T"| = 0.

T,.—If @(0" ") =0 for +=0,1,2,---nand ¢,|0"|p,|7"| =0
then: @,(o", ") = 0 for every 1.

IV. Flats and relative orders.

D,.—Given a nonsingular k-simplex |7*|, k < m, the set F|n*| =
{x; | %, @* | is singular} will be called the flat determined by z*

To—If s;,e Flav|, ©+=0,1---n then |o™| s singular.

Proof. Apply C; to the pair |o”|, | 2, 7°' | where the last simplex
is nonsingular (Such an « exists by D,)

Coe.—If |o"| and |z*| are both nonsingular, then for some i:
[ %;, 84 Syy ==+, S, | 18 not singular.

To.—If |p*, n*|, h+k=mn—1, is nonsingular, the function
ol 0" | =@, | 0" 7| is @ reduced h-order defined on the h-simplexes
| o* | of the set F|p*|, ¢, is called the order of F|pu"| relative to
[7%|. The proof is straightforward.

T.o.—(Invariance of the relative order).—If @, and +, are the
relative orders of F|p*| by |n*| and |7*| respectively, then:

il =l p loul " | palo* | for any [o* |C F|pt|.

Proof. We consider first the case where |7*| and |z*| differ by
only one element. Let |7*|=|a, & "| and |¢*| =] (b, &")| and
apply A, to the pair: | b, &', p*| and |a, &, 0" |. It is easily seen
that the only @, different from 0 is:

P l a, Sk_ly #h ] Pa | b9 Sk—ly ah |o

Hence: o, | 7%, " | @, | 7", 0" | = @, | 7%, " | @, | ¥, 0" | and the theorem
follows since: o, | 7%, p* | # 0.

For the general case we construct inductively, using C; the
sequence: |7ty | = |7 [; | @} | = [T, Ly =y bijy Dissy Divey *++, D | Where
the ¢; are elements of |[7*| and apply the previous result several times
to the h-orders relative to |7%| and |zt | for j = —1,0,1, -+, n.
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Since the previous result is independent of | z* | and | 7z*| we have:

C.—The orders induced in F|p*| by |n*| and |7*| are etther
tdentical or opposite and we may speak of the two “natural”’ orders
wm any flat F|p|.

V. Convexity theorems,
D;.—The element x is said to be contained in the nonsingular
simplex | 7" | if for some natural order of F'|zx"*| we have:

a’i:¢hlp07fp1! °°’7pi—17x;pi+1y"’;pn|¢h|7chtgo
for every 0t1=<h.

If every a; > 0 we say that x is tnterior to | 7" |.

D,.—The segment (@, b) is the set of interior points of the non-
singular 1-simplex |a, b |.

D,.—A set C c X is said to be convex if for every a, be C, such
that |a, b| is not singular we have: (@, b) c C.
From the definitions follows:

T,.—If x is contained in (interior to) | o"| it is also contained
in (tntertor to) | — (o*)]

Th.—If x is contained n (tnterior to) | o™ | and every s; satisfies:
@, | 85, T = 0 for some |w |, then @, |z, 7" =0 (> 0).

Proof. We assume ¢, | o™ | > 0 and apply A4, to the pair:
| @, 7" |, | 0" | to get @, |®, "' =0.

Now if « is interior to |0"|, @, |®, 7*'| cannot be 0, otherwise by
C, and T we would have ¢, | 0" | = 0 which contradicts our assump-
tion.

D,.—We say that | " | is contained in (interior to) |z"| if every
s; is contained in (interior to) | z"|.
Using the previous theorem we now can prove:

Tyu.—If x 1is contained in | o™ | and | o™ | i3 contained in (interior
to) | w"| then x ts contained in (tnterior to) |z |.
This theorem can be extended in a natural way to the case of two
simplexes | 0" | and | n* | where h and k can be different from n. We
omit the details. As a corollary of these theorems we have:

T.,—The sets Ct|o"| and Int |o"| formed by the elements which
are contained in and interior to | o" | respectively, are convex.

VI. The induced structures. Given an mn-ordered set (X, ¢,)
the following structures are said to be induced by the order:

(a) The incidence structure, (X, <#) where <2 is the family of
flats of (X, @,).
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(b) The convexity structure (X, ) where & is the family of
convex subsets of (X, ¢,).

(¢) The topological structure (X, & ) where & is the family of
closed sets generated by the sub-base <#. The elements of <# are
the sets Bin1 = {%; @, | &, 7' | = 0} for any nonsingular | 7"|, toge-
ther with the By = {x, ¢, |x, "' < 0}. We prove the following
theorem concerning the topological structure (X, &)

T.s.—The topological space (X, %) is Hausdorff, provided (X,
@,) contains no singular point.

Proof. 1f |z,y| is singular then by T,, x = y*. Since x is not
singular, for some |z"'| we have ¢,|2,7""| > 0, and therefore
@, | Y, 7| < 0. The sets Bii1={2;p,|2 7" | >0} and Bmn-: =
{2; p, |2, 7| < 0} are disjoint (open) neighborhoods of x and ¥
respectively.

If |2,y | is not singular, for some =" o,|x,y, 7" *| > 0. Assume
first that for some 2, we have: 0 # ¢, | 2, 2, 7" | # @, | 2, ¥, T"*| # O.
To be precise let ¢, |z, 2, 7" ?| <0 and @,]|z, v, 7| >0 and call
| " = |z, 7" %|. Then Bz~ and Bz are the required neighborhoods.
If such a z does not exist, call | z"!| = |z, z"%| and |0 | = |y, T2 |.
It is easily verified that B:-: and Bix— satisfy the requirement. The
above theorem is an extension of a well known result in the topology
of chains. (See [1] p. 39)

The following result is important and will be needed in the sequel:

Tw.—If =, y are contained in | o™ | then x is contained in some
| 07| = 180y 81y =%y Sicty Yy Sivay * 0y Su |

Proof. Call P,=o¢"|07| and P;; = @"|0%| = 9" | S, S1, **, Si_y,
Xy 8is1y ** %y Sicty Yy Sityy =+, 8, | for 7% 3. Clearly P;; = — P;;. We
put Py = @" [ 8, 81, =+, 8im1, T, Siiyy =0, Sy |
Applying A, to the pair:

|o?| and | 0%, | we get:

If P;P,, and P,P;; are both = 0 then P,P, ,= 0. We may assume
@"|o™| >0, Then by D, all P, are = 0. Hence we have transitively:
P,, =0 and P;; = 0 imply P,; = 0. Using this, we can prove easily,
by induction on %, that for a certain value of K, say k =k, all P, ; =
0,57=0,1,2,---,m, and this means that « is contained in | o7, |.

VI. n-Order completeness. In the theory of ordered sets a
lattice is said to be complete if every subset of it has a L.U.B. and
a G.L.B. This notion is equivalent to that of compactness of the
associated topological space (interval topology) when applied to chains.
(See [3]) In this sense the lattice of real numbers fails to be complete.
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{See [3], p. 51) On the other hand it is conditionally complete because
every bounded subset has a L.U.B. and a G.L.B. This property is
equivalent to the fact that every Dedekind cut has a separation
element. We proceed to extend these ideas to m-ordered sets. Let
(x, @,) be a reduced n-ordered set. Every element ze X determines
an n-l-order in X by defining: ¢, ,|7""| =@, |2, z**|. Consider
now the subsets of | X"~'| defined by: C; = {| 7" |; @,_, | 7" | = 0}
and C; ={| 7" " |; p._ | 7* | =<0} It is clear that Cr U C; = | X |
and z is called the separation element of the pair (C;, C;). We also
have for every nonsingular |z"'|:|zx"*|eCi N C; if and only if:
xe F|ln""|. We now extend the notion of “cut” to mn-ordered sets.
Let C* and C~ be two subsets of | X*!| such that C+ U C~ = | X" |
and v any object not in X. Let X* be the set X U {v}. We extend
the function ¢, to the set | X*"| by defining: @} |v, 7" "|=+1, — 1
or 0 whenever |7"'| is in C* —C~,C~ — C* or in C* N C-, resp.
Then ¢} |n"| =@, | 7" | for |7"|e| X"|. We call v the ideal element
defined by (C+, C-).

D,,.—A pair (C*, C~) of subsets of | X*'| is said to be a cut if
the following properties are satisfied:
(a) CTUC =|X |
(b) (X*, @f) is an m-ordered set. (Satisfies A, and A,)

D,,.—A cut (C*, C) is said to be intertor or a Dedekind cut if
the ideal element v defined by the cut is interior to some |o”| of X.
This means that for some | o™ | and every ¢ we have:

@jismsly ey Sicy 7, Sy "'9Snl¢;§|0nl>0’

D,.—An n-ordered set (X, p,) is said to be strongly complete
(s-complete) if every cut has a separation element in X. It is condi-
tionally s-complete if every interior cut has a separation element. It
is order complete if the topological space (X, &) is compact.

T..—If (X, p,) ©s s-complete, then every element has a conjugate.

Proof. For every xe X the sets C; and C; obviously form a cut
(Cf, C7). It is also clear that the pair (C;, Cy) is also a cut defining
x*.

Ts.—The S* sphere with the n-order defined in II, example c,
18 strongly complete.

We give only an idea of the proof: For any nonsingular n-simplex
|7*| in S* and taking antipodal points, we have a decomposition of
S into 2"*' simplexes. Given a cut (C*, C~), the ideal element, v is
order-contained in one of them say |7;|. The repeated barycentric
subdivisions of | 7% | furnish, (because of T} a sequence of simplexes
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|7r|, 4=0,1,2-.. such that v is interior to all of them and their
diameters tend to 0. There is also a unique point p of S” common to
all the |n?|. It is easily shown that p is the separation element of
the cut.

It follows from T, that E™", the euclidean n-space with the n-
order of example II(b) is not s-complete and from D, that it is not
order complete. This is not surprising if we recall the initial remark
of this section. But we can prove:

Ty.—E™ with the n-order of example II(b) is conditionally s-
complete.

We omit the proof since it is entirely similar to that of T,,. The
relationship between order-completeness, s-completeness, and compactness
is established in the following theorem which is similar to the classical
result for partially ordered sets and chains. (See [3] and [2])

To.—If the ordered set (X, @,) s s-complete, then it is order
complete t.e. the space (X, F ) is compact.

Proof. Let § be a collection of closed sets of (X, &) with the
finite intersection property. It follows from a well known theorem of
Alexander that we may restrict ourselves to the case where ¥
consists of elements from the sub-base <#. (See VIa) Let _#Z be a
maximal extension of & in & with respect to the property. Then
an element of £ belongs to _# if and only if it meets every
element of 7. (See [4])

Using the notation of T, we now define (C*, C):

|71 e C* if Bhre #Z and |7*|eC- if Boie 7 .

We shall prove that (C*, C~) satisfies D,, and is therefore a cut. If
|7z**| is not in C* for some M,e # we have:

M,c X — Bh-1= Ba1 C B .

It follows that every Me ._# meets B since it meets M,. Or
|z»~*|e C~. Therefore C* UC~ =|X""*|. In order to show that
D, (b) holds, we first prove the following result:

If v is the ideal element defined by (C*, C~) and v satisfies a finite
system of equalities: @, |7, 07| =¢;;4=1,2,---,1, then there is
some z€ X which, when substituted for v, also satisfies the equalities.

Proof. 1If e; =1, then |077*| is in C* but not in C~ and there-
fore Z?;in_1 fails to meet at least one element of _#. Denote it by
M;. Similarlyif ¢; = —1, BZ,,_, does not meet M;e .. Andif e, =0,
both Bf,_, and B;, ., belong to .#. We call M, = B;,.N B, ;
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clearly M,c .

We consider now I = ). M,,r =1,2, ---, . Since I is not empty,
we take any zel. It can be readily seen that z satisfies all the
equalities. To show now that (C*+, C~) is a cut, it suffices to check A,
since A, is obviously satisfied. But if some pair | 0" ], | "] of n-simplexes
of X* fails to satisfy A,, by the previous result the same is true when
we put ze€ X instead of v, and this leads to a contradiction. Let s be
the separation element of the cut (C*,C~) and G any element of .
Since G belongs to the sub-base < and T, holds, it can be written
G = B#,_, for some |7"'|: This means |c"'|eC* and @, |s, 7""| = 0,
or equivalently, se Bi, , = G. This completes the proof.

That the converse of the above theorem is not true, can be seen
by means of the following example:

Let (S?, ¢,) be the 2-sphere with the 2-order of Example II(c) and
K the finite subset of six elements (1%, =7, ==k), 2-ordered by the
restriction of ¢, to K. Then K is compact in the induced topology
but the cut generated by the elements +=(1/3)(¢ +J + k) of S* in
(S?, @,), restricted to (K, ¢,), have no separation elements in (K, @,)
and therefore it is not s-complete.
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