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UNIQUENESS AND EXISTENCE PROPERTIES
OF BOUNDED OBSERVABLES

STANLEY P. GUDDER

Until recently observables have been nothing more than
self-adjoint operators., However, due to axiomatic formulations
of quantum mechanics, observables have now been placed in a
more abstract setting. With the advent of this abstract
concept comes the natural questions concerning uniqueness and
existence. The uniqueness problem considered here seeks to
answer the question: if two bounded observables have the
same expectations in every state, are the observables equal?
We say that an observable z is the sum of two bounded
observables # and vy if the expectation of z is the sum of the
expectations of £ and y for every state. The existence
problem would pose the question: does the sum of two bounded
observables exist? The author has found only partial answers
to these questions. It is shown that the uniqueness property
holds for simultaneous observables and certain classes of
nonsimulitaneous or complementary observables. The existence
property holds for simultaneous observables, and a counter-
example is given to show that this property does not hold in
general, The last section of this paper considers systems in
which the existence and uniqueness properties are known to
hold.

Besides being mathematically interesting, the uniqueness and
existence properties are also important from the physical standpoint.
Due to the Bohr correspondence principle, the expectation value of an
observable x in a state m is the value one would obtain by measuring
x using a classical experiment, Thus the collection of expectations of
2 would be the set of classical values which an observable z may
attain, The uniqueness property would say that if two bounded
observables are classically equivalent, then they are also equal in the
quantum mechanical sense. The existence property would say that
the sum of two bounded quantum mechanical observables always exists
in the sense defined above. This existence property is so important,
that it is postulated in some models for quantum mechanies. ([3; 4]).

Let us consider two examples which illustrate our problem. Let
(2, S) be a measurable space. The states of this system are the
probability measures on S and the observables are essentially the
measurable functions or random variables on S. (Cf. [5]). The
uniqueness property may be stated: if f and ¢ are bounded measurable

functions, does S Sy = Sgd;t for every probability measure g imply
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f = g? The answer, which is yes, may be seen as follows. Let peQ
and ¢ a probability measure concentrated at p. That is, for each
Ade S, p(4) =1 if and only if ped, Now it is easily seen that

SAfdp = SAgd‘u for each A€ S. Therefore, f =g almost everywhere

with respect to 2, and in particular f(p) = g(p). The existence problem
is even more trivial since f + g is a bounded measurable function and

S(f + g)dp = S fdy + Sgolp. for all probability measures p. For our

next example let H be a Hilbert space with inner product (., ->.
The observables are self-adjoint operators and the pure states are
defined by unit vectors in the standard way. (Cf. [2;5]). The
uniqueness problem is: if A and B are bounded self-adjoint operators,
does <4, Ag> =<4, Bgy for all ¢c H, ||¢||=1 imply A= B? It is
well known that the answer is yes, although the proof is not quite
as simple as in the previous example, The existence problem is again
trivially satisfied since A + B is a bounded self-adjoint operator and

{¢, (A + B)g)> = (g, Ag) + g, Bgy for all g H.

2. Definitions and notation. Let L be a partially ordered set
with first and last elements 0, 1 respectively which is closed under a
complementation a — a’ satisfying

(i) (@) =g

(ii) a < b implies ¥’ < a'.

We denote the least upper bound and greatest lower bound of a, be L,
if they exist, by ¢ \V b and a A b respectively, and assume

(ili) aVva =1 for all ac L,

We say that a, be L are disjoint and write ¢ L b if a <0'. If a L b
we write ¢ + b for a V b, and if a <b we write b —a for b A o,
We say that a, be L split and write a — b if there exist mutually
disjoint elements a,, b,ce L such that e =a,+¢ and b=05, + c.
We call L a logic if it also satisfies

(iv) >ia;e L for any disjoint sequence (a;) C L;

(v) if a, b, ce L mutually split, then ¢ - b V ec.

The elements of a logic L are called propositions, A state is a
nonnegative function m on L satisfying

(1) m(1)=1;

(i) m(X a) = > m(a).

A logic is full in case

(1) if a + b there exists a state m such that m(a) = m(b);

(2) if @+ 0 there exists a state m such that m(a) = 1.

We shall henceforth assume that L has at least three (and hence
four) distinct elements. A logic is quite full if the statement m(b) =1
whenever m(a) = 1 implies the statement @ < b. One should note that
the two examples considered in the introduction are specific cases of
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quite full logics.
Our first lemma shows that a quite full logic is not only full but
that the states preserve order.

LEMMA 2.1, Let L be a quite full logic.

(i) There exist states on L.

(ii) If a # 0 there exists me M such that m(a) = 1.
(iii)) a =0 if and only i1f m(a) = m(b) for all me M.
iv) a = b if and only if mia) < m(b) for all me M.

Proof. (i) If there were no states on L then the following
statement would hold vacuously: m(0) = 1 whenever m(1) = 1. Hence
1<0and 1=0,

(ii) If m(e) <1 for every me M, then the following statement
would hold vacuously: m(0) = 1 whenever m(a) = 1. Hence ¢ = 0 and
there are only two elements in L.

(iii) will follow from (iv), If e <b then b=a + b A & and
m(a) = m(d) — mb A &’) = m). If ma) < md) for every me M,
then m(b) = 1 whenever m(a) =1 and a < b.

An observable x is a map from the Borel sets B(R) of the real
line R into a full logic L which satisfies

(1) =F) =1

(2) x(F) LaF) if ENF = Q;

(3) 2(UE) =3l it BE;NE; =0, t+].

A collection of observables {x,: e 4} is simultaneous if z\(E) — x,(F)
for all £, Fe B(R) and \, e A, If x is an observable and « a Borel
function on R, we define the observable u(x) by u(z)(E) = x[u'(E)]
for all Ee B(R). More generally, if 4 is an n-dimensional Borel
function and #, ---, %, are Borel functions on R, we define the

observable r(u,(x), « -+, u,(x)) by
P(uy(2), =+, W()E) = z{w: y(u(w), -+, u,(0)) € E}

for all Fe B(R).

The spectrum o(x) of an observable z is the smallest closed set
FE such that x(E) = 1. An observable is bounded is o(x) is bounded,
The morm of a bounded observable z if |x|=sup{}|:rea(x)}.
The expectation of an observable x in the state m is

m(x) = S)»m[x(dk)]
if the integral exists.

3. Observables with finite spectra. In this section we collect
some elementary results which will be used in the sequel. Most of
the proofs are routine and we leave their verification to the reader,
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It is easily seen that if an observable © has countable spectrum
o(x) = {\;, Ny, »--}, then = has the form z(E) = > {x(\;): ;€ E}. The
converse does not hold, however, as may be seen from the following
result.

LEMMA 3.1, If there is a countable set K = {\y, Ny, +++} T R such
that x(E) = > {x(\;): M€ B} for every Ee B(R) and xz(\;) =0, 1=
1,2, .-, then o(x) = Cl K.

As a consequence we have:

COROLLARY 3.2. An observable x has finite spectrum o(x) C {\,,
coo, N} of and only if w(E) = 3 {x(\;): N € E} for all Ee B(R).

It is easily seen that the range of an observable is a Boolean
sub c-algebra of L. For this reason, if an observable has infinite
spectrum, its range cannot be countable even if its spectrum is. In
the finite case we have:

THEOREM 3.3. An observable x has a finite range if and only
if o(x) is a finite set,

Proof. The sufficiency follows from Corollary 3.2. To prove
necessity, let B = {a,, - -+, a,} be the range of . Let K = {c,, ++-, ¢}
be the set of distinet nonzero minimal elements of R, ie., ac K if
and only if 0#ac B, and if 0#ce R with ¢ <a, then ¢=a. Now
e; Ne; =0, 14, since if ¢; Ac;=a#0, then acR and a <ec;, a
contradiction., Since E is a Boolean o-algebra, ¢; L ¢;, © # 7. Since
R is finite, every nonzero element of R is ‘="’ at least one element
of K. Now let ac Rand D={d:d;c K, d; <a}. Then a=J,d, since
ifnot 0td=a—S,d;c R, and thereisace K withc<d <a, but c¢ D,
a contradiction, We now claim that there are numbers \;€ R such
that x(\,) =¢;, =1, --+, m. Suppose not, then there is a Borel set
Ee B(R) having more than one point such that ¢; = x(&). For a
positive integer n we have ¢; = x(EN[— n,n]) + (& N [—n, n]).
One of the propositions on the right must be zero and the other c;.
As n increases, the infinite term must eventually be zero since other-
wise ¢; = A.2EN[—n,n]) =2(EN.[— n, n]) =2(¢) =0. Hence
¢; =x(EN[— n,n])=xEN[—n,0]) + (& N (,n]) and we again have
one of the terms equal to 0. Suppose, for definiteness, the first term
is zero. Then ¢; = (& U [0, n]). Continuing in this manner, by taking
smaller closed intervals, and applying a theorem on closed nested
intervals, there exists a number \; such that ¢; = z(E N {\;}) = z(\,).
We then have (U {\;}) = Sl 2{\} = D¢; =1 and o(x) = U {3}

COROLLARY 3.4, If anm observable  has a finite range R, there
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exists an integer m such that R has 2" elements and o(x) has n
elements,

An observable x is a proposition observable if o(x)C{0,1}. If y
is a proposition observable and y({1}) = @ we denote y by z,. If, in
particular, a = ®(E) for some observable x, we denote y by x,.
Of particular importance are the observables I = x, and 0 = z,. Notice
that if I, is the indication function of a set E'e B(R), that I,(x) = x.

LEMMA 3.5. An observable x has spectrum o(x) C{\;, +++, N} of
and only if x = 3 Nap.

LemMMA 3.6. The following statements are equivalent:
(i) =« s a proposition observable

(ii) 2 s an indicator function of an observable;

(iii) 2* = =,

4. Uniqueness properties. The following is proved in [1].

THEOREM 4.1. V(z) = Cl{m(x): me M} is the smallest closed
wnterval containing o(x).

In the sequel =z, y, z will denote bounded observables, We first
prove a weak uniqueness property which holds for all z, y.

LeMMA 4.2, If mu(x)] = m[u(y)] for every DBorel function u
and every m in a full logic, then x = y.

Proof. If E<c B(R), then for every me M, m[z(E)] = m[[(x)] =
m[Iy(y)] = m[y(E)]. Since L is full, x(E) = y(E) and = y.

We now turn to the stronger uniqueness property: if m(x) = m(y)
then 2 = y.

LEMMA 4.3. If x and y are simultaneous on a full logic and
m(x) = m(y) for every me M, then x = y.

Proof. Since ¢ and y are simultaneous m(x — y) = 0. (Theorem
6.1, [1]). Therefore V(z — y) = 0 and by Theorem 4.1 o(x — y) = 0.
Hence £ — y = 0 and = = y.

LEMMA 4.4. If x and y are observables on a full logic with
one or two point spectra and m(x) = m(y) for all me M, then x = y.

Proof. Since V(z) = V(y) we have o(x) = o(y). Hence if either
2 or y has one point spectrum x =y, Now suppose both = and ¥
have two point spectrum {1, \;}. By Lemma 3.5, » = M, + Ny
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and ¥ = Mypy + MYy, Hence for all
m e M, Mm[z(\)] + Aam[e(h)] = Mmy(\)] + Nem[y(o)].
Since z(\,) + x(\y) = y(\) + y(\,) = 1 we have
me(A) ] — Xe) = mLy(A) (M — Xo)

and mx(\,)] = m[y(\,)]. Hence z(\,) = y(\,) and x = y.

A number M€ g(x) is the largest (smallest) spectral point of wx if
r=p W= for all peo(x). It is trivial that every bounded
observable has a unique largest (smallest) spectral point.

THEOREM 4.5. Let m(x) = m(y) for every me M on a quite full
logic. If N\, and p, are the largest spectral points of x and ¥y
respectively, then \, = p, and x(\,) = y(t,).

Proof. Since V(z) = V(y) we have N, = ;. Now we may assume
that the spectra of v and y are positive, since if not we consider
oM =g — vl and y* = y — vI where v is the common smallest spectral
point of # and y. Then o(x’) = o(x) — v = 0 with a similar inequality
for y* and m(z") = m(y®) for all me M. Now the largest spectral
point of z* and y* is A, — v and if the theorem is proved for ax®
and ¥y we have

a(\) = (@ + vI() = D0 — V) =y —v) = y(\) .

Now suppose we have m[z(\;)] = 1. Letting )\, > g#,€0(y) and
E = a(y) — {\, .} we obtain

(1) m=m) = m(y) = am[y(n)] + pomly(es) ]+ S;»my(dk) .

Since m[y(¢)] = 1 — m[y(\)] — S my(dr), (1) may be written in the
E
form

(2) )] = 1+ v — )™ | (11 = Mm@y

If A, is an isolated point of o(y), we may take g, = p for every
reo() — {\}. The second term on the right of (2) is then nonnegative.
Since m[y(\)] £ 1, this term is zero and m[y(\,)] = 1. Suppose, on
the other hand, that )\, is not isolated and that m[y(\,)] # 1. Then
there exists \;, > p°e g(y) such that N = S( , my(dx) > 0. Now let
0, u9)
prea(y) satisfy p° < p' <, and let 0= (p';l — MY)N > 0. We now
find p¢, € o(y) which satisfies:
(1) g <p <\
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(ii) 0"1 - F‘z) < Mo
(i) S Nny(dn) <.

(gsdy

We then obtain

SE(ﬂz - )\l)my(dxl) - (S(O:l-bo) + S(#o»#z) + S(Mzshl))(#z h )\J)my(dk)
= (S(oyuﬂ) + g(#gml))(#z - X)m”(d)\l)

%-mj

20|

%

my@) + | (= vm, ()

(0,0 (HgrAg)

)@—ymmumga—g(“mm@m>o.

(Kosdq Fosdq

This gives a contradiction, and hence m[y(\,)] = 1. Since L is quite
full 2(») = y(\). By symmetry z(\,) = y(\).

COROLLARY. If m(x) = m(y) for all me M on a quite full logic,
then x(\) = y(\) for all neR.

Proof, Let 2" =2 — (N — 2N and ¥ =y — (A, — N)[. Then
m(y™®) = m(y?") for all me M and the largest spectral point of z®
and ¥ is .

THEOREM 4.6. If x has countable spectrum and m(x) = m(y) for
all me M on a quite full logic, then x = y.

Proof. Let a(z) ={\:7=1,2, ...}, Applying the previous co-
rollary, y(o(x)) = > y(\) = > 2(\;) = 1. Therefore o(y) Co(x) and
o(y) is countable. Therefore ¥ has the form

y(B) = Z{y(p): pae o(y) N B} = 3 {z(v): Me a(@) N B} = o(E) .

Notice that the examples in the introduction show that Theorem
4.6 holds for arbitrary bounded observables in case L is the lattice of
closed subspaces of a Hilbert space or a o-field of subsets of a set.

5. Existence properties. We recall that z is the sum of x and
y if m(z) = m(x) + m(y) for every me M. In this case we write
=o + Y.

LemMA 5.1, If z and y are simultaneous then x + y exists,

Proof, This follows from Theorem 3.3 [5].

Notice again that the examples in the introduction show that the
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sum of two arbitrary bounded observables always exists in case I is
the lattice of closed subspaces of a Hilbert space or a o-field of subsets
of a set.

The rest of this section is directed toward finding an example of two
complementary observables whose sum does not exist,

An anti-lattice is a complemented lattice in which the supremum
of any two nonzero elements is 1, It is easily seen that an anti-lattice
is a quite full logic.

LeEmMMA 5.2, A Boolean subalgebra of an anti-lattice L can have
at most 4 elements,

Proof. Let a,b be distinet elements of L not equal to 0 or 1 and
a #=b. We now show that ¢ and & do not split. Suppose, on the
contrary, that @« = a, + ¢ and b = b, + ¢ where a, L b,. Now neither
@, nor b, is 0, hence ¢ = 0 since otherwise a, + ¢ = 1. Therefore
@ L b, But this is impossible since then o’ =a VV ' =1, The result
follows since the elements of a Boolean algebra must split.

COROLLARY. FEwvery observable on an anti-lattice is of the form
&= N2Zy + Ny, Where o(x) = {\;, Ny}

Proof. This follows from Corollary 3.4, Lemma 3.5, and Lemma

5.2,
We may also conclude the uniqueness property from Lemma 5.2,

COROLLARY, If m(x) = m(y) for all me M on an anti-lattice,
then x = y.

THEOREM 5.3. If x and y are complementary observables on an
anti-lattice, then x + y does not exist,

Proof. Suppose a and b do not split and that z =z, + x,. By
the first corollary of Lemma 5.2, 2 = A2, + N,.. Therefore

(A — Amle) + Ny = m(a) + m(b)

for every me M. Now it is easily seen that on an anti-lattice L,
given 0 < a <1 and a € L, there exists a state m such that m(a) =«
and m(b) = 0 for b + a,a’,1. Suppose ¢ = a. Letting m be a state
which is 0 on b and 1 on @ we have )\, = 1. Letting m be a state
which is 0 on @ and 1 on b we have )\, = 1 and hence m(a) + m(d) =1
for all me M which is impossible. Hence ¢ ## a, and in a similar
way ¢ #=a’,b,b,0,1, Now let m satisfy m(a) = a # N\, and m(c) =
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m(b) = 0. This gives a contradiction and hence z does not exist.
Now suppose x + y exists, It must be of the form

T+ Y = ME + ANolor + 4T + T
= (M — X)), + ( — )2 + (N + )]

where a <> b. Since (A, + #,)I is simultaneous with every observable,
x4+ y — (A + )] exists. But this contradicts the previous work.

We next give an example of a quite full logic in which the sum
of certain complementary observables exist while the sum of others do
not., Let L, and L, be logics. The direct product L, ® L, is the set
{(ay, @,): a, € Ly, a, € L,} with the partial ordering (a, b,) = (as, b,) if
a, < a, and b, < b,. It is easy to check that L, ® L, is a logic.

LEMMA 5.4, If L,and L,arelogics with states M,, M, respectively,
then m is a state on L, Q L, if and only if there exist states m,€ M,,
mye M, and 0 = o = 1 such that m(a, b) = am,(a) + (1 — a)my(b).

Proof. The sufficiency is a routing check. To prove necessity,
we first notice that 1 = m(1, 1) = m[(1, 0) + (0, 1)] = m(1, 0) + m(0, 1).
Let us assume that m(1,0), m(0,1) = 0. Now define m, m, as
my(+) = m(-, 0)/m(1, 0) and my(-) = m(0, -)/m(0, 1) respectively. Then
m, € M,, m,e M, and

m(a, b) = m[(a, 0) + (0, b)] = m(a, 0) + m(0, b)
=(1, 0)ymy(a) + [1 — m(1, 0)]m.(d) .

Since m(1, 0) and m(0, 1) cannot both be zero, suppose, for definiteness,
that m(0,1) = 0. Then since (0, a) = (0,1) we have m(0,a) =0 for
all ae L,. Now define m,(-) = m(-,0). Then m,e M, and we have
m(a, b) = m(a, 0) = my(a).

COROLLARY. If L, and L, are full (quite full) logics, so is L; @ L.

LEMMA 5.5. A mecessary and sufficient condition for z to be an
observable on L, @ L, is that there exist observables x,y on L, L,
respectively such that z(E) = (x(E), y(K)).

Proof. The sufficiency is routine. For necessity, let 2 be an
observable on L, ® L, and define x(-), y(-) as (x(E), y(E)) = z(E). It
is easy to check that x and y are observables on L, and L, respectively.

We now construct our example. Let L, be the quite full logic
discussed in the second example in the introduction and let L, be an
anti-lattice. Denote observables on L, and L, by z%, %", ... and
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x®, y? ... respectively. It is easily seen that the sum of two
complementary observables of the form (x®, I®) and (y®, I?) exists,
while the sum of two complementary observables of the form (I, x®)
and (I, y®) does not.

One further remark seems to be in order. If it turns out that
the uniqueness property does not hold, then even if the sum of two
bounded observables exists it may not be unique. We can show this
by an example. Suppose x and y are distinct bounded observables
and that m(x) = m(y) forallme M. Now 2x =2+ y and 2y=2+ y
is easy to check, and hence x + y exists but is not unique.

6. Logics with uniqueness and existence properties. Let L
be an arbitrary logic, (i.e. L is not necessarily full.) If the bounded
observables on L have the uniqueness property, then L is said to have
Property U. If the bounded observables on L have the existence
property, then L is said to have Property E. In the previous paragraph
we noted that if L has Property E but not U then sums need not be
unique. If however, L has Property E and the sums are unique,
then L has Property U. Indeed, suppose L possesses unique sums
and m(x) = m(y) for every state. Then « and y are both the sum of
y and 0 and hence # = y. Now it is not unreasonable to assume that
quantum mechanical logics possess unique sums and hence both pro-
perties U and E. Mackey has speculated Property U by his Axiom
II’ [2] and this property is a consequence of Segal’s axiomatic formula-
tion of quantum mechanics [4]. Property E is postulated in Segal’s
model [4] and von Neumann’s model [3]. In this section we shall give
some consequences of Properties U and E as far as the algebraic and
analytic structure of our present system is concerned. This is only
a preliminary study of this subject and a deeper study may prove
fruitful. We shall close this section with some questions which may
lead to interesting results in this direction.

The proof of the following lemma is trivial.

LemMmA 6.1. If L has Property U, then (iii) of Lemma 2.1 holds.

It is not known whether Property U implies (ii) and (iv) of
Lemma 2.1 or more specifically whether L is full or quite full.

LEeMMA 6.2. If L s quite full and has Property E, then L 1is
a lattice. In fact a N\ b= (x, + x,)({2}).

Proof. Let z=x, + x,. Notice that 0 = m(z) =< 2 for every state
m and hence by Theorem 3.1, a(z) [0, 2]. Let ¢ = 2({2}) and suppose
m(c) = 1. Then m(z) = 2 and m(a) = m(b) =1. Hence ¢ =a,c=b.



UNIQUENESS AND EXISTENCE PROPERTIES 91

Now suppose d <a,d <b. Then m(d) =1 implies m(z) = 2 which
implies m(¢c) =1. Thus d <c and ¢ =a A b.

COROLLARY 6.3. If L s quite full and has Property E, then
(1) [(@. + z){O}] =a A b.

(ii) (x,—@){1h) =a A D',

(iii) 2f a,b, -+, c are a finite number of elements of L,

(ma+xb+"' +xc)({2}):a//\b/\"'/\0.

COROLLARY 6.4. Suppose L is quite full and has Property E.
If m(e) =m@d) =1, then m(a Ab)=1. If m(a) = m(d) =0, then
m(a V b) = 0.

It is shown in [6] that if a full logic L is a lattice and satisfies
the conclusion of Corollary 6.4, then L is quite full. In the remainder
of this section we shall assume that L is quite full and has Properties
U and E. It follows that the set of bounded observables X of L is a
linear space over the field of real numbers.

THEOREM 6.5. (i) X s a normed linear space.
(ii) Denoting the closed comvexr hull of a set E by CH(E),

CH[o(2 + v)] < CH[o(2)] + CH[o(y)] .

Proof. (i) Applying Theorem 6.1 [1],

o + y| = sup {|m(z + y) | : all m} = sup {| m(z) + m(y) |: all m}
< sup{|m(z)]|:all m} + sup {{m(y)|:allm} = |z| + |y].

(ii) Applying Theorem 3.1,

CH[o(z + 9)] = {m(x + ¥) : all m} C {m(2) : all m} + {m(y) : all m}
= CH[o(x)] + CH[o(y)] .

The next theorems illustrate the intimate relation between proposi-
tions and proposition observables.

LEMMA 6.6. If a < b, then x ., = 2,2, and X,y = T, + Ty — 2.

Proof. Applying Proposition 3.5 [5], there exists an observable
z and Borel sets E, F such that a = 2(H), b = 2(F). Therefore,
oy = (@) (%) = (Ig-Ip) (%) = Ipap(®) = @,0. The proof of the second
statement is similar.

THEOREM 6.7. The following three statements are equivalent:
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(i) a Lb.
(ii) =, + «, 2s a proposition observable.
(lii) Ty + Ly = Tyype

Proof. If a L b, then applying the previous lemma
(%o + @)+ (@ + @) = @y + Ty + 20,8, = ¥, + Ty + 2Wop = Vo + Ty

It follows from Lemma 3.6 that =, + x, is a proposition observable.
Conversely, suppose x,+ #, i8S a proposition observable and that
m(a) = 1. Then wm{z, + 2,) =1 + m(d) and hence m(b) = 0. Thus
a=b and a L b. Therefore (i) and (ii) are equivalent. Certainly
(iii) implies (ii). Finally (i) implies (iii) by the previous lemma.

The next theorem may be proved in a similar manner.

COROLLARY 6.8. The following three statements are equivalent:
(i) a=0b.

(ii) @, — @, 1s a proposition cbservable.

(i) @ — @, = Typpy.

Following von Neumann and Segal [3; 4], we define a ‘“‘multi-
plication” of two observables z,y as: xoy = 1/2[(x + v)* — ©* — ¥°].
Note that this multiplication reduces to the usual multiplication when
x and y are simultaneous. This multiplication is ecommutative but, in
general, it is not associative. In fact, let L be the lattice of closed
subspaces of a Hilbert space. Identifying the bounded observables
x, ¥, 2 with self-adjoint operators it is easily shown that (xoy)ez =
zo(yoz) if and only if y commutes with the commutator of « and z
[3]. Two bounded observables z,y are said to be compatible if
xo(zoy) =(xoz)oy for every ze X.

Even the distributive law (¢ 4 y)oz = xoz + yoz does not hold
in general and there seems to be no physical reason for postulating
it, although von Neumann does so. The distributive law is equivalent
to the following: (x + %)* + (x — %)* = 22* + 2y* for all z,ye X, If
the distributive law were to hold, we could write our multiplication
in the following equivalent forms:

xoy:%[x“ryz—(x—y)ﬂz%[(x+y)2—(w~y)2]-

We close this section with a number of questions, for which it
would be quite interesting to have answers. In Lemma 6.6 we showed
that a <« b implies x, 0%, = X .5

(1) Does 2,02, = %, imply a — b?

(2) If xz,0x, is a proposition observable is x,cx, = .57
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Note the similarity to Theorems 6.7, 6.8. The concept of compatibility
was introduced by von Neumann and others.

(3) What is the physical significance of compatibility in our
present system?

(4) What is the relationship, if any, between compatibility and
simultaneity?

REMARK. After the final draft of this paper was completed, the
author received a copy of the Argonne National Laboratory report
7065 by MD. MacLaren. In this report MacLaren assumes properties
U and E and proves Lemma 6.2 under a slightly different axiomatic
system.
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