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TRANSFORMATIONS ON TENSOR SPACES

Roy WESTWICK

In this paper we consider those linear transformations
from one tensor product of vector spaces to another which
carry nonzero decomposable tensors into nonzero decomposable
tensors. We obtain a general decomposition theorem for such
transformations. If we suppose further that the transformation
maps the space into itself then we have a complete structure
theorem in the following two cases: (1) the transformation
is onto, and (2) the field is algebraically closed and the tensor
space is a product of finite dimensional vector spaces, The
main results are contained in Theorems 3.5 and 3.8 which
state that the transformation 7: U, ® - - QU, - U, Q - - Q U,
has the form T(2; Q-+ R 2,) = T1(%r1) Q-+ @ To(Xz(n)) Where
Tyt Uxiy — U; are nonsingular and = is a permutation, Case
(2) generalizes a theorem of Marcus and Moyls.

Let F be a field and {U,: a € A} be a finite set of vector spaces
over F. Let (U,t) = (R(U,:ac A),t) be a tensor product. Then U
is a vector space over F, t: ] (U,: a€ A)— U is multilinear and, for
any vector space V over F' and multilinear map f: [I (U,:ac A)—V,
there is a unique linear transformation ¢g: U — V such that ¢g-.¢t = f.
The decomposable tensors of U are defined to be the vectors
t(T1 (u,: a € A)), denoted by &Q(u,: a € A), where u,€ U, for ac A.

The proofs of the main theorems are based on the purely combi-
natorial results of the following section.

2. Adjacency preserving functions. In this section we define
the adjacency preserving functions and find a decomposition theorem
for them.

Let A be a nonempty finite set and for each ac A let S, be a
nonempty set. If J is a nonempty subset of A we let p, denote
the projection of ] (S,: @ € A) onto I (S,:aecJ). If J = {a} we write p,
for p,.

For each J & A we define an equivalence relation, denoted by
=(mod J), on I (S,: @ € A) by setting « =y (modJ) if and only if
P.(2) = p(y) for all ae A\J. If X S II (S,: @ € A) is a nonempty subset
of equivalent elements relative to =(mod J) then we call X a J-subset.
If J = {a} is a singleton we use a-subset for J-subset. We note the
following

2.1. LeEMMA. A subset X S [](S,:acA) is an equivalence class
relative to = (mod J) of and only if p(X) =TI (S,:aed) and p(X)
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is a singleton for each ac A\J.

The equivalence classes will be called maximal J-subsets.

On the set of subsets of ] (S,:ac A) we define, for each J < A4,
the relation adj(mod J) by setting X adj Y (mod J) if and only if X
and Y are J-subsets and for precisely one ac A\J we have p,(X) +#
p(Y). If 2, yeIl(S.:aec ) and {x}adj{y} (mod 4) then we say that

¢ and y are adjacent. The relation adj(modJ) is symmetric but
neither reflexive non transitive,

2.2, LEMMA. Let J S A and let X and Y be distinct maximal
J-subsets of Tl (S.:a€ A). Then there is a finite sequence X,, -+, X,
of maximal J-subsets such that X = X,, Y = X, and X;adj X, ,(mod J)
for 1 =1, .-, n —1,

Proof. Let a, ---,a, be the distinct elements of A\J for which
Do (X) # Do (Y). Then the maximal J-subsets X; for which P, (X)) =
P (Y) for j <1 and Do (X)) = p.(X) for j > will suffice.

2.3. DEeFINITION. A function from one cartesian product of sets
into another is an adjacency preserving function if and only if the
images of adjacent elements are adjacent.

2.4, LEMMA. Let f: 1 (S.:acA) — II (R;: bec B) be an adjacency
preserving function. For each ac A let S, contain at least three
elements. Then there is a function o: A — B such that for any ce A
and any maximal c-subset X of [[(S.,:acA), f(X) is a o(c)-subset
of TI (R,:be B). '

Proof. Let ce A and let X be a maximal c-subset of [] (S,: a € 4).
Then f(X) is a d-subset of ] (R,:be B) for some de B, where d
depends on ¢ and X. For, let x, and «, be distinct elements of X
and let d ¢ B be that element of B for which p,(f(x)) # p.(f(x)).
Then, for any z € X, pi(f(x)) differs from at least one of the p.,(f(x;))
and so p,(f(x)) is independent of x e X for b = d. Therefore f(X) is
a d-subset. We let o(c, X) = d. We show that g(c, X) is independent
of the maximal c-subset X. Suppose the contrary. Then, from
Lemma 2.2 it follows easily that there is a pair of maximal c-subsets
X and Y for which X adj Y(mod {¢}) and o(¢c, X) = d, # d, = 0(c, Y).
Let ¢’ be the unique element of A for which p,(X) # p.(Y). Let
¢: X — Y be defined on each xe X by p.(q(x)) = p.(x) if a ¢ and
2.(q(®)) = p.(Y). Then ¢ is one-to-one, onto, and for each ¢ X the
pair « and q(x) are adjacent. Since S, has at least three elements
there are at least two elements ¢ € X such that p, (f(x)) # p4(f(Y)),
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and of these, at least one for which p,,(f(q(2))) # p4,(f(X)). Now,
for any x € X satisfying both of these inequalities, f(x) and f(q(x))
are not adjacent, contrary to the hypothesis on f. Therefore d(c, X)
is independent of the c-subset X and so d(c) = o(c, X) is a well defined
function satisfying the conclusion of the lemma.

2.5, THEOREM. Let f:][(S.:ac A)—TI(R,:be B) be an adjacency
preserving function and suppose that each S, contains at least three
elements, Then there is a partition of A into subsets A,, +--, A,
and distinct elements b, ---, b, of B such that for each t =1, .-,k
there is a function fi;: 1 (S.:ae A)— Ry, salisfying py,-f = fi*Da,.
Furthermore, the image of 11 (S.: a € A) under f is the set T (Q,:b e B)
where @, is the tmage of Il (S,: a€ A) under (p,-f).

Proof. Let o be given as in Lemma 2.4, Let {b, .-+, b} = g(A)
and let A; = ¢7'(b,). Then A, ---, A, is a partition of A. Let J be
one of the A; and b the corresponding b,. Let X be a maximal
J-subset of [[ (S,:aec ). We define fy: [ (S.:aed)— R, by

fe=0 (0,1 X))

Then f, is well defined since (p,|X) is a one-to-one function from
X onto [ (S,:acd). We prove that f, = f, for any two maximal
J-subsets X and Y. Suppose the contrary. Then, from Lemma 2.2,
it follows that we can choose maximal J-subsets X and Y such that
X adj Y(mod J) and f; = fy. Let a’ € A\J be that element for which
D.(X) # p.(Y). Choose se[] (S,:aeJ) such that f(s) #= fy(s). Let
2= (p,;, X)"'(s) and y = (p,|Y)7'(s). Then xe X and ye Y are a pair
of adjacent elements of ][ (S,:ac A). If we let b’ = o(a’) then &’ == b
gsince a’¢J = o7'(b). Therefore, f(x) and f(y) are adjacent and b’
is the only element of B for which p,.(f(x)) # p,.(f(¥)). But p,(f(x))=
fi(s) == fi(s) = p(f(¥)), a contradiction.

For each ¢ we set f;, = fy where X is any maximal A;-subset of

11 (S.:acA). Then, if xe][(S,:acA), we choose a maximal A;-
subset X containing z and note that

(fir0a)@®) = (Do S+ (0, | X)TND4,(2)) = (0 )@

If be o(A) then the image of T[(S,:acA) under (p,-f) consists
of one element of R,. In fact, suppose x and y are adjacent elements
of TI (S,:ae A). Then f(x) and f(y) are adjacent and the element
b’ e B for which p,(f(2)) # p,(f(y)) is in d(A). Then (p,-f)(x) =
(Dy+ F)Y).

It is clear that f(JI (S,:ac A) = I (Q,: b€ B). To show that we
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have equality, suppose that z e [] (Q,: be B). Choose y,c I (S,:ac A)
such that (p,- f)(¥;) = ps(x). Choose y € [] (S.: a € A) such that p, (y) =
Da¥s;) for ©=1,--. k. This can be done since the sets 4, ---, 4,
are pairwise digjoint. If b¢o(4) then (p,-f)(y) = p,(x) since the
image is independent of y. For b; we have (p,,-f)(¥) = f4,(D4,(¥)) =
Fa,04,(¥5)) = 2o (f(3,)) = Dy (). Therefore f(y) = x, and this completes
the proof.

3. The preservers of decomposable tensors. In this section
we require the

3.1. LEMMA. Let U =Q (U,:ac A) be a tensor product where
the U, are vector spaces over a field F. Let x,, x.,c U, for acA.
Then

1) R@,:acd)=0 tf and only if x, =0 for some ac A.

Q) If x=Q®,;acA) and ' = Q (x,:ac A) are nonzero de-
composable tensors then,

(@) x> =<a" if and only iof {x,> = x> for ac A.
(b) =z + o’ is a decomposable tensor if and only if (x> =

x> for all except possibly ome ac A.

Proof. The statements (1) and (2)(a) are elementary properties
of U. The sufficiency of the condition in (2)(b) is clear. We prove
the necessity of this condition by the following indirect argument.
Suppose  + &' = Q (Y.: @ € A) where {z,> # {x;> and (x> + (x> for
a pair of indicies b and ¢. We may suppose that {y,> # <{x,>. We
define a function f:[[ (U,:ac A)— F as follows. For each ac 4 we
choose a linear functional f, e < (U,, F') such that

1) fu(x,) # 0 for all ac A4,

@) filw) = filal) =0,
and set f(u) = I (fu(p(u)):ac A). Then f is multilinear and it
induces a linear transformation f": Q (U,:ae A)— F. But 0 = f'(y) =
fx + o) = f'(x) + f'(&@') = f'(x) = 0, which is impossible.

Throughout the rest of this section welet U = ® (U,: a € A) and
W = (W,:be B) where the U, and W, are vector spaces over a
field . We also assume that dim (U,) = 2 and that A4, B are finite
sets., We let T: U — W be a linear transformation mapping nonzero
decomposable tensors into nonzero decomposable tensors.

Let S, and R, be the sets of one dimensional subspaces of U, and
W, respectively. We define a function f: [[ (S.:ae 4)— [[ (Ry,:be B)
as follows. Let x, € U, be nonzero and let T(R (x,:a € A)) = X(y,:b e B).
Let xe J[ (S.:ac A) and ye ][ (R,: be B) such that p,(z) = {x,> and
2(¥) = <¥,y). We set f(x) = y and note that by the above lemma, f
is well defined. We prove next the
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3.2. LEMMA. The function f above is an adjacency preserving
function.

Proof. Let w,w' €1l (S,:aec A) be adjacent and choose «,, x, € u,
such that p,(u) = <{z,), P.(w) =<w,>. Let z = Q (x,:aec A) and 2’ =
Q (x,: a € A). Then, by (2)(b) of Lemma 3.1, x + 2’ is a decomposable
tensor and by (2)(a) we have that <{x) #<a'). Let y = T(x) =
R W:beB) and ' = T(®') = Q (yi:be B). Then y + ¥ is a decompo-
sable tensor. Let w,w’e Il (R,: b€ B) be such that p,(w) = {y,) and
py(w') =<y;>. Then w and w’ are either adjacent or equal. If they
were equal then y=e¢y’ for some ¢ € F, from which we get T(x—ex’) =0,

a contradiction since ® — ex’ is a nonzero decomposable tensor for all
ec k.

3.3. DEFINITION. For each A’ & A and x e [[ (U,: a ¢ A’) we define
a multilinear function N,: [ (U,:acA’)— U by setting N,(u) =
R (v,: a € A) where v, = p,(x) for a¢ A’ and v, = p.,(u) forac A’. We
let M,: ® (U,:aec A’Yy— U be the linear transformation induced by N..

Since dim (U,) = 2, each S, contains at least three elements, and
therefore we can apply Lemma 2.4 to obtain the function o: A— B
satisfying the conclusions of that lemma. Let o(4)= {b, ---, b} and
A, =07'(b;). Let Vi=QU,acd,), V=QX(Vi:i=1,.--,k) and
let @: U — V be the canonical isomorphism.

3.4. THEOREM. The decomposable temsor preserver T has the
form M, (T\® +-- Q T,)- ¢ where

1) yell(W,:b¢o(4)), or M, is deleted if c(A) = B,

(2) T V;—W,, is a linear transformation mapping nonzero
decomposable tensors of V,; into nmonzero vectors of W,..

Proof. Let ;eI (U,:a¢A;) be chosen fors =1, ---, k. Consider
T-M,:V;—W. For each veV;, M, (v) =Q (v.:acd) where {v,»
does not depend on v whenever a ¢ A;. Therefore, since (p,-f)(s), for
se[[ (S.:aecA), does not depend on the coordinates of s in A\c—'(d),
there are fixed w,e W, for each be B, b # b;, such that the image
of V, under T-M, has the form {® (wj:be B):w;, = w, for b=+ b,
and w;, € W/}, where W;, is a subspace of W,,. Then T-M,, induces
a linear transformation T;:V;,— W, defined by Ti(v) = w;, where
T-M,(v) = Q (wy:be B), w, =w, for b= b,. If aie[](U,:ag¢A,) is
another element and 7/: V;— W, is induced as above by T-M,,, then
for each decomposable tensor € V; there is a ¢, € F' such that T;(x)=
¢, T{(x). It then follows easily that there is a ¢ ¢ F such that T; = ¢T!.

By Theorem 2.5 the image of [] (S.:ae A) under f is J[(Q,: b€ B)
where @, & R, can be given explicitly. For each b¢ o(4), @, consists
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of one element and we let Q, = {y,>. Let ye Il (W,:bed(A)) where
2(¥) =1y, and let T =M, (T.Q --- QR T)-». If xcU is a de-
composable tensor then T'(x) = ¢,T'(x) for some ¢,e F, and therefore
it follows that T = ¢T’ on all of U for some ec F.

3.5. THEOREM. A decomposable tensor preserve of U onto itself
has the form @ (T,:ae A) where T,: U, — U, ts an onto nonsingular
linear transformation and o: A— A is a permutation.

Proof. Let fi 1] (S.;:aeA)— [](S,:acA) be the adjacency
preserving function induced by the decomposable tensor preserver and
let 6:A— A be the function induced by f. Then the image of
II (S.: @ € A) under f has the form T[] (Q,:acA) and therefore the
image of U is spanned by elements &) (u,:a € A) where u, belongs to
the smallest subspace of U, which contains all the subspaces making
up @,. Since dim (U,) = 2 and the tensor preserver is assumed to be
onto, no @, can consist of only one element. Therefore ¢ is a
permutation. The theorem now follows from Theorem 3.4. That T,
is onto and nonsingular is clear.

3.6. DEFINITION. If V is a vector space over a field F' and if
Z(V) is the vector space of linear transformations of V into itself,
then a subspace of &2(V) is called a nonsingular subspace if each of
its nonzero elements is a nonsingular linear transformation.

3.7. THEOREM. Let k = 2 be an integer and let W,, ---, W, be
vector spaces over a field F where 2 < dim (W,) < -+« < dim (W) <.
Then there is a linear transformation L:Q (W1 =1, .- k)— W,

mapping nonzero decomposable tensors imto monzero wvectors if and
only if 2 (W,) contains a mnonsingular subspace with dimension
equal to dim (W,_,).

Proof. Suppose that L exists. Let w,e W, for ¢ =1, ...k — 2
be nonzero vectors. For each xe W,_, we let

%:{'Mh@"'@wk_z@x@y:ye Wk},

and note that 97, is a subspace consisting of decomposable tensors.
Let L, = (L| 97;) and let I,: W, — <%, be defined by

Ly) =0, Q@ - Qui. Qe Q¥

for ye W,. Then L,I,e &~ (W, 1is nonsingular for z = 0. Let
dim(W,_) =t and let {x,---,2} be a basis of W,_,. Then
{L, 1., ---, L,I,} spans a nonsingular subspace of _~(W,). For,
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suppose i, a;L, I, is singular. Choose y # 0 such that
13
1=1

Then, since 3., a; L, L(y) = L(w, @+ Q@ W, & D02 QY), we
must have that >\ a,x; = 0. Therefore ¢, = --- =a, = 0.

Suppose that <~ (W,) has a nonsingular subspace with dimension
t = dim (W,_,). We construct L inductively. Suppose that

LW, Q- QW,— W,

has been defined such that nonzero decomposable tensors of
W,® .- QW, are mapped into nonzero vectors of W,. Let s =
dim (W,) and let {L,, ---, L,} be a basis of an s-dimensional nonsingular
subspace of <(W,). Such a basis exists since s = dim (W) <
dim (W,_,). Let {®, ---,«,} be a basis of W,. Let N:W,QW,— W,
be the linear transformation induced by the multilinear function
N: W, x W,—W, where N(3\5, a2, y) = S, a;Li(y). Then N(x,y)=0
implies that £ = 0 or ¥ = 0 and therefore N(x ® ) = 0 if and only
if xt®@y=0. Let I. W,— W, be the identity and let L = N-(I R L,).
Then L(w, Q -+ Q w,) = N(w, Q L(w, Q +-- Q w,)) = 0 implies that
w,=0 or Lfw,® - - QQw,) =0, Therefore, either w, = 0 or
w,® - Qw, =0, and in both cases w, Q- ---RXw, =0. This
completes the proof.

3.8. THEOREM. Let F be algebraically closed and let T: U— U
be a decomposable tensor preserver where dim (U,) is finite for all
acA. Then T =@ (T,:aecA) where T,: U, — U, ts a nonsingular
linear tramsformation and o:A— A s a permutation satisfying
dim (U,) = dim (U, ) for ac A.

Proof. We prove that ¢ is a permutation. By Theorem 3.4,
T=M,(T&Q:+-XT,)-® where the domain of T;is V; = K (U,: a € A,)
and A; = 07(a;) for some a,c A. For each aec A,, V, contains a
subspace with dimension equal to dim (U,) which consists of decompo-
sable tensors only. It follows that U,, which is the range space of
V., under T;, has dimension at least as large as the maximum of the
dim (U,) for ac A;. Therefore, for each ae A4, dim (U,) < dim (U, ).
Suppose that o is not one-to-one. Of those ae A for which o-'(c(a))
congsists of at least two elements, choose one, say b, for which dim (U,)
is maximal. Then dim (U,) = dim (U,s). For, suppose that
dim (U,) < dim (U,,). Then ¢ maps the set {a | dim (U,) > dim (U,)} U {b}
into the set {a|dim (U,) > dim (U,)}, and consequently, thereisa b’ e 4
for which 67'(c(b’)) has at least two elements and dim (U,,) > dim (U,).
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This contradicts the choice of 5. Now, o(b)ed(4) so that (b)) = a;
for some ¢ and T;: V;— U,. By Theorem 3.7, <(U,;,) contains a
nonsingular subspace with dimension at least two. This is impossible
since F' is assumed to be algebraically closed (for nonsingular C and
D, C — eD is singular for any eigenvalue ¢ of D~'C). Therefore o is
a permutation and the theorem follows from Theorem 3.4.
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