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SOLUTION OF AN INVARIANT SUBSPACE PROBLEM
OF K. T. SMITH AND P. R. HALMOS

ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

The following theorem is proved.
Let T be a bounded linear operator on an infinite-dimen-

sional Hubert space H over the complex numbers and let
p(z) Ψ 0 be a polynomial with complex coefficients such that
p(T) is completely continuous (compact). Then T leaves
invariant at least one closed linear subspace of H other than
H or {0}.

For p(z) = z2 this settles a problem raised by P. R. Halmos
and K. T. Smith.

The proof is within the framework of Nonstandard Analysis.
That is to say, we associate with the Hubert space H (which,
ruling out trivial cases, may be supposed separable) a larger
space, *H, which has the same formal properties within a
language L. L is a higher order language but *H still exists
if we interpret the sentences of L in the sense of Henkin.
The system of natural numbers which is associated with *H
is a nonstandard model of arithmetic, i.e., it contains elements
other than the standard natural numbers. The problem is
solved by reducing it to the consideration of invariant sub-
spaces in a subspace of *H the number of'whose dimensions
is a nonstandard positive integer.

l Introduction* We shall prove:

MAIN THEOREM 1.1. Let T be a bounded linear operator on an
infinite-dimensional Hilbert space H over the complex numbers and
let p(z) Φ 0 be a polynomial with complex coefficients such that p(T)
is completely continuous (compact). Then T leaves invariant at least
one closed subspace of H other than H or {0}.

For p(z) — z~ this settles Problem No. 9 raised by Halmos in [2]
and there credited to K. T. Smith. For this case, a first proof was
given by one of us (A.R.) while the other (A.R.B.) provided an alter-
native proof which extends to the case considered in 1.1. The argument
given below combines the two proofs, both of which are based on
Nonstandard Analysis. The Nonstandard Analysis of Hilbert space
was developed previously by A.R. as far as the spectral analysis of
completely continuous self-adjoint operators (compare [7]) while A.R.B.
has disposed of the spectral theorem for bounded self-adjoint operators
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by the same method. The general theory will be sketched here only
as far as it is required for the proof of our main theorem.

Some of our arguments are adapted from the proofs of the theorem
for p(z) = z, i.e., when T is itself completely continuous, which are
due to von Neumann and Aronszajn for Hubert space, as above, and
to Aronszajn and K. T. Smith for general Banach spaces [1],

The particular version of Nonstandard Analysis which is convenient
here relies on a higher order predicate language, L, which includes
symbols for all complex numbers, all sets and relations of such numbers,
all sets of such sets and relations, all relations of relations, etc.
Quantification with respect to variables of all these types is permitted.
Within this framework, a sequence of complex numbers, y — sn, n —
1, 2, 3, , is given by a many-one relation S(n, y) when n varies over
the set of positive integers, P. The separable Hubert space, H, may
then be represented as a set of such sequences (i.e., as l2) while a
particular operator on H is identified with a relation of relations.

Let K be the set of sentences formulated in L which hold in the
field of complex numbers, C. if includes sentences about, or involving,
the sets of real numbers and of natural numbers, since these may be
regarded as subsets of the complex numbers which are named in L.
It also includes sentences about Hubert space as represented above.

Nonstandard Analysis is based on the fact that, in addition to C,
K possesses other models, which are proper extensions of C. We single
out any one of them, *C, calling it the nonstandard model, as opposed
to the standard model, C. However, *C is a model of K only if the
notions of set, relations, etc. are interpreted in *C in the sense of the
higher order model theory of Henkin [3]. That is to say, the sets of
sets, relations, etc., which are taken into account in the interpretation
of a sentence in *C may (and will) be proper subsets of the corresponding
sets over *C in the .absolute sense. The sets, relations, etc. which are
taken into account in the interpretation in *C will be called admissible.

The basic properties and notions of Nonstandard Analysis which
are expounded in [4] and [5] are applicable here. Thus, an individual
of *C (which will still be called a complex number) may or may not
be an element of C, i.e., a complex number in the ordinary sense or
standard number, briefly an S-number. Every finite complex number
a is infinitely close to a unique standard complex number, °α. That is
to say, if \a\ is smaller than some real S-number, then there exists
a complex S-number, °α, the standard part of α, such that \a — °a\
is smaller than all positive S-numbers. A number which is infinitely
close to 0 is infinitely small or infinitesimal. In particular, 0 is the
only S-number which is infinitesimal. A complex number a which is
not finite, i.e., which is such that \a\ is greater than any S-number,
is infinite. There exist elements of *C which are infinite.
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Every set, relation, etc. in C possesses a natural extension to *C.
This is simply the set, relation, •••, in *C which is denoted by the
same symbol in L. At our convenience, we may, or may not, denote
it by the same symbol also in our notation (which is not necessarily
part of L). Thus, we shall denote the extension of the set of positive
integers, P, to *C by *P but if σ = {an} is a sequence of complex
numbers in C then we shall denote its extension to *C still by σ = {an}.
According to the definition of an infinite number which was given
above, the infinite positive integers in *C are just the elements of
*P- P.

The following results are basic (for the proofs see [5] and [6]).

THEOREM 1.2. The sequence {an} in C converges to a limit a
(a an S-number) if and only if the extension of {an} in *C satisfies
the condition that \ a — an j is infinitesimal for all infinite n.

THEOREM 1.3. Let {an} be an admissible sequence in *C such
that an is infinitesimal for all finite n. Then there exists an infinite
positive integer ω (i.e., ωe*P — P) such that an is infinitesimal for
all n smaller than ω.

{an} is called admissible in *C if the relation representing {an}
belongs to the set of relations which are admissible in the sense ex-
plained above. Admissible operators, etc., are defined in a similar way.
1,3, shows that the sequence {an} which is defined by an = 0 for finite
n and by an — 1 for infinite n is not admissible in *C.

2 Nonstandard Huber t space* The selected representation of
the Hubert space H consists of all sequences {sn} of complex numbers
such that | | σ | | 2 = Σ~=11 sn |2 converges. The corresponding space *H
over *C consists of all admissible sequences {sn} in *C such that
II σ II2 — Σ"=i I sn I2 converges, i.e., such that it satisfies the formal
(classical) definition of convergence in L.

Among the points of *i7 are the extensions of points of H (as
sequences). We identify the points of H with their extension in *H
and may then regard H as a subset (though not an admissible subset)
of *H.

A point σ of *H is called norm-finite if | | σ | ] is a finite real
number in the sense explained in section 1. σ is near-standard if
11 σ — σ° 11 is infinitesimal for some °σ e H. If such a °σ exists then it
is determined uniquely by σ. It is called the standard part of σ.

Applying 1.2. to the partial sums of any point σ = {sn} in H, we
obtain:
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THEOREM 2.1. For any σ = {sn} in H and any infinite positive
integer ω, the sum X»βω | sn |2 is infinitesimal.

Next, we sketch the proof of:

THEOREM 2.2. A point σ = {sn} in *H is near-standard if and
only if it is norm-finite and if at the same time Xn=ω I sn I2 is infini-
tesimal for all infinite ω.

Suppose that 11 σ — °σ \ | is infinitesimal for some °σ in H. Then
σ || = || σ - °σ + °σ || g || σ - °σ \\ + \\ °σ \\ < 1 + || °σ \\ so that σ is

norm-finite. Also, let °σ — {s'n}, then Σ«=ω | ŝ  |2 Is infinitesimal for infinite
ω, by 2.1. Also, Σ~=w I sn — s'n |

2 is infinitesimal since this sum cannot
exceed ||<7-°<7|12. But

1/2 / ex. \l/2\2

showing that the conditions of 2.2 are necessary.
Supposing that they are satisfied, || σ \\ is finite, hence \sn\ is finite

for any n and sn possesses a standard part, °sn. Consider the sequence
{°sn} in C. It can be shown that X~=1 \°sn |

2 converges in C and hence,
represents a point σr in H and *H. Thus, if σ' = {s'n} then β» = °sn

for finite n but not necessarily for infinite n. Since, for all finite fc,
Σn=i I s% — s'n |

2 = ΣίUj I sn — °sn |
2 is infinitesimal, it follows from 1.3

that Σ»=i I sn ~ s'n |
2 is still infinitesimal for some infinite k, k = ω — 1,

say. On the other hand, Σ~=ω 1 sw |2 is infinitesimal by assumption, and
is infinitesimal, by 2.1. The inequality

l/2\£

)

then shows that \\σ — σ'\\ is infinitesimal, σ is near-standard with
standard part °σ = σ\

The following theorem is proved in [7] for general topological
spaces but under somewhat different conditions.

THEOREM 2.3. Let A be a compact set of points in H. Then
all points of *A (i.e., of the set which corresponds to A in * i ϊ ) are
near-standard.

Indeed, suppose that A is compact but that σ e * A is not near-
standard. Then there exists a standard positive r such that \\σ — τ\\ > r
for all τ e H. This is trivial if σ is not norm-finite. If o is norm-
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finite, then by 2.2, there exists an infinite positive integer ω such
that Σin=ω I sn |2 > 2r2 for some standard positive number r. For any
z — {tn} in H, Σ,~=ω 1 tn |2 is infinitesimal. Hence

\σ - τ || = ( ± I sn - t

>r.

On the other hand, since A is compact it possesses an r-net, i.e.,
for some finite number of points in A,τί9 , rm, and for all ς in A,
|| ξ — τ{ || < r for some i, l^i^m. But, for the specified τu , zm9

this is a property of H which can be formulated as a sentence of K.
It follows that for all points ς of * i also ||f — r<|| < r for some
i, l^i<>m. This contradiction proves the theorem.

3* Operators in nonstandard Hubert space* An operator from
H into H may be regarded as a relation between elements of H, i.e.,
between sequences of elements of C (which are themselves relations).
The corresponding operator in *iϊ, which is denoted by the same
symbol in L, will be denoted here also by T. This cannot give rise
to any confusion. For if r = Tσ in H then τ — Tσ also in *iϊ since
z — Tσ can be expressed by a sentence of K.

In particular, let Γ be a bounded linear operator defined on all
of H. For the assumed representation of H by sequences, T has a
matrix representation, T = (ajk), j , k = 1, 2, 3, . The coefficients of
this matrix satisfy the conditions:

3.1. Σ I ajk |2 < oo j = 1, 2, 3, .
fc=l

^ j I <&ifc I < °° K = L, Δ, όt

In *iϊ these subscripts of (αifc) vary also over the infinite positive
integers. By 3.1 and 2.1., ΣΓ=ωi«yfel2 is infinitesimal for infinite ω,
provided j is finite. This is not necessarily true for infinite j as
shown by the matrix for the identity operator.

THEOREM 3.2. Let T be a completely continuous (compact)
linear operator on H. Then T maps every norm-finite point in
*H on a near-standard point.

Proof. If σ is norm-finite then 11 σ \ \ < r for some positive S-number
r. The sphere B = {ξ\ \\ξ\\ < r} is bounded in H and is mapped by T
on a set whose closure, A, is compact. If the corresponding sets in
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*H are *I? and *A respectively then *JB contains σ (since σ satisfies
the defining condition of B) and so *A contains Tσ. But *A contains
only near-standard points, by 2.3, so Tσ is near-standard, proving 3.2.

In a somewhat different setting [7] the converse of 3.2 is also true.

THEOREM 3.3. If T = (ajk) is a completely continuous linear
operator on Hy then ajk is infinitesimal for all infinite k (j finite
or infinite).

Proof. For finite j , this follows from the fact that 2^=* | aίk j
2 is

then infinitesimal. For infinite j , define σ — {sn} by sn = 0 for n Φ k
and by sk = 1. Then || σ \\ = 1, so τ = {ί, } = Tσ must be near-standard,
by 3.2, where t5 = 2~=i α i A — αi* B u t then *i — αifc must be infini-
tesimal for infinite j , by 2.2.

An operator T = (ajk) will be called almost superdiagonal if ajf: — 0
for j > k + l,fe = l,2,3, . This definition depends on the specified
basis of H.

THEOREM 3.4. Let T be a bounded linear operator on H which
is almost superdiagonal. Let

3.5. p(z) = c0 + CyZ + + cm2m, cm Φ 0, m ^ 1

be a polynomial with standard complex coefficients such that ρ(T)
is completely continuous. Then there exists an infinite positive
integer ω such that aω+Uω is infinitesimal.

Proof. Put Q = (bjk) = p(T). We show by direct computation
that, for any h ^ 1,

3.6. bh^m,h =\ CmαΛ + l,A#λ-f2,Λ-rA + 3,Λ-f2 ' # * &h + m,h + m-l

By 3.3, bh+m>h is infinitesimal for all infinite h. Since cm is not
infinitesimal, one of the remaining factors on the right hand side of
3.6 must be infinitesimal, e.g, αΛ+J + l f Λ + J , 0 ̂  j < m. Setting ω — h + j ,
we obtain the theorem.

4* Projection operators. Let E be any admissible closed linear
subspace of *H within the nonstandard model under consideration.
The corresponding projection operator, which reduces to the identity on
E, will be denoted by PE. Given E, we define a subset °E of H as
follows. For any σe H,σe°E if and only if || σ — σ' \\ is infinitesimal
for some σf e E. Since, by a familiar property of projection operators,

*;|σ - &j| ^ ||σ - PEσ\\, it follows that σe°E if and only if | |σ - PEσ{\
is infinitesimal. In that case, σ = °(PEσ). More generally, if τ is a
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near-standard element of E then °τ e °E.
The tools developed so far suffice to establish the following theorem,

4.1, as well as the subsequent theorems, 4.2 ond 4.3.

THEOREM 4.1. Given E as above, the set °E is a closed linear
subspace of H.

2Proof. Let σlf σ2 be elements of °E. There exist elements τ19 τ.

of E such t h a t \\σ1 — τi\' and | | σ 2 — r 2 | | are infinitesimal. Then

τι + r 2 belongs to E and

II to + σt) - (rx + r2) ϋ ^ || σt - τ, \\ + \\ σ2 - r21|

so that the left hand side of this inequality also is infinitesimal.
Hence, ax + σ2 belongs to °E. Again for σ e °E and λ standard
complex, there exists τeE such that \\σ — r | | is infinitesimal. Then
Xτ e E and 11 Xσ — Xτ 11 = | X | j | σ — τ \ \ is infinitesimal and so Xσ e °E.
This shows that °E is linear in the algebraic sense.

Now let σn —• σ, where the σn are defined for standard natural n
and belong to °E, and σ belongs to H. In order to prove that °E is
closed we have to show that σ belongs to °E. By assumption, the
distances \\on — PEσn\\ are infinitesimal for all neN. Hence, by
Theorem 1.3 there exists an infinite natural number ω such that
\\&n — PE0»\\ is infinitesimal for all n < ω. The sequence of points
{σn} in °E £ H extends, in *iϊ, to a sequence of points defined for
all ne *N. Moreover, by 1.2 above, the fact that σn—+σ in H implies
that || σn — σ \\ is infinitesimal for all infinite n. Hence, for all infinite
n less than α>, \\σ — P ^ j j , which does not exceed

\\σ -σn\\ + \\σn- PEσn\\ ,

also must be infinitesimal. But PEσneE and so σe°Ey as required.
This completes the proof of 4.1.

Let ω be an infinite natural number. The closed linear subspace
of *ff which consists of all points σ = {sn} such that sn = 0 for n> ω
will be denoted by f3Γω. The corresponding projection operator, which
will be denoted by P maps any σ = {sn} in * i ϊ into the point σf = {s$,
where s^ = sn for w ^ ω and s'n = 0 for n > ω. For any point σ e H,
|| σ - Pσ || = (ΣΓ=ω+i I *. I2)1/2 is infinitesimal, by 2.1.

For any bounded linear operator T on H let Γ' = P Γ P , and let
Γω be the restriction of T" to ίZ"ω. Then || Γ ' | | ^ i |P |Γ!l Γ | | ^ || Γ | |
and so | | T J | ^ | | Γ | | .

THEOREM 4.2. Let E be an admissible closed linear subspace
of Hω which is invariant for Tω, i.e., TωE £ E. Then °E is



428 ALLEN R. BERNSTEIN AND ABRAHAM ROBINSON

invariant for T,T°EZ °E.

Proof. Let σ e °E, then we have to show that Tσ e °E. By
assumption, there exists a Γ G £ such that \\σ — r | | is infinitesimal.
Then TωτeE, i.e., PTτeE. Thus, in order to show that Tσ is
infinitely close to E, we only have to establish that the quantityj
a = \\Tσ — PTT \\ is infinitesimal. Now

a = || Tσ - P7Y || = || Tσ - PΪV + PT(<7 - τ) ||

and || Γ | | is a standard real number, while | | P | | <£ 1 and \\σ — τ | | is
infinitesimal. At the same time Tσ is a point of H and so the
difference Tσ — PΓσ is infinitesimal, as shown above. It follows that
a is infinitesimal, and this is sufficient for the proof of 4.2.

The number of dimensions of Hω as defined within the language L
is ω, d(Hω) = ω. In this sense, Hω is "finite-dimensional". Similarly,
with every admissible closed linear subspace E of Hωf there is associ-
ated a natural number d(E) in *C, which may be finite or infinite,
and which has the properties of a dimension to the extent to which
these can be expressed as sentences of K.

THEOREM 4.3. Let E and Eί be two admissible closed linear
subspaces of Hω such that EQE, and d(Ex) = d(E) + 1. Then °E^
°E1 and any two points of °E1 are linearly dependent modulo °E.

Proof. Since E g Elf it is trivial that °E g °E,. Now suppose
that °£Ί contains two points σx and σ2 which are linearly independent
modulo °E. Then σ1 and σ2 are infinitely close to points τu τ2 of Eu

respectively. Since the dimension of Ex exceeds that of E only by
one, there must be a representation

4.4. τ2 = Xτ1 + T

or vice versa, where ve E and λ is an element of *C. Now if λ
were infinitesimal (including λ = 0) τ2 would be infinitely close to E,
and so σ2 would be infinitely close to E and would belong to °E. This
is contrary to the assumption that σx and σ2 are linearly independent
modulo °E. If λ were infinite, then the relation

(in which λ""1 is infinitesimal and λ'V belongs to E) would show that
σλ belongs to °E. Note that both τx and r2 are norm-finite since they
are infinitely close to the standard points σλ and σ2, respectively.

We conclude that λ possesses a standard part, °λ, and that °λ Φ 0.
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Also, r = T, — \τί is infinitely close to σ — σ2 — °\σu since

j | r - < 7 | | = \\τz^\τι-(σi-°\σ1)\\

^ ί | τ 2 - σ 2 | | + \χ\\\τί-σ1\\ + | λ - ° λ | | |*ill

so that \\τ — σ\\ is infinitesimal. It follows that σ belongs to °E and
that σx and σ2 are linearly dependent modulo °E. This contradiction
proves the theorem.

5* Proof of the main theorem* We are now ready to prove
1.1. To begin with, we work in the standard model, i.e., in an
ordinary Hubert space H over the complex numbers, C. Our method,
like that of [1] is based on the fact that in a finite-dimensional
space, of dimension μ say, any linear operator possesses a chain of
invariant subspaces

5.1. EQ s Eι S E2 S
 β £ Eμ

where d{Eά) = j , 0 <* j ^ μ, so that Eo = {0}.
The proof of 1.1. is trivial [1] unless for every σ Φ 0 in H, the

set A = {σ, Tσ9 T
2σ, , Tnσ, •} is linearly independent algebraically

and generates the entire space. Assuming from now on that this is
the case, we choose σ such that | | σ | | = 1, and we replace A by an
equivalent orthonormal set B — {σ — ηl9 rj2i η3, ηn, •} by the Gram-
Schmidt method. Then {σ, Tσ, , Tn~ισ) and {ηί9 η2, ηn} are linearly
dependent upon each other. We deduce without difficulty that T is
almost superdiagonal with respect to the basis B. Representing any
τ e H by the sequence {ίΛ}, where tn — (r, ηn), we may then identify H
with the sequence space considered in the preceding sections. Thus, if
T = (aJk) in this representation, then ajk = 0 for j > k + 1, k = 1,2,3,
and, passing to *C and *H, there exists an infinite positive integer ω
such that αω+1,ω is infinitesimal, by 3.4. ω will be kept fixed from
now on, and for it we consider the space Hω and the operators P and
T = PTP introduced in Section 4 above.

Let ξ = {#;} be any norm-finite element of *i i . Consider the
difference

We obtain by direct computation that zω+ι = αω+i,ωa?ω, and 2;w — 0 for
n Φ ω + 1. Hence || ζ || ^ | αω+1,ω | || ξ ||, so that ζ is infinitesimal.
Using the equivalence relation τx ^ τ2 for points of * i ϊ such that
|| Tj — r 2 | | is infinitesimal, we have shown that TPξ ~ Γ'f, where the
points on both sides of this equivalence are norm-finite. We then
prove by induction that:
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5.2. TrPς ~ (T')rζ for norm-finite ζ, r = 1, 2, 3, .

The case r = 1 has just been disposed of. Suppose 5.2 proved for
r - 1, r ^ 2. Then

where we have made use of the first equivalence for (T")r~1f in place of
ς. Applying 5.2 to the monomials of p(T), and taking into account
that Pς ~ ξ for ξ e Hωy we obtain

5.3. p(T)ξ ~ p(T')ξ for norm-finite ξ in Hω .

Let Γω be the restriction of T' to i/ω, as in Section 4. Since Hω

is "finite" more precisely ω-dimensional in the sense of Nonstandard
Analysis, there exists a chain of subspaces as in 5.1 with μ — a), such
that TJEj £ Ej9 j = 0,1,2, , ω. The E5 are also linear subspaces of
*H. They are finite-dimensional, hence closed, in the sense of Non-
standard Analysis, i.e., they satisfy the formal condition of closedness
as expressed within the language L. Let Pj be the projection operator
from *JΪ onto Ejf j = 0,1, 2, , ω, so that Pω = P.

Suppose p(z) is given by 3.5. For any ξ Φ 0 in H, p(T)ζ must be
different from 0 otherwise ζ, Tζ, •••, Tnξ would be linearly dependent,
contrary to assumption. Choose ξ in H with || ξ \\ = 1. Since ξ ~ Pς,
p(T)ξ - p(T)Pζ, so p(T)Pζ is not infinitesimal and by 5.3, p(T)Pξ
and hence p(T')ζ is not infinitesimal. Thus, ||p(T')£ll > ^ for some
standard positive r. Consider the expressions

5.4. r, = || p(T')ζ - p(Γ')Pif II, i = 0,1, 2, . . . , ω ,

and note that rά S \\p{Tf) \\ || f - P£ \\. We have r0 = \\p(T')ξ \\ so
r0 > r. Also || ξ - Pωf || = || ξ - P i || is infinitesimal, hence rω < r/2.
It follows that there exists a smallest positive integer λ with may be
finite or infinite, such that r λ < r/2 but rλ_i ^ r/2.

With every JŜ  , we associate the closed linear subspace °Ej of H
which was defined in Section 4. Now °EK__1 cannot coincide with H,
more particularly, it cannot include ξ. For if it did, then || ξ — Pλ_if ||
would be infinitesimal, so r λ - 1, which is bounded by || p{Tf) \\ || ξ — Pλ_if ||
would be infinitesimal, contrary to the choice of λ.

On the other hand °EK cannot reduce to {0}. Consider the point
η = p(T')Pλ£. )?€£λ since PkζeEλ and i£λ is invariant under p(Tω)
and, equivalently, under ί?(Γ'). Also, since PkξeHω,

where the right-hand side is near-standard, by 3.2, since Pkξ is norm-
finite and p(T) is completely continuous. It follows that η possesses



SOLUTION OF AN INVARIANT SUBSPACE PROBLEM 431

a standard part, °η, and that °η belongs to °Ek. Again, °η — 0 would
imply that rj is infinitesimal. Hence, by 5.4

r λ ^ | | p ( Γ ' ) £ | i - \ \ p ( T ' ) P J \ \ > r - ζ

where ζ is infinitesimal. Hence r λ > r/2, contrary to the choice of λ.
We conclude that °EK contains a point different from 0, i.e., °*η.

Both °Eλ_ι and °Eλ are invariant for T, by 4.2. If neither were
a proper invariant subspace of H for T we should have °Eλ_1 — {0},
°EK = H. But this contradicts 4.3, proving 1.1.
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