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STABILITY OF LINEAR DIFFERENTIAL EQUATIONS
WITH PERIODIC COEFFICIENTS
IN HILBERT SPACE

GERT ALMKVIST

In this paper we study the stability of the solutions of
the differential equation

(1) w'(t) = AQ®) - u(?)

for £t =0 in a separable Hilbert space. It is assumed that
A(t) is periodic with period one and satisfies the following
symmetry condition: There exists a continuous constant in-
vertible operator Q such that

A*=—Q-A®)-Q@* forall t=0,

We use a perturbation technique. Let A(t) = A¢t)+ B(t) where
Aq(t) is compact and antihermitian for all ¢. We denote by
Us(t) the solution operator of u/(t) = Ad®)u(t). It is shown
that (1) is stable if B(t) satisfies a certain smallness con-
dition involving the distribution of the eigenvalues of U(l)
and the action of B(f) on the eigenvectors of Uy(1). The
results can be applied to the second order equation

y' +Clty=0
where C(t) is selfadjoint for all £,

Throughout this paper we consider the differential equation (1)
where # is a function from the positive reals, R+, into a separable
Hilbert space X with norm ||2|] = (z, )"®. A is a function from R+
into B(X), the algebra of continuous linear operators on X. We
assume that A({) is Bochner integrable on every finite subinterval of
R*. Then for a given initial value %(0), there exists a unique solution
of (1) (see [4, p. 521]).

Further we always assume that A(¢) is periodic. It is no restrie-
tion to assume that the period is one, that is A(t + 1) = A(¢) for all
teR*,

The equation (1) is said to be stable if for every initial value
#(0), there exists a constant M, such that ||u(¢)|| =< M for all te R+,
It is convenient to study the equation

(2) Uiy = Ap)U®y, U0 =I

in B(X). Using the principle of uniform boundedness it is easily seen
that (1) is stable if and only if the solution of (2) is bounded.
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Let 9(A) = limo a?*(| I+ adll—1)
o=+

denote the Gateau differential of A. When X is a Hilbert space @(4)
can be calculated by the formula @(A4) =lsup Re(Azx, x)
|

zll=1
PRoPOSITION 1. If g‘ao(A(t))dt <0, then (1) is stable.
0

Proof. Let m be the greatest integer <¢. Then using [1, Th. 4]
we get

t 1 t—n
1) 1| < exp | @(A(s)ds < exp (n] s(A(e)ds) - exp | " (A(s))ds
< exp | |0(4() | ds
0

which ends the proof.

From now on we assume that A(t) satisfies the following symmetry
condition:

There exists a constant continuous operator @ such that Q' is
continuous and

(S) A)* = — QA(H)Q™ for all t=0.
Here A* denotes the adjoint of A.

ProposITION 2. Condition (S) is equivalent to
Ui)* = QUE)—Q™" for all t=0.
Proof. We have U*(0)QU(0) = Q because U(0) = I. But
%(U(t)*QU(t)) = U)*A*(@®)QU() + U@®)*QAM)U(t) = 0
if and only if

A*(D)Q + QA() =0.

Let o(U) be the spectrum of U. From Proposition 2 it follows
that o(U*(t)) = c(QU'(t)Q™) = o(U~Y(t) that is A eo(U(t)) implies
Nte o(U(R)).

ProposiTION 3. If @ is positive definite, then (1) is stable.

Proof. @Q has a positive definite square root S, that is Q = S
Moreover S—! exists and is continuous. From Proposition 2 we get
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U* = SU-1S-

and after some calculations (SUS-")* = (SUS")~*, that is SUS is
unitary and hence || U¢)|| = || S| - ||S7']| for all £ = 0.

The uniqueness of the solution of (2) implies that
Umn + t) = UUQ) forn=1,2,.--
Hence (1) is stable if and only if there exists a constant M such that
Ho|l=M forn=1,2,---

Since || U(1)*|| = (v(U(1)))*, where v is the spectral radius, it follows
that o(U())c{n; [M]| =<1} is necessary for the stability of (1). When
(S) is satisfied o(U(1))is symmetric about the unit circle and hence
o(U)c{n; | M| = 1} is necessary.

Now we study the stability of (1) with a perturbation method,
due to G. Borg [3] in the finite dimensional case. In order to state
the next theorem we introduce some notations. Let the equation be

(3) w'(t) = (Ay(t) + B(t))yu(?)
We assume that

(a) Ayt) and B(t) are periodic with period one.
(b) Ayt) is compact and antihermitian (A,(¢)* = — Aq(f)) for all .

Let further Uy t) be the unique solution of Uj(t) = A«(t) Ux?),
U(0)= I. Suppose that

(e) Uy(1l) has only simple eigenvalues, \,, all # 1.
(d) Ayt) + B(t) satisfies condition (S).

Let further e, be the eigenvector with norm one of Uy1l) cor-
responding to the eigenvalue A\,. Put

b= |, I B Ute I at

K= g exp [?‘SI O(B(s))ds ]dt

Ty = 2~1§;§£I7\'n - 7\'kl .
THEOREM. If (a), (b), (c), (d) and

(e) K-sgpgbf,(]m—Ml—h)_2<1
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and

(f) 3 bt < oo
are satisfied, then (3) is stable.

REMARK 1. The theorem is true if K and b, are replaced by

K' = exp {z max §‘¢(B(s))ds} . b= So | B®)Uyt)e, || dt .

0sts1 Jt

It is easily seen that K < K’ but b, < b,.

REMARK 2. If X is finite dimensional, then condition (f) is auto-
matically fulfilled.

REMARK 3. K- > bir;? <1 implies both (e) and (f).

Proof of the theorem. The rather lengthy proof is divided in
eight parts.

(i) U(t) is unitary for all t.

A calculation shows that Uy(t)~™ = V(t)* where V is the unique solution
of V'=— A¥®)V, V(0)=I. But since — A} = A4, it follows that
Uy(t) = Uyt)*.

(ii) U() — I is compact.

We have Uyl) — I= Sle(t) U,t)dt. The integral is compact because
[}

it is the limit of compact operators of the form 337, A((%;) Ui(¢;)4t..

From (i) and (ii) we conclude that {e,}i” is an orthonormal set and

indeed a basis because U,1l) — I is compact and 1 is not an eigenvalue

of U,(1). Further limx, = 1. Since Uyt) is unitary

U =1l U)*|| =1 for all t and |n,|=1.
Put W(t) = U(t) — Uyt). Further it is convenient to write

Ul)=U, U(1)=U, and W(1) = W. Let C, be the circumference
of a circle with center ), and radius 7»,.

(iii)) Ry, =OI— U)* exists if v € Ur C.

Put R = (I — U)*. For a \ such that R} and (I — WRY)™
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exist, we have
R, = R — WE)™
It is clear that R} exists whenever Ae Ur C; and if || WRY|| <1 it

follows that R, exists. Since {e,}i" is an orthonormal basis it follows
that

| WR2F < 31| WRe, |F .
But
| WRen |l =N — Na |7 < || We, ||
since
Rie, = — N,) %, .
One verifies that W(t¢) satisfies the equation
W'(t) = (A1) + B(t)) W(t) + B(t)U(t)
which has the solution
W= W) = S:U(l) U(s)~B(s) Uy(s)ds
Then we get
| Weull = [ IT@TG 1 - 1| B&) Us)e, | ds.
From Theorem 4 in [1] we find

1T U6 || < exp || o(A(t) + B(®)t .

But @(A,(t) + B(t)) = @(B(t)) since A,(t) is antihermitian. We finally
get

1 We, | < {], exo[ | 0B®)at | B&) Uitslen I ds}
< S: exp (2Si¢(B(t))dt)ds : S:n B(s)Us(s)e, |'ds = K - b2, .
From condition (¢) we conclude that
S WRle, | S K- 581N —n

<K- sgpibz(lxk — M =)<
n=1
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and hence || WR} || < 1 for all xe Ur C.. Thus we have shown that
R, exists if ne U5 C,.

@iv) U — I ts compact.

From (iii) it follows that > || We, | = K 3 b% < o since (e) implies
that > 7°b < . Hence W belongs to the Schmidt class, cf. [5], and
is compact. Further U— I =(U,— I)+ W is compact since U, — I
is compact (ii).

Put D,={; | M=\ | < 71l)e
(v) U has exactly one eigenvalue, a,, in D, and a, is simple.

Since U — I is compact and 1¢ D, it follows that there is only a finite
number of eigenvalues of U in D,.

Now it is convenient to introduce a parameter g in the equation.
Thus we study U’ = (A(t) + #Bt))U, U@O) =1 where 0 = 4 =<1, A
simple calculation shows that R,(x#) is a continuous function of p.
Hence the projection

E(p) = @riy* | Bi(war

is also continuous in [0, 1]. Further we can find a partition
O=p << <=1
such that
| Ea(ttsr)) — Eu(pe) | < (2M)~ forv=1,2--+,k,

where M = max || E,(¢)||. According to a well known lemma (see [6,
0SSl

p. 424)) it follows that dim E, (g¢,.,)X = dim E,(x,)X if both sides are
finite. This is the case here because U(y) — I is compact for 0 = <1
and D, contains only a finite number of eigenvalues. Now dim E,(0).X =
1 and hence, dim E,(1)X = 1 by induction. Thus there is exactly one
point a,€ d(U) in D, and this a, must be simple.

(v e, =1

Assume that |a,| > 1. Then it follows that &;'e€D,. But due
to (S) we find that &,;'€ o(U) and there will be two points belonging
to o(U) in D,. This is impossible.

Assume now that |a,| < 1. If a;'e D, we can apply the same
argument as above. If &;'¢ D, it is easily seen that &,'¢o(U). In
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fact we show that if x¢ UrD, and X\ # 1 it follows that ¢ a(U).
We need only consider N with [A| > 1. Let D, be the circle closest
to N. Then it is clear that {x — N, | = ||\, — N | — 7| for all » and
we get

K3 || WRSe, | < KB N = M S K5 B(M — M| — 1) < 1

due to (e). Hence R, exists.

Now we have proved that o(U) consists of simple eigenvalues on
the unit circle with limit point 1. In the finite dimensional case it
follows immediately that (3) is stable (see Boman [2]). In the infinite
dimensional case we have to use condition (f).

Put E£,0 =F, and E,(1)=F,. If F,e,+* 0 we put ¢, = F,e,
and if F,e, = 0 we choose ¢, as an arbitrary eigenvector of U cor-
responding to «,. We have E.e, = ¢, and Ugp, = a, p,.

(Vii) Z;‘ “?’n — €, ”2 < 2,
(Fs = Epe, = @miy* | (B — Rdedn .
A calculation shows that
R, — R) = R)I— WR)WRY.
Thus
| (Fo — Ea)e|| = 2m)~ So R - | (I — WR)| - || WRe, || « |d\]
= (@m)~rytsup (1 — || WRRD™ - KPb.rii2ar,
€0,
= const - b,7;".
Here we used the fact that || R?|| = r;* for all Aec,. Then
S (F, — E,e, |I! < const. 3, birs? < oo due to (f).
1 1
It follows that F,e, = 0 only for a finite number of n and hence
Silles— ealF <o
We define a linear operator P by the relation Pxr = >\ ¢,p, where
*=3>rce and >7|c¢, [P <ec, We recall that an operator T is called

injective if Tx = 0 implies z = 0.

(viii) I — P is compact and P is injective. Hence P~ is continuous.
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ST =Pt =S lle, — ol <o due to (vii) .

Thus I — P belongs to the Schmidt class and is compact (see [5]).
Assume now that Pr = > c,p, = 0. We apply the projection F, and
get

F, ;. .9, = ¢, Fp, = e, = 0
and ¢, = 0 for every k. Hence x = 0 and P is injective.

Now we end the proof of the theorem. We have to estimate
|| Urz|| for an arbitrary e X. Put y = P~'¢ and assume that y =
Sivrae,. We get ¢ =Py=3a,p and

Urg = UrPy = f_‘, a,Up, = i a,atp, = Pf_‘, a,are, .
1 1 1
Further
1Tl < 1Pl - S aas [ = || Pl - {5 |a, [
=Pl -llygll =PI -NIP]- =],

which implies that || U*|| < || P||||P~'|| for every » and the proof is
finished.

REMARK 4. If C = (K- bir;)* < 27 then || U || < (1 — 20),

Proof. From the proof of (iii) it follows that || WR}|| = C for
all xe Ur C,. Further we get

I(Fa— Ee,ll = (1 — O Kb, < 1

for all n since
a- C)-=K§, Brt=C(l—-C)*< 1.
Hence F,e, # 0 and ¢, = F,e, for all n. Then
II-Plt = Sle. - el < C( -0

and
IP|s1+C1—-C)'=(@1-0)".
Further
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P =ll-I—=P)=Q—-l[I-P])h'=(@1—-0O)1Q-20)".
Finally
Lol =Pl - [P =@ —20)".

An interesting application of the theorem is the second order
equation

Y’ + Cltyy = 0
in a Hilbert space Y, where C(¢) is selfadjoint. Put X = Y@ Y and
_ (Y
u = <y’> Then we get

This equation satisfies the symmetry condition (S) with Q — <_(} g)
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