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ABELIAN OBJECTS

MARY GRAY

In a category with a zero object, products and coproducts
and in which the map

10
01
A+B—AXB

is an epimorphism, we define abelian objects. We show that
the product of abelian objects is also a coproduct for the
subcategory consisting of all the abelian objects. Moreover,
we prove that abelian objects constitute abelian subcategories
of certain not-necessarily abelian categories, thus obtaining
a generalization of the subcategory of the category of groups
consisting of all abelian groups.

2. Definition and properties of Abelian objects. The direct
product is not a coproduct in the category of groups as it is in the
category of abelian groups. What is lacking is a canonical map from
the product, i.e., the sum map of abelian groups; in particular, we
need a map A x A— A which when composed with (1, 0) or (0,1) is
the identity on A. For abelian groups this is the map (1, + 1,) (where
(a, 0)(f + 9) = af + bg). On the other hand if such a mapa exists,
then for a,be A, since (0,a) + (b,0) = ((0 +b),(a +0)), a +b =
(0, @) + (b,0))x = ((0 + b), (@ + 0))x = b + a since (1,0)x = (0,1)x = 1,
i.e., A is abelian.

This suggests that if we consider only objects where there is
always a unique morphism from the product of the object with itself
to either component which composes with either (1, 0) or (0, 1) to give
the identity, we should get a generalization of abelian groups, provided
the original category has certain properties which the category of
groups has. Isbell [3] has also considered the existence of this map.

Let & be a category with a zero object, products and coproducts
and in which the map

(6 9)

A+ A4, —A X A4,

is an epimorphism for each A4,, A, . We assume that all categories
considered are sufficiently small that the (representatives of) subobjects
(and quotient objects) of a given object form a set.

DEFINITION. Let .o~ be the full subcategory of & determined
by those Ae % which have a morphism j from A X A — A such that
(1,0) = (0,1)5 =1,. We call the objects of & abelian objects.
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THEOREM 1. The product of abelian objects is abelian.

Proof. Suppose A; x A, is the product of abelian objects A; with
projection maps p;, © = 1,2. We form the following products:

(Al X A2)k -_— (Al X Az) X (Al X Az) —?‘1_’ (Al X Az)i
(A)e — A X A, '&—’ (4;)

Ay X Ay —— (4 X A) % (A % A) 2 4, x A,

1=1,2,5=12, k=1,2, and we use the symbol 4,— A, X 4, to
mean the map (1,,0) for k =1, (0,1,) for £ = 2. Then we have

2; = (DIDsy Di): (A X A3) X (A X A)) — A; X A,

so that

(A % Ao — (A X A) % (A % A) —5 A, x A, -2 (A)
— (A X A —— (A X A) % (A, x 4) 2 (4, x 4), -2 A,

(by definition of z;) and this is equal to

(A % A =25 (A — A, x A, -2 (A

since both are projections or zero depending upon whether or not
7 = k. Moreover, the p! are right cancellable since the results hold
for both 7 =1, 1 =2, and A, x A; is a product. Since the A; are
abelian, there is a morphism x;: A; X A;— A; such that (1,,0)x; =
(0,1,)%; =1,,. So we define y = (plw, p;'x;), 2 = (2, 2,). Then we
have

X2

A, X A, 2,4
2" Ipé' D2

(A, X A) X (A X A) —— (4, x 4) X (4, x 4) —L> A, x 4,
i ot g
A X A, Lo,

commutative from the definitions of z;, ¥ and 2. But by the above



ABELIAN OBJECTS 71

(A X Ay — (A X A) X (A; X A) —— (4, X A) X (4; X A))
L4, x A) -5 4,
= (A X Ay — (A X Ay X (A X A) —25 A, x A, — A,
= (4 X A)y— () — A, X A —25 A, = A, x 4,25 A,
— A x A A x A A,
1=1,2, k=1,2. Now the p,; are right cancellable since the equations

hold for i = 1,2. Hence (1,4, 0)2y = 1,4, and (0, 1, 4)20 = 1, .4,
i.e., zy is the desired map.

PRrROPOSITION. X 1is abelian if and only if every morphism

<§> A + A,— X can be factored through A, x A4,. (4, 4, not

necessarily abelian)

10
Proof. If X is abelian we have (f):<0 1)(f, g9)x, Wwhere
g

X x X—2» X is the abelianess map. If X has the given property,
it is abelian by virtue of factorization of G)

THEOREM 2. The product of abelian objects in & 1is also their
coproduct in the subcategory of abelian objects.

Proof. If A, and A, are abelian, so is their product and since
10
(0 1) is an epimorphism the factorization of the proposition above is
unique.

3. Abelian subcategories. We now define a type of category
in which it will be shown that the abelian objects form an abelian
subcategory.

DEFINITION. The image of a map A — B is the smallest subobject
of B such that A—B factors through the representative monomorphisms.

We define coimage dually.

DEFINITION. Let .&” be a category with a zero object, products
and coproducts, satisfying the following conditions:
(1) If K— A is a kernel and A— B is an epimorphism, then
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image (K — B) is a kernel.

(2) Any morphism of & may be factored into (representatives
of) its coimage followed by its image.

(3) Every epimorphism is a cokernel.
Then & is called a nmearly abelian category.

Clearly the category of groups and group homomorphisms satisfies
these conditions.

THEOREM 3. Let & be a nearly abelian category. The subcategory
&7 of abelian objects of & is an abelian category.

Proof. A zero object is clearly abelian,

Products and coproducts are abelian by Theorems 1 and 2 and
the following lemma:

LEMMA 0. In a category & with zero object, products, coproducts,
and satisfying conditions (2) and (3).

B9
A, — A X A4,

18 an epimorphism, for each A, A,€ &.
We first prove

LEmmA 1. If f:A— B and g: B— C are such that g and fg
have images, then the image of fg is contained in the image of g.

Proof. Let I —C be the image of g. Then A—B—I1—C =
A — B—C so that I — C contains the image of fg.

LEMMA 2. In a category & with coproducts and images the
subobjects of a given object form a complete lattice.

Proof. Let {s;: A;— A|jecJ} represent an arbitrary set of
subobjects of Ae¥. Let {u;; A;—23A;|jeJ} be the coproduct of
the A;. Let u be the unique morphism YA; — A whose composition
with u; is s; for each j. Let I — A be the image of u. Then we have

VA

so that
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4;
l
I

A; — I is a monomorphism since s; is. Hence I — A is an upper bound.
Suppose s’: A’— A is an upper bound for the s;. Let s} be such
that

AN
/

commutes.

Sj
/
)

4,5
<

A’ commutes.

A

Let v be the unique morphism YA, — A’ whose composition with u;
is s for each j. Then we have u;vs’ = u;u; therefore vs’ = u by
definition of coproduct. Hence the image of % = the image of vs’ is
contained in s’ by the preceding lemma. Thus the image of % is the
Lu.b.

Let {s}: A,— A|ke K} be the set of monomorphisms s: A’ — A4
with s’ contained in s; for all jeJ. Then there exists s”, the lLu.b.
of {s;|ke K} (as constructed above), and s” is the g.l.b. of {s;|jeJ).

Proof of Lemma 0. We have

10
Al_u_‘,A1+A2(O—12A1 X Az—p—luéll:Al—(l’—o)uﬁl1 X A2—£1—>A1

10
and similarly for p,. Then u1<0 1) = (1, 0) since the equations hold

10
for both projections. Similarly uz(o 1) = (0,1). By the construction

of Lemma 2, the 1.u.b. of (1, 0) and (0, 1) is image (A4, + 4,— A4, X A,).
Hence by definition of product, domain image (4, + 4.,— A4, X 4,) is
(isomorphic to) 4; X A,. Thus
A1 -+ Az"_) A]_ X A2
= coimage (A, + A,— A, X A))(4; X A,—— A, X A,)

(6 3)
-

A+ 4,284, % A2>(A1 % Ay —— A, X Ay

and since 4, X 4, — A, X A, is right cancellable,

10
(O 1) = coimage (4, + A,— A, X A,)
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and hence it is an epimorphism.

It now remains to show only that every morphism has both a
kernel and a cokernel and that every monomorphism is a kernel and
that every epimorphism is a cokernel.

LEMMA 2*. In a category with products and coimages the quotient
objects of a given object form a complete lattice.

Proof. The proof is dual to that of Lemma 2.

LEMMA 3. If every morphism of a categdry & with a zero
object and coproducts (products) can be factored into an epimorphism
followed by a monomorphism, then every morphism has a kernel
(cokernel).

Proof. We prove the coproducts and kernels case; the other
proceeds dually. Let A— B be a morphism of &, Consider the
coproduct YA4; of all subobjects of A such that 4,— A4 — B = 0. Then
YA; — A— B =0 by definition of coproduct so let A, - A = J4; —
I— A, YA, — I an epimorphism, I — A a monomorphism, i.e., we have

I

VRN
/ N

A; FA; A B = 0 commutative.

Then YA;—-I—A— B =0 and since Y4;— I is an epimorphism,
I—A— B=0. Moreover, I — A is an upper bound for the A;, for
there is a map A; —I = A; —» 3A; — I such that

I— A
.

A; commutative.

for each A;. Hence I — A is the desired kernel.

LEMMA 4. In a category & with kernels and cokernels in which
every epimorphism 1s a cokernel, if A— B factors through an
epimorphism A— C and a monomorphism C— B, this factorization
18 unique up to equivalence.

Proof. Suppose A— C'— B and A — C — B are two factorizations
of A— B into an epimorphism followed by a monomorphism. Let
K — A be the kernel of A— C; then A — C is the cokernel of K— 4
and similarly for K'— A and A—C’. Then K—-A—-C'—-B=0



ABELIAN OBJECTS 75

and K — A— C’' = 0 since C’'— B is right cancellable. Hence K — A
is contained in K’— A and hence A — C contains 4 — C’. Similarly
A— C’ contains A— C. Now we have

A—C—B
AN H /!
N
C’ where both triangles commute.
Since A — C’ is an epimorphism, C'— C— B = C'— B and similarly

C—C'—-B=C—B. Hence C'— B and C — B are also equivalent,

LEMMA 5. In a category as in Lemma 0 if f:A— B is an
epimorphism and g: B— C, then image of fg = image of g.

Proof. Let I — C be the image of B—C. Then A— I is the
composition of epimorphisms

A-L.B 9, ¢

\l/
NS
I

and hence an epimorphism. Thus by Lemma 4 it is the coimage of
A—C and I — C is the image of A — C.

LEMMA 6. In a category such as in Lemma 0, if m,;: A, — A,
m,: A,— A are monomorphisms and f: A— C, then
image ((l.u.b. {m,, m,}) ) = image (l.u.b. {image m,f, image m,f}) .
Proof. Let u;: A;— A, + A, uit A} — Al + A}, where A.—C is
the image of m,;f. Then we have

(coimage (m1f )u{) (@mage (m1f ))
coimage (mzf)ul A A image (mz f)
1 2 >

(image (m;f))

image (mzf)

=~ C

A, -5 A + A, c

coimage (mif)

A; Al + A

coimage (mif) (image m: f)

A;

mi
=Aii>Al+A2@>A—f-+C.

C

coimage (m, f )u{) (image (m.f ))

Since these equations hold for u, and uz,( . .

coimage (m, f)us/ \image (m, f)
( 1) f. Then image <Ai _, A + A, — Al + A;) is contained in the
m,
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image of A, + A,— A} + Al. But by the factorization above and the
fact that A, + A, is a coproduct, the image of A, — A, + A,— A} + A;
is ui. Thus since the l.u.b. of the wu;,’s is A + A, — A; + A;, this
identity is the image of A, + A,— A, + A, and A, + A,— A, + A] is
its own coimage and hence an epimorpism. Then the image of
coimage (m,f)u;\ [image (m,f)
(coimage (mof )u;) (image (m.f)
Lemma 5.
Also we have

s (3] = ma s ()]

since the coimage of (%1

) is the image of the second map by

) is an epimorphism. We have
2

X

coimage( m;)f _— - image( 'm;) f
 + 4, A Cc
coimage(ﬁ;>\\ //‘ image(%é) =z //‘ image zf

I ————— Y where everything commutes.
Then

image [(image (fnn@:)) f ] = image ((l.u.b. {m,, m,})f)
= image (l.u.b. {image (m,f), image (m.f)})

since we get from the above that

. [(coimage (m.f )ui> (image (m.f ))J . [(image (m.f )ﬂ
image = Image

coimage (m,f)u;/\image (m.,f) image (m,f)
s m, _ . m,
= g ()] = maime (3}
which proves the lemma,

We now show that any subobject of an abelian object is an abelian
object. If in particular the subobject is the kernel in . of a morphism
of .o, then it is in % and clearly is the kernel in .%”. Suppose
k: K — A is a subobject of an abelian object A. Let K x K be the
product of K with itself, p, its projection morphisms, p} the projection
morphisms for A x A. Let x be the morphism A x A— A such that

A —AxA-"sA4=1,4i=12 Let y= (pk, pk) so that K,—
KxK-Y>AxA-"3A=F as in Theorem 2. K x K—K x K is
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the lL.u.b. of K, - K X K and K,— K X K so

image ((I.u.b. {K;, — K X K, K,—— K x K})yx) = image yx .

Moreover,

L.u.b. {image (Kl — K x K2, A), image <K2 — K x K%, A>}

= image k

and by Lemma 6, image yx = image k.
Now we let 2': K x K — K be the coimage of yx. Then (1., 0)2'k =
(1x, 0)(coimage (yx))(image (yx)) = (1, 0)yx = k(1,, 0)x = k(by definition
of ) and similarly for (0, 1.). Then k is right cancellable so (1, 0)a’ =
1z and (0, 1.)2’ = 1. Hence 2’ is the desired morphism and K € .o~
Dually to the above, any quotient object of an abelian object is
abelian, and in particular the cokernel of a morphism of .o~ is in .o7.
We now show that all monomorphisms of .o~ are kernels. Suppose

f: A — B is a monomorphism of .~. Let Bx B—"%B, Ax B-P 4
A x B-2, B be products. Then we have (pif,p): A x B— B x B
andA(lo)AxB—>B><B A——»B(IO)BXB since followed by

either p; they are equal. Moreover, B—> AXxB—BxB=B" o
B x B. Let j be the morphlsm such that (1;, O)g =1; = (0, 1,)j.

Then B~ Ax B—BxB—>B=B"% Bx B9 .B=1, hence
(pLf, p))j is an epimorphism since 1; is. Then

’

A—sAxB—>BxB-2.B

f (1,0)

AL, g B i, p_at,p.

Now A— A Xx B is a kernel of A x B— B and since 4 X B—

B x B—2» B is an epimorphism, A—A x B—~Bx B—2>B=A—
B = image (A — B) (since A— B is a monomorphism) is a kernel by
condition (1).

If f: A— B is an epimorphism in . we form its kernel as above
and it is the cokernel of its kernel. It remains to show that if f is
an epimorphism of .7, it is an epimorphism of .&”.

Suppose f: A— B is an epimorphism of .9~. Then suppose B— [
is the cokernel of A — B. Since I is abelian and A — B is left cancel-
lable in .o, B—~1I =0, i.e., the cokernel of f is zero. Then its
kernel is the image of f, which is then equivalent to B— B, i.e.,
A — B is its own coimage and hence an epimorphism.

Thus .o is abelian, completing the proof of Theorem 3.
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4. H-spaces. In the category .7 of topological spaces with base
points and continuous maps taking base points into base points, we
call a map p: X X X — X (Cartesian product) a continuous multipli-
cation. We denote (a, b) by ab. The correspondences x— ax and
x — xa for a given a € X determine the maps L,: X —» X, R;: X — X.
A base point a e X is a homotopy wunit if o is idempotent and L, and
R, are homotopic to the identity map relative to a. R, and L, are
continuous by definition and take base points into base points since a
is idempotent. X is an H-space if it has a continuous multiplication
with homotopy unit.

Clearly R, factors through X x X (which is obviously a product

in this category) as X @» X x X2, X, and similarlyf or L,. If a

is a homotopy unit,
x xw x A x =R ~1,
x x v x A x=1,~1,.

Now consider the functor m, from the category .7~ to the category
< of groups and group homomorphisms which assigns to each object
of 7 its fundamental group. We know that (X x X))z, =
(X)m, x (X)x, (group direct product) so we have

1,0)74

Xz — 2 (X, % (X)m E5 (X = (R)m = (Lo,

(since R, =~ 1y) = lix.. Moreover, (1,0)w, = (1x,0) and similarly
for (0, 1)7, by definition of product and functor. Hence (g)r, is the
required map in the definition of abelian objects. Thus we obtain the
well-known result that the fundamental group of an H-space is abelian.

The author wishes to thank the referee for his many helpful

suggestions.
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