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SOLUTION OF AN INVARIANT SUBSPACE PROBLEM
OF K. T. SMITH AND P. R. HALMOS

ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

The following theorem is proved,

Let T be a bounded linear operator on an infinite-dimen-
sional Hilbert space H over the complex numbers and let
p@) + 0 be a polynomial with complex coefficients such that
p(T) is completely continuous (compact)) Then T leaves
invariant at least one closed linear subspace of H other than
H or {0}.

For p(z) = 2* this settles a problem raised by P. R. Halmos
and K. T, Smith.

The proof is within the framework of Nonstandard Analysis.
That is to say, we associate with the Hilbert space H (which,
ruling out trivial cases, may be supposed separable) a larger
space, *H, which has the same formal properties within a
language L. L is a higher order language but *H still exists
if we interpret the sentences of L in the sense of Henkin.
The system of natural numbers which is associated with *H
is a nonstandard model of arithmetic, i.e., it contains elements
other than the standard natural numbers. The problem is
solved by reducing it to the consideration of invariant sub-
spaces in a subspace of *H the number of whose dimensions
is a nonstandard positive integer,

1. Introduction. We shall prove:

MAIN THEOREM 1.1, Let T be a bounded linear operator on an
wnfinite-dimensional Hilbert space H over the complex numbers and
let p(z) = 0 be a polynomial with complex coefficients such that p(T)
18 completely continuous (compact). Then T leaves invariant at least
one closed subspace of H other than H or {0}.

For p(z) = 2* this settles Problem No. 9 raised by Halmos in [2]
and there credited to K. T. Smith. For this case, a first proof was
given by one of us (A.R.) while the other (A.R.B.) provided an alter-
native proof which extends to the case considered in 1.1. The argument
given below combines the two proofs, both of which are based on
Nonstandard Analysis. The Nonstandard Analysis of Hilbert space
was developed previously by A.R. as far as the spectral analysis of
completely continuous self-adjoint operators (compare [7]) while A.R.B.
has disposed of the spectral theorem for bounded self-adjoint operators
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by the same method. The general theory will be sketched here only
as far as it is required for the proof of our main theorem.

Some of our arguments are adapted from the proofs of the theorem
for p(z) = 2, i.e., when T is itself completely continuous, which are
due to von Neumann and Aronszajn for Hilbert space, as above, and
to Aronszajn and K. T. Smith for general Banach spaces [1].

The particular version of Nonstandard Analysis which is convenient
here relies on a higher order predicate language, L, which includes
symbols for all complex numbers, all sets and relations of such numbers,
all sets of such sets and relations, all relations of relations, ete.
Quantification with respect to variables of all these types is permitted.
Within this framework, a sequence of complex numbers, y =s,, © =
1,2,3,--., is given by a many-one relation S(n, y) when n varies over
the set of positive integers, P. The separable Hilbert space, H, may
then be represented as a set of such sequences (i.e., as [,) while a
particular operator on H is identified with a relation of relations.

Let K be the set of sentences formulated in L which hold in the
field of complex numbers, C. K includes sentences about, or involving,
the sets of real numbers and of natural numbers, since these may be
regarded as subsets of the complex numbers which are named in L.
It also includes sentences about Hilbert space as represented above.

Nonstandard Analysis is based on the fact that, in addition to C,
K possesses other models, which are proper extensions of C. We single
out any one of them, *C, calling it the nonstandard model, as opposed
to the standard model, C. However, *C is a model of K only if the
notions of set, relations, ete. are interpreted in *C in the sense of the
higher order model theory of Henkin [3]. That is to say, the sets of
sets, relations, ete., which are taken into account in the interpretation
of a sentence in *C may (and will) be proper subsets of the corresponding
sets over *C in the absolute sense. The sets, relations, etc. which are
taken into account in the interpretation in *C will be called admissible.

The basic properties and notions of Nonstandard Analysis which
are expounded in [4] and [5] are applicable here. Thus, an individual
of *C (which will still be called a complex number) may or may not
be an element of C, i.e., a complex number in the ordinary sense or
standard number, briefly an S-number. Every finite complex number
a is infinitely close to a unique standard complex number, °%e¢. That is
to say, if |a| is smaller than some real S-number, then there exists
a complex S-number, °a, the standard part of a, such that |a — ‘a|
is smaller than all positive S-numbers. A number which is infinitely
close to 0 is infinitely small or infinitesimal. In particular, 0 is the
only S-number which is infinitesimal. A complex number a which is
not finite, i.e., which is such that |a! is greater than any S-number,
is tnfinite. There exist elements of *C which are infinite.
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Every set, relation, ete. in C possesses a natural extension to *C.
This is simply the set, relation, ---, in *C which is denoted by the
same symbol in L. At our convenience, we may, or may not, denote
it by the same symbol also in our notation (which is not necessarily
part of L). Thus, we shall denote the extension of the set of positive
integers, P, to *C by *P but if 0 = {a,} is a sequence of complex
numbers in C then we shall denote its extension to *C still by ¢ = {a,}.
According to the definition of an infinite number which was given
above, the infinite positive integers in *C are just the elements of
*P — P,

The following results are basic (for the proofs see [5] and [6]).

THEOREM 1.2. The sequence {a,} in C converges to a limit a
(@ an S-number) if and only tf the extension of {a,} in *C satisfies
the condition that |a — a,| ts infinitestmal for all infinite n.

THEOREM 1.3. Let {a,} be an admissible sequence in *C such
that a, s infinitesimal for all finite n. Then there exists an infinite
positive integer @ (t.e., w € *P — P) such that a, is infinitesimal for
all n smaller than .

{a,} is called admissible in *C if the relation representing {a,}
belongs to the set of relations which are admissible in the sense ex-
plained above. Admissible operators, ete., are defined in a similar way.
1.3. shows that the sequence {a,} which is defined by a, = 0 for finite
n and by a, = 1 for infinite #n is not admissible in *C.

2. Nonstandard Hilbert space. The selected representation of
the Hilbert space H consists of all sequences {s,} of complex numbers
such that ||o | = 7., ]s,.|* converges. The corresponding space *H
over *C consists of all admissible sequences {s,} in *C such that
ol = > |s.|* converges, i.e., such that it satisfies the formal
(classical) definition of convergence in L.

Among the points of *H are the extensions of points of H (as
sequences). We identify the points of H with their extension in *H
and may then regard H as a subset (though not an admissible subset)
of *H.

A point ¢ of *H is called norm-finite if ||o|| is a finite real
number in the sense explained in section 1. o is near-standard if
||oc — ¢°|| is infinitesimal for some °c € H. If such a % exists then it
is determined uniquely by o. It is called the standard part of o.

Applying 1.2. to the partial sums of any point ¢ = {s,} in H, we
obtain:
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THEOREM 2.1. For any o = {s,} in H and any infinite positive
integer w, the sum .2, |8, | is infinitesimal.

Next, we sketch the proof of:

THEOREM 2.2. A point o = {s,} in *H is near-standard if and
only if it is norm-finite and tf at the same time >, |s, |’ ts infini-
tesimal for all infinite w.

Suppose that || — % || is infinitesimal for some % in H. Then
oll=}llc—"+%||=|]lc—"]|+|%]|| <14 ]| %]| so that ¢ is
norm-finite. Also, let °c = {s}}, then 37, | s, |* is infinitesimal for infinite
w, by 2.1, Also, >, |8, — s, |* is infinitesimal since this sum cannot
exceed ||o0 —‘|’. But

o5 o 1/2 o 1/2\ 2
Slar=((Sls—alk) +(Sisr) ),
showing that the conditions of 2.2 are necessary.

Supposing that they are satisfied, || ¢ || is finite, hence |s, | is finite
for any n and s, possesses a standard part, °%,. Consider the sequence
{’s,} in C. It can be shown that >, |%, |* converges in C and hence,
represents a point ¢’ in H and *H. Thus, if o’ = {s)} then s =",
for finite 7 but not necessarily for infinite n. Since, for all finite £k,

k|8, — 8h|P= >k, |s, — %, |* is infinitesimal, it follows from 1.3
that >, |s, — s, |* is still infinitesimal for some infinite k, &k = w — 1,
say. On the other hand, 37, |s, |* is infinitesimal by assumption, and
Smw | 8n|* is infinitesimal, by 2.1. The inequality

3 w—1
lo—o'F = 515, — sl = 558, — 4

+((Zrar) + (S1a0)"),

then shows that ||o — ¢’ || is infinitesimal, ¢ is near-standard with
standard part °%c = ¢’. ‘

The following theorem is proved in [7] for general topological
spaces but under somewhat different conditions.

THEOREM 2.3, Let A be a compact set of points inm H., Then
all points of *A (i.e., of the set which corresponds to A in *H) are
near-standard.

Indeed, suppose that A is compact but that e *4 is not near-
standard. Then there exists a standard positive = such that ||c —7|| > 7
for all ze H, This is trivial if ¢ is not norm-finite. If ¢ is norm-
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finite, then by 2.2, there exists an infinite positive integer ® such
that 337, |s.|* > 2r* for some standard positive number ». For any

n=w

t={t,} in H, >7..|t,|* is infinitesimal. Hence

o=l = (G -0)" 2 (G- 1)

n=w

ce 12 = A2
z(S1s0) = (Z1tr) >

On the other hand, since A is compact it possesses an r-net, i.e.,
for some finite number of points in A, 7,, +++, 7., and for all & in A,
IIé§ — 7;]| < r for some %, 1=<¢<m. But, for the specified z,, «--, 7,,
this is a property of H which can be formulated as a sentence of K,
It follows that for all points § of *A also ||§ — 7;|| < » for some
1, 1=1=<m. This contradiction proves the theorem.

3. Operators in nonstandard Hilbert space. An operator from
H into H may be regarded as a relation between elements of H, i.e.,
between sequences of elements of C (which are themselves relations).
The corresponding operator in *H, which is denoted by the same
symbol in L, will be denoted here also by 7. This cannot give rise
to any confusion. For if ¢ = To in H then 7 = To also in *H since
7 = To can be expressed by a sentence of K.

In particular, let T be a bounded linear operator defined on all
of H. For the assumed representation of H by sequences, T has a
matrix representation, T = (a;i),7,k=1,2,3, ---. The coefficients of
this matrix satisfy the conditions:

3.1, ki;l|a/jk{2<co j:1’273;"'
illa'jk|2<o° k:1’2y3v"'
=

In *H these subsecripts of (a;,) vary also over the infinite positive
integers. By 3.1 and 2.1., 3., |a;|* is infinitesimal for infinite w,
provided j is finite. This is not necessarily true for infinite j as
shown by the matrix for the identity operator.

THEOREM 3.2. Let T be a completely continuous (compact)
linear operator on H. Then T maps every mnorm-finite point in
*H on a near-standard point.

Proof. If o is norm-finite then ||g|| < r for some positive S-number
r. The sphere B= {¢|||é|| < 7} is bounded in H and is mapped by T
on a set whose closure, A, is compact. If the corresponding sets in



426 ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

*H are *B and *A respectively then *B contains ¢ (since o satisfies
the defining condition of B) and so *A contains 70¢. But *A4 contains
only near-standard points, by 2.3, so T¢ is near-standard, proving 3.2.

In a somewhat different setting [7] the converse of 3.2 is also true.

THEOREM 3.3. If T = (a;,) 18 a completely continuous linear
operator on H, then aj, 18 infinitesimal for all infinite k (j finite
or imfinite).

Proof. For finite j, this follows from the fact that 3. |a;.|* is
then infinitesimal, For infinite j, define o = {s,} by s, =0 for n # k
and by s, =1. Then ||o]|| =1, so 7 = {t;} = To must be near-standard,
by 3.2, where t; = >, @;,8, = @;. But then ¢; = a;, must be infini-
tesimal for infinite 7, by 2.2.

An operator T = (a;,) will be called almost superdiagonal if a;, = 0
for j>k+1,k=1,2,8,--.., This definition depends on the specified
basis of H.

THEOREM 3.4. Let T be a bounded linear operator on H which
ts almost superdiagonal, Let

3.5. pRR)=¢ + e+ o+ 2" 0, FOm=1

be a polynomial with standard complex coefficients such that p(T)
18 completely continuous. Then there exists an tnfinite positive
integer @ such that a..,. ts infinitesimal.

Proof. Put Q = (b;,) = p(T). We show by direct computation
that, for any h = 1,

3.6. brrmt = Conit 1,1 Qhroho1@hsnre *** Thtmyhtmet o

By 8.8, buim, is infinitesimal for all infinite k. Since ¢, is not
infinitesimal, one of the remaining factors on the right hand side of
3.6 must be infinitesimal, e.g, @) ;1,525 0 < J<m. Setting w =h + j,
we obtain the theorem.

4. Projection operators. Let E be any admissible closed linear
subspace of *H within the nonstandard model under consideration.
The corresponding projection operator, which reduces to the identity on
E, will be denoted by P;. Given E, we define a subset °E of H as
follows. For any e H,oe€ °FE if and only if ||6 — 0’| is infinitesimal
for some ¢’ ¢ E. Since, by a familiar property of projection operatcrs,
“|o—0'|| = ||og — Pgol|, it follows that g € °E if and only if |6 — P,o |
is infinitesimal. In that case, ¢ = °(P.0). More generally, if 7 is a
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near-standard element of E then °r€ °F,
The tools developed so far suffice to establish the following theorem,
4.1, as well as the subsequent theorems, 4.2 ond 4.3.

THEOREM 4.1. Given E as above, the set °E ts a closed linear
subspace of H.

Proof. Let o, 0, be elements of °E. There exist elements ¢, 7,
of E such that |jo,— 7, and | 0, — 7,|| are infinitesimal. Then
T, + 7, belongs to £ and

H(O'l‘l‘az)_(‘:;':‘fz)“ __S_HUL_T1H+ Haz—‘fzu

so that the left hand side of this inequality also is infinitesimal.
Hence, o, -+ ¢, belongs to °E. Again for ¢e°E and ) standard
complex, there exists 7€ & such that || — ¢ || is infinitesimal. Then
M e FE and || Mo — ATl = [N {|o — 7| is infinitesimal and so no € °E.
This shows that °F is linear in the algebraic sense.

Now let ¢, — g, where the o, are defined for standard natural =
and belong to °E, and o belongs to H. In order to prove that °E is
closed we have to show that ¢ belongs to °E. By assumption, the
distances || o, — Pzo,|| are infinitesimal for all me N. Hence, by
Theorem 1.3 there exists an infinite natural number @ such that
||0, — Pzo,|| is infinitesimal for all n < w. The sequence of points
{0,} in °E < H extends, in *H, to a sequence of points defined for
all ne *N, Moreover, by 1.2 above, the fact that o, — 0o in H implies
that ||, — ¢ || is infinitesimal for all infinite n. Hence, for all infinite
n less than w, ||6 — Pg0,||, which does not exceed

o —o.il + [[6a — Pso, ],

also must be infinitesimal. But P o,€ E and so o€ °E, as required.
This completes the proof of 4.1.

Let @w be an infinite natural number. The closed linear subspace
of *H which consists of all points ¢ = {s,} such that s, =0 for n > w
will be denoted by H,. The corresponding projection operator, which
will be denoted by P maps any ¢ = {s,} in *H into the point ¢’ = {s;},
where s, =s, for n £ w and s, =0 for n > w. For any point o€ H,
o — Po|| = Cimwsi | 82 DY? is infinitesimal, by 2.1.

For any bounded linear operator T' on H let T’ = PTP, and let
T, be the restriction of T’ to H,. Then ||T'|| S |IPIFITH =T
and so || Tl = || Tl

THEOREM 4.2, Let E be an admissible closed linear subspace
of H, which is tnvariant for T, t.e., T.ES E. Then °E 1is
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wmvariant for T, T°E < °E.

Proof. Let c€°E, then we have to show that Toe°E., By
assumption, there exists a 7€ E such that ||¢ — 7|| is infinitesimal,
Then T.ce E, ie., PTte E. Thus, in order to show that To is
infinitely close to F, we only have to establish that the quantity ;
a = ||To — PTz|| is infinitesimal, Now

@ =|To — PTt|| = || To — PTo + PT(c — 7)||
=||To — PTo ||+ [|P|[[|T]|||e — 7|

and ||T|| is a standard real number, while ||P|| <1 and ||jod — 7]| is
infinitesimal. At the same time To¢ is a point of H and so the
difference To — PTo is infinitesimal, as shown above. It follows that
a is infinitesimal, and this is sufficient for the proof of 4.2.

The number of dimensions of H, as defined within the language L
is w,d(H,) = w. In this sense, H, is “finite-dimensional”. Similarly,
with every admissible closed linear subspace E of H,, there is associ-
ated a natural number d(F) in *C, which may be finite or infinite,
and which has the properties of a dimension to the extent to which
these can be expressed as sentences of K.

THEOREM 4.3. Let E and E, be two admissible closed linear
subspaces of H, such that ES E, and d(E))=d(E)+ 1. Then °E <
°FE, and any two points of °E, are linearly dependent modulo °E.

Proof. Since F < E,, it is trivial that °£ < °E,. Now suppose
that °FE, contains two points ¢, and g, which are linearly independent
modulo °E. Then o, and o, are infinitely close to points 7,, 7, of E,,
respectively. Since the dimension of E, exceeds that of E only by
one, there must be a representation

4.4, T, = AT, + T

or vice versa, where e F and M\ is an element of *C. Now if \
were infinitesimal (including » = 0) 7, would be infinitely close to E,
and so ¢, would be infinitely close to £ and would belong to °E. This
is contrary to the assumption that o, and o, are linearly independent
modulo °E., If )\ were infinite, then the relation

T,= N7, — \7'T

(in which \~' is infinitesimal and \~'z belongs to E) would show that
o, belongs to °E. Note that both 7, and 7. are norm-finite since they
are infinitely close to the standard points o, and o,, respectively.

We conclude that ) possesses a standard part, °\, and that °x = 0.
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Also, 7 = 7, — \r, is infinitely close to ¢ = g, — °\o,, since

lt—oll=llt. =N — (0. — °Nay) ||
éilfs_dzil"' \NH|T1-01H + |>""o>"1HO'LH

so that ||z — ¢|| is infinitesimal. It follows that ¢ belongs to °E and
that o, and o, are linearly dependent modulo °E. This contradiction
proves the theorem.

5. Proof of the main theorem. We are now ready to prove
1.1. To begin with, we work in the standard model, i.e., in an
ordinary Hilbert space H over the complex numbers, C. Our method,
like that of [1] is based on the fact that in a finite-dimensional
space, of dimension s« say, any linear operator possesses a chain of
invariant subspaces

5.1, E,CcEcCEg<.--CFE

"

where d(E;) =7, 0 <5 =< p, so that E, = {0}.

The proof of 1.1. is trivial [1] unless for every ¢ % 0 in H, the
set A = {o,To,T%,---,T"0,---} is linearly independent algebraically
and generates the entire space. Assuming from now on that this is
the case, we choose ¢ such that |[o|| =1, and we replace A by an
equivalent orthonormal set B = {0 = 0, 9, s, *** Y, = - *} by the Gram-
Schmidt method. Then {o, To,:-., T"'o} and {n,, 9, + + - 7,} are linearly
dependent upon each other, We deduce without difficulty that T is
almost superdiagonal with respect to the basis B. Representing any
7€ H by the sequence {t,}, where ¢, = (7, 7,), we may then identify H
with the sequence space considered in the preceding sections. Thus, if
T = (@) in this representation, then a;, = 0for j >k +1,k=1,2,3,.--
and, passing to *C and *H, there exists an infinite positive integer w
such that a,,,., is infinitesimal, by 3.4. ® will be kept fixed from
now on, and for it we consider the space H, and the operators P and
T' = PTP introduced in Section 4 above.

Let &= {x;} be any norm-finite element of *H, Consider the
difference

(TP-TYe=I—P)TP:=C(=1{z.}.

We obtain by direct computation that z,., = @,.,,.%., and z, =0 for
n#w+ 1. Hence ||{|| =|@uiollléll, so that { is infinitesimal,
Using the equivalence relation 7, ~ 7, for points of *H such that
|| 7, — 7.|| is infinitesimal, we have shown that TP& ~ T'’&, where the
points on both sides of this equivalence are norm-finite. We then
prove by induction that:
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5.2, T'P:~ (T')¢é for norm-finite & r=1,2,8, ..

The case r = 1 has just been disposed of. Suppose 5.2 proved for
r—1,r=2., Then

T*P& ~ T(T'y -2 = TP(T')~¢ ~ T'(T")y-¢ = (T')¢

where we have made use of the first equivalence for (7')"'¢ in place of
é. Applying 5.2 to the monomials of p(T), and taking into account
that Pt ~ & for é€ H,, we obtain

5.3. »(T)Ye ~ p(T")¢ for norm-finite § in H, .

Let T, be the restriction of T’ to H,, as in Section 4. Since H,
is “finite” more precisely w-dimensional in the sense of Nonstandard
Analysis, there exists a chain of subspaces as in 5.1 with ¢ = w, such
that T,E; £ E;,7=0,1,2,.--, w. The E; are also linear subspaces of
*H, They are finite-dimensional, hence closed, in the sense of Non-
standard Analysis, i.e., they satisfy the formal condition of closedness
as expressed within the language L. Let P; be the projection operator
from *H onto E;,7=10,1,2,--+, ®, so that P, = P,

Suppose p(z) is given by 8.5. For any &+ 0 in H, p(T)¢ must be
different from 0 otherwise &, T¢, .-+, T"¢ would be linearly dependent,
contrary to assumption. Choose & in H with ||é|| = 1. Since & ~ P§,
p(T)é ~ p(T)PE, so p(T)P& is not infinitesimal and by 5.3, p(T)PS
and hence p(T')¢ is not infinitesimal. Thus, ||p(T")&|| > r for some
standard positive ». Consider the expressions

5.4. r; = Hp(T')E -——p(T’)P,éH,j-—-O, 11 2: e, ,
and note that 7; = [|p(T")||||§ — P;£|l. We have r,=|[p(T")¢]| so
ro>7. Also || — Pg|l =& — P¢|| is infinitesimal, hence 7, < 7/2.

It follows that there exists a smallest positive integer \ with may be
finite or infinite, such that », < 7/2 but r,_, = r/2.

With every E;, we associate the closed linear subspace °E; of H
which was defined in Section 4, Now °E,_, cannot coincide with H,
more particularly, it cannot include &. For if it did, then ||§ — P,_.§}|
would be infinitesimal, so 7,_,, which is bounded by || p(T') || ||§ — Px_.¢ ||
would be infinitesimal, contrary to the choice of X\.

On the other hand °E, cannot reduce to {0}. Consider the point
n = p(T')P\é. nekKE, since P\éc E, and E, is invariant under p(T.,)
and, equivalently, under p(T’). Also, since P,f€ H,,

n = p(T)P§ ~ n(T)P:& ,

where the right-hand side is near-standard, by 3.2, since P,¢ is norm-
finite and p(T) is completely continuous. It follows that » possesses
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a standard part, °», and that °» belongs to °E,. Again, °» =0 would
imply that 7 is infinitesimal. Hence, by 5.4

oz I p(THei — [ p(THPS > r — 3

where { is infinitesimal. Hence r, > /2, contrary to the choice of \.
We conclude that °E, contains a point different from 0, i.e., °7.

Both °E,_, and °FE, are invariant for T, by 4.2. If neither were
a proper invariant subspace of H for T we should have °E,_, = {0},
°FE, = H. But this contradicts 4.3, proving 1.1,
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