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ON THE CONVERGENCE OF RESOLVENTS
OF OPERATORS

MINORU HASEGAWA

Let a family of linear operators {4,}(n =1,2,.---) in a
Banach space X have the resolvents {R(4; 4,)} which is equi-
continuous in n. Suppose that {4,} is a Cauchy sequence on
a dense set. Then the question of convergence arises; when
will {R(4; A,)x} be a Cauchy sequence for all e X ?

This problem is treated in some special cases and an
application to the following theorem is presented,

Let A be the generator of a positive contraction semi-
group >, and let B be a linear operator with domain =7(B)
> (A) in a weakly complete Banach lattice X,

Then A + B or its closed extension generates a positive
contraction semi-group >}’ which dominates > if and only if
A + B is dissipative and B is positive,

In this section we consider the above convergence problem in a

Banach space X (cf. [9], [1], [11]).
Let a family of linear operators {A4,}(n = 1,2, -..) satisfy the

following conditions:

(1) for some fixed number A, the resolvent R(\; 4,) = (A — A,)™*
of A, exists which acts on X to the domain <(4,) of A, and satisfies
the norm condition || R(\; A4,) || = K,, where K, is a positive number

independent of =,
(2) there is a dense subspace _,Z on which 4 = lim A, exists.

ProposiTION 1. The limit operator R,(\; A) = lim R(\; A,) exists
on _# " and satisfies the norm condition || R,(\; 4) ||> < K, where 4" =
(\ — A)_# and _¥" is its closure,

Proof. For any xe _# we have

= Az = K |2
and thus obtain
= Al =z KT el — |42 — Az .
Letting n— o, we have
v — Al = KM [ 2] .

It also follows that we can extend (A — A)~' to the bounded linear
operator R,\; A) on .7~ which satisfies
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| RBox; 4) |l = sup {[| R(x; Az s |z || = 1,26 47} = K, .
Further, it is easy to see that, for any xze _#Z
RO A)n —A)e — || = Ky [[ A — Ax ||
which implies that R,(\; 4) = lim R(\; 4,) on 7.
REmMARK 1. This proof shows that if A\ — A)_~ is dense in X

then the convergence problem is solved.
We next remark some modification of the basic lemma in [1].

PRrRoPOSITION 2. The following conditions are equivalent,
(1) lim [[EQ; Ao — RO A)x |l =0 (veX),
(2) lim | RO A)R0G Az — RO A)R0G A)el = 0
o (@e( — A)2).
Proof. For any xe _, n and n/, we have
R(\; A — BN A,
= R(\; A)R(N; A,) (0 — A)x — B(h; A )RB(n; A) (0 — A,
= R(\; A)R(N; A,) (0 — A)z — R(y; A RO A,) (0 — A
+ RN AR Ap)A — Ay
+ R(\; A)R(N; A,)(A, — A .

From this relation and _~ = X, the assertion is readily verified.
ProrosiTioNn 3. If, for some positive integer m,
lim [|{(4, — DR Aol =0 (v )
is satisfied, where _#; is dense in X, then (A — A)_# is dense in X,

Proof. By virtue of the Hahn-Banach extension theorem, if there
exists wx,e _#, — .4, then so does a bounded linear functional F,
acting on X which satisfies the following conditions:

Fz)#0, F@=0 (tet =(n—A4) 7).
For this x, and any %, we have

x, = (v —A)R(N; A,)w,
= (A — ARMK; Az — (A, — AR A,)%,

= (0 — AEMN; Az — (v — AR A)(A, — A)R(N; A,)%,
4 — e
+(=D)™{(4, — ARN; A)}" .
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This relation implies that
Fy(w,) = (—D)"F({(A, — A)R(\; A,)}" «)
and for any n
0 < [Fuwo) | = | Fo || [ {(An — AR(\; A" 2]

which is a contradiction. Consequently we have _#; .4  and the
assertion is proved.

We now concern with a theorem on the perturbation of operators
which will be required in the sequel.

ProposITION 4. Suppose that linear operators A and B satisfy
the following conditions:
(1) for some number A, the equation

N—Ay=2 (zeX)

has a unique solution ¥ = R(\; A)x,
(2) there is a dense subspace .~ such that BR(\; A)_7Z < _# and

lim || {BR(\; Az ]l =0 (xe AZ). (*)
k—oo
Then (A — A — B)R(\; A)_«/ is dense in X,

The proof of this proposition is similar as that of Proposition 3
and is omitted.

REMARK 2. Suppose that for some positive integer k
(sk) IH{BE(\; A e <1

is satisfied, then the condition (x) in Proposition 4 is satisfied.

REMARK 3. Suppose that R(\; A) satisfies the norm condition
[| R(\; A) || = K, in Proposition 4 and that there exist positive constants
a and b such that for any xe _# = R(\; A). .~

[[Bei|=al[Az] + b|la]]
and
a|n| Ky +a+bK,<1.

Then the condition (xx) in Remark 2 is satisfied.

Proof. For any x € _, we have
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| BR(\; A)e || = a|| AR A)z || + b || ROy A)z ||
= a|[MR(N; A)r — || + bK, | @ |

and
|| BR(\; A)z |l = (a | M Ky + a + 0Ky [|ofl < [[z]].

Thus the assertion is proved.

THEOREM 1. Suppose that a family of linear operators {A}(e > 0)
and a closed limear operator A from a Banach space X to X satisfy
the following conditions:

(1) for some fixed number N, the equation

A=Ay =2 (xe X)

has a unique solution y = R(\; A)xe (4. and || R(\; A.) || = K,
where K, 1s a positive number independent of ¢,

(2) 2(4)>24), 24 =LX%

(3) A« = Ax + eBx (x e 2(4)),

|Bx|l = K(x) (ve 2(4),

where K(x) is a positive number independent of e.
Then we have F#(\ — A) = (M — A)=Z2(4A) = X.

Proof. It follows from Proposition 1 that the limit operator
Ry(n; A) exists and bounded on .Z(A — A).

Let (\ — A)x,— vy as w— co. Then it follows from the bound-
edness of R,(\; A) that x, — R,(\; A)y and so that

Az, = AR\ Ay — ¥

as n— oo, Since A is closed, R,\; A)ye 2(4) and ye FH(\ — A).
Thus we have F(\n — A) = F (A — A). It is easy to see that » — A,
is closed and

(N —AJR(\; A)w = (M — A)R(\; A)x
_eB.R(\: A (ve. B — A).

Hence, from the closed graph theorem it follows that B.R,(\; A) is a
bounded linear operator on .ZZ(» — A). Moreover we have, for any
rxe (4),

| B:Ey(\; A) —A)z || = [ B || = K(2) < oo .

Using the resonance theorem it follows that there exists a positive
number L, which is independent of ¢ such that
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” B.Ry(\; A) laa—a = Ly .

Consequently we obtain the basic relation, for any xe = (A4),

lleBw || = [[eB:Ro(x; A)M — A)a ||
sely|[(v — A || = ely [[Ax || + e[ M| Lo |[2]] .

Thus the assertion follows from Remark 3.

REMARK 4. Let A be a closed linear operator with dense domain
Z(A). Suppose that A, = A + ¢B generates a strongly continuous
semi-group of linear contraction operators for every small (0 < ¢ < ¢)
and 2 (4. D =2 (A).

Then A generates a strongly continuous semi-group of linear
contraction operators.

Proof. Using Theorem 1 and Proposition 1, it follows from the
Hille-Yosida theorem. (cf. [3], [11]).

2. The object of this section is to show that some special family
of linear operators {4,}(n = 1,2, .-.) from a weakly complete Banach
lattice X to X satisfies the convergence condition and to solve the
problem on the perturbation theory for semi-groups of operators which
is sited in the introductory part.

Let X be a Banach lattice with a semi-order = and [z, y](z, y € X)

denote a complex-valued (real-valued) function defined on X x X called
a semi-inner product having the following properties (cf. [4], [6], [7]):

(1) [»+y, 2] =[x 2] + [v,2],

(2) [z, y] =M, yl,

(3) [o,a]=ll2]F

(4) =, vl =M=l iyl

(5) if y =0, then [z,y] = 0 for all x = 0,
(6) [o o] =la"[},

where x* = sup (¢, 0), £~ = sup(—=, 0), and |x| = sup (x, —x).
The following theorem is essentially due to Reuter [8].

PROPOSITION 5. Suppose that linear operators 4, and A4, on a
Banach lattice X satisfy the following conditions:
(1) for » = 0,1 and some \ > 0, the equation

MN=Ay=r (reX)

has a unique solution y = R(\; 4,)xe 2 (4,) and
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RyvA)e=0 (x=0),
(2) there exist dense subspaces _# and _#; such that
Ax = Ax *x=0,xe 7)),
RN, Ay A A2 .
Then the following inequality holds:
B\ A = RO\ A)xe (2= 0,xe #)

Proof. If x =0 and xe _#, then R(:v; A)x =0 and R(\; A)x e
_# and thus we have

AR\ A = AR\ A,
(N — A)R0\; Ay = (v — ADR(\; A = o
Operating R(\; 4,), we obtain
R(n; Az = R(h; Ay .

Let > ={T,;t =20} be a one-parameter semi-group of linear
operators from a Banach lattice X to X satisfying the following
conditions:

(1) Te=w, Ty\yo=T,Tx (xeX,t,s=0),

(2) [[Tll=llzll (reX,tz0),

(3) limTw == (z e X),

(4) Tox=0 (x=0,¢£=0).

Such a semi-group is called a strongly continuous semi-group of posi-
tive contraction operators.

The following theorem is due to Phillips and is a variant of the
Hille-Yosida theorem which will be convenient for purpose. (cf. [7]).

THEOREM. (Phillips). A mecessary and sufficient condition for a
linear operator A with dense domain to generate a strongly continuous
semi-group of positive contraction operators 1s that Z(I — A) = X
and that A is dispersive, that is,

|Az, 7] <0 (e Z'(4)) .

THEOREM 2. Suppose that a family of linear operators {A,}
(n=1,2,--.) which generate strongly continuous semi-groups {>..}
of positive contraction operators on a weakly complete Banach lattice
X satisfies the following conditions: there exist dense subspaces _/7,
Ay and {_#,} such that
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(1) lim |42 - Ae|l=0 (ve.72),
(2) f,l,mx =Ax (x=0,2e . 4,),

(3) R(\; A,) A A,

(4) A2 ={ar0e A} C A

Then the limit operator A =lim A, on _Z has a closed exten-
ston A which generates a strongly continuwous semi-group S, of posi-
tive contraction operators.

Movreover we have

T2 = lim T{"x (xe X, t=0),

n— oo

where >, = {T{";t = 0} and > ={T,;;t = 0}.

Proof. By the Hille-Yosida theorem (cf. [3], [11]) we find that
the conditions (1) and (2) in Proposition 5 and the following norm
condition are satisfied for any pair {4,, 4,..}.

RN A | =N (%)
Thus we have, for any =,
R(v; A, = R(\; A (x=0,xe ).

Since X is weakly complete, the norm condition and this inequality
imply that there exists y = 0 such that

lim [| B(x; A)e —y ]| = 0.

From a representation of x: 2 = 2* — x~, we have, for any ze _z,,
using the condition (4),

() lim [ R(x; Au)2 — By Ay)e ] = 0

and we have this convergence relation for all x ¢ X by the condition
#,= X. We denote B(\; A) = lim R(\; A,). Then RB(\; A) is positive
and satisfies the norm condition (x). The assertion is now proved by
Theorem 2 in [1]. We sketch the proof of this theorem.

Since R(:; A,) satisfies the resolvent equation

R(\; A,) — R(V; A,) = — (v — M)R(N; A)ROV; A,)

R(n; A) also does. Then we find that R(\; 4) is a one-to-one
transformation from X to <Z(B(n;A)) and A, = x — R(\; A is
independent of A, that is,

N

Aw = Ax = Ao (xe.=2),
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where # = Z(R(\; A)) = #(R(\; A)).

Then, by the Hille-Yosida theorem, we find that A generates a strongly
continuous semi-group of contraction operators. The positivity and
the convergence of semi-groups are verified by the condition (xx). It
is readily verified that A is a closed extension of A.

REMARK 5. Suppose that a family of linear operators {A4,}
(n=1,2,.-.) which generate strongly continuous semi-groups of
positive contraction operators on a weakly complete Banach lattice X
satisfies the following conditions:

(1) lipl 4, — A, z|| =0 (xe 7)),
where 7 is a dense subspace in X,

(2) Apwcz=4x (2z=0,2e Z(4)),

(3) Z(4.) D Z(4,).

Then the assertion in Theorem 2 is true.

REMARK 6. In Theorem 2, the condition (1) can be replaced by
the following condition:

1" lA|l = K(x) (e ),

where K(xz) is a positive number independent of » and _#; is dense
in X.

Proof. We remark that the convergence of the family of re-
solvents in Theorem 2 does not depend on (1). Then we have, for
any « € _#«,

| A — Az|l = M| Ry A)Aw — RN A A
+ [ A.x — NR(N; A,) AL |
+ [ Ape — AMEB(\; A,) A2 ||
= MR Az — Ry Ay ||
+ [| ROy A)Anz || + (| BOv; A AL ||
= MR\ Az — R(v; Ay || + 20 K(w) .

Letting N — <, we have, for any ¢ > 0,
lAw — Ayl = V[ RBO\; A)e — By Az || + e

and the assertion is proved by (sx).
From Remark 4 in [1] it follows that

RE:MARK 7. Suppose that there exists a dense subspace _#; such
that R(\; A)_#, C .# in Theorem 2, then A is the closure of A.
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We next concern with the generation of contraction semi-groups
which dominate a given semi-group and give an alternative form of
a theorem of Reuter, Miyadera and Olubummo (cf. [8],[5], [6], [7]).

Given a one-parameter semi-group >, = {T,; t = 0} of positive
contraction operators, if >V = {T/; ¢t = 0} is another one, we say that
>V dominates >, if

T)x = T, (x=0,t=0).

In applications, it is important to know whether a given semi-
group >, is dominated by any other semi-group >}.
The following lemmas in a Banach space will be required.

LEMMA. (Lumer and Phillips). If A with dense domain is a
dissipative operator, that is,

Re[dz, 2] =0 (ve =2 (4),

then A has a closed extemsion.

PROPOSITION 6. Suppose that a linear operator A which generates
a strongly continuous semi-group of contraction operators on a Banach
space X and a linear operator B with domain < (B) > &(A4) satisfy
the following condition: A + B has a closed extension. Then

| BR(\; A) || = K
where K is a positive number independent of A > 1 and

}im || BR(:n; A)z || =0 (re X).

The proof of Proposition 6 is readily verified by using the re-
solvent equation and is omitted.

THEOREM 3. In a weakly complete Banach lattice X let A be the
generator of a positive contraction semi-group >, and let B be a
lenear operator with domain < (B) D < (A). Then A, = A + B or its
closed extension generates a positive contraction semi-group >, which
dominates >, if and only if

(1) Re[Aw,2] =0  (ve Z(4)),
(2) Bx =0 (x =0, xe =(A4)).
Proof. To prove the sufficiency of the conditions (1) and (2), we

approximate A, by a sequence of linear operators {4,,} in the follow-
ing way. Define a sequence of linear operators {4,,.} by
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A,»= A+ (n — \)BR(n; A) (n =)
and {B,,\} by

Bn»)\ = An+l:)\ - An,x
= BR(n + 1; A)(» — A)R(n; A) (n=N).
Then it follows from Lemma (Lumer and Phillips) and Proposition 6
that there is a positive integer L independent of » and ) such that
| Biall = L.
If we assume that the resolvent R(\; 4,,) exists which acts on

X and is positive for some )\ and » (n = \), then we have, for any
=0,

MEOG Ay [P = INEOG A,0)2, ROV A2
é [/\'R(k'; An»}\)xy R()’; An;)\)x]
— Re [ALRO\'; Am)\)xy R()\,; An,?\)x] .

Using Theorem (Phillips), we remark that A is a dispersive operator.
Thus we have

Re[A.R(\; A0z, R(N; A,2]
= Re [AR(N; A’n:)\)x7 RO\'; An,)\)x]
+ Re [BR()’; An:)\)xy R(k’; An:h)x]
= [AlR()\’; Any)»)xy R(/\’; An»)\)x] .
Hence we obtain
NIER(OG; A0 P
é [NRD\'; Anr)\)xy R(>\’; Anyl\)x] - [AIRO\'; Am)\)xy RO"; Any)\)a}]
é [ﬁl’;, R(N; An,}\)x] )
where the last inequality holds by virtue of the formula

(v — AR(; 4,
=2 + (n — N)BR(n; AYR(\; AT .

Thus we obtain, for any « = 0 and then for any ze X,
A “ R(>\’; An:)\)a; H é H €L ” .

By induction on n we next show that the resolvent R(\; 4,,))
exists which acts on X and is positive for any » > L and anyn =\, It
is clear that R(\; 4,,,) = R(\; A) is a positive operator forany » > L.
Suppose that R(\; 4,,,) is positive for any A > L and some n, then
we have || B,.R(\; A, Il < 1. It follows from this norm condition
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that R(\; 4,..,») exists which acts on X and is given by the follow-
ing formula (cf. [3], [11]):

B0 Ay ) = 5 ROG A BB Al

Since B, R(\; A,,,) is positive, it follows that
R\ Apin )z =2 R(v; A)e =200 (v =0) .

Hence, using the weakly completeness of X, we have for any @ =0
and then z ¢ X,

lim ”R(/\'; Anu\)x - R<K; An’;)\)x H = 0 .

n,n’—oo

To show that {R(\; A,,)x}(0 < X\ < \) is also a Cauchy sequence
for any x e X, we make use of the relation

\Ag

RO\/ - ;l; An,)\) = . ﬁlk——lR()‘; An:)u)k ’

,..
1

where, provided that || < A, the right hand side converges uniformly
in » (ef. [3], [11]). It also follows from this formula that NE(\'; A4,.))
is positive and is a contraction operator for any \'(0 < A < \).

Let & be a positive integer such that &k > L. We define, for any
ANk,

B(n; Ay = lim R(n; 4, (xe X).

n—oco

Then it is easy to see that {R(\; A.);n < k} satisfies the resolvent
equation and the norm condition \ || R(:; 4,) | < 1.

Moreover {R(\; A,)}. is a consistent family of resolvents in the
following sense:

Bov; A)e = Ry, A)e (e X Av<k<E).
In fact, we have the inequality
| B(x; Awye — ROy A ||
= [[R(v; Ap)x — R Aue)w ||

+ [1 + A7k — k)L || ROy; A,)e — B Az ]|
+ Nk — k) || BR(n; AR A |

and letting % — <, we obtain the desired result.
Since {R(\; A,)}. is consistent, we have a family of resolvents

(R A)); B A) = By 4 (V= k)

which satisfies the norm condition ) || B(n; 4) ]| < 1.
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Then, using the same method as that in the proof of Theorem 2,
we find that A, = » — B(\; A,)~" generates a strongly continuous semi-
group >, of positive contraction operators which dominates >, and
that A, is a closed extension of A,.

We now prove the inverse part. Let 3, = {T,;¢ =0} and >/ =
{T!; t = 0}, Then the condition (1) follows from

Re[Ax, ] = lim Re [t (T/x — x), «]

t—0+

= lim ¢t*Re {[Tx, ] — [z, =]}
-0+
=0 (xe Z(4)),
and (2) follows from

Az = lim ¢t Y(T/x — ) = lim ¢t (Tyx — x) = Ax (x=0,xe =2(4)).
-9+

t—0+

Thus the assertion is proved.

REMARK 8. In Theorem 3 any one of the following conditions
can take the place of the condition (1).

1) [Ax,2] =0 (x = 0,ve Z(4))

and A, has a closed extension,

1" [Az, 2] £ 0 (x=0,xe 2(4))

and BR(\; A) is a bounded linear operator for any » > 0.

The contents of this section will be discussed in [2] by virtue of
the notation of Gateaux differentials.

The author wishes to express his gratitude to Professor Isao
Miyadera for his valuable advice.

REFERENCES

1. M. Hasegawa, A mnote on the convergence of semi-groups of operators, Proc. Japan
Acad. 40 (1964), 262-266.

2. , On contraction semi-groups and (di)-operators (in preparation)

3. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, American
Mathematical Society, 1957.

4. G. Lumer and R. S. Phillips, Dissipative operators in a Bamach space, Pacific J.
Math. 11 (1961), 679-698.

5. I. Miyadera, A note on contraction semi-groups of operators, Tohoku Math. J. 11
(1959), 98-105.

6. A. Olubummo, A note on perturbation theory for semi-groups of operators, Proc.
Amer. Math. Soc. 16 (1964), 818-822.

7. R. S. Phillips, Semi-groups of positive contraction operators, Czechoslovak Math.
J. 12 (1962), 294-313.




ON THE CONVERGENCE OF RESOLVENTS OF OPERATORS 47

8. G. E. H. Reuter, A note on contraction semi-groups, Math. Scand. 3 (1955),

275-280.

9. H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8
(1958), 887-919.

10. , On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10
(1959), 545-551.

11. K. Yoshida, Functional Analysis, Springer, Berlin, 1965.

Received October 27, 1965.

WASEDA UNIVERSITY, TOKYO








