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POLYNOMIALS IN CENTRAL ENDOMORPHISMS

FRANKLIN HAIMO

Let 2 be a central endomorphism of a group G in the sense
that 1 induces the identity map on the inner automorphism
group of (. Despite the nearness of the situation to com-
mutativity, it is not necessarily true that the central endo-
morphisms of G form a ring or even that the subset generated
by 2 be a ring. The displacement map z, given by z(g9) =
97'A(g) for each gec @, is an endomorphism with central values.
We shall show (Theorem 1) that if - satisfies a certain pair of
simultaneous equations then A or 12 is idempotent, Let P be
a formal polynomial with integral coefficients, and let ¢ be the
sum of these coefficients. Then (Theorem 2) P(2) is an endo-
morphism if and only if ¢ induces an integral endomorphism
on G. If G is nilpotent of class 2 then (Theorem 3) P(2) is
an endomorphism if and only if ¢(f — 1)/2 is an exponent for
the commutator subgroup Q of G.

Theorem 3 gives us an alternate proof of an older (essentially
equivalent) result [2, Th. 7, Corollary]. If a and B are two maps
in G% then v = a + B is to mean the map given by v(g9) = a(9)5(9)
for all geG. The symbol ¢ will be reserved for the identity map
on G. By diag, x we mean the m-by-m matrix with x repeated down
the main diagonal and with zeros elsewhere. If 1, is the unity of
the group G, we say that an integer m is an exponent of G if g™ = 14
for each ge G. An integer m is said to induce an integral endomor-
phism on a group G if (xy)™ = a™y™ for all z, y €G.

1. Preliminaries. Let 7 be a center-endomorphism of a group
G. That is, ¢ is an endomorphism of @, and Im7 < Z, the center
of G. The map »eG® given by Mx) = xc(x) for each 2eG is a
normal endomorphism of G in that it commutes with each inner auto-
morphism of G. Itis a central endomorphism in that » = ¢ + = where
T is a center-endomorphism. See [3]. Each center-endomorphism of
G is likewise a normal endomorphism; but if G is nonabelian, no such
endomorphism is a central endomorphism. The central endomorphism
N = ¢+ 7 is said to be related to the center-endomorphism z. The
set of all center-endomorphisms of a group G is a ring C(G) under
endomorphism addition and composition.

If z is a center-endomorphism of G with related central endomor-
phism A, then, with multiplication proceeding from left to right with
increasing ¢ and with C(n, 7) as the usual binomial coefficient, we have
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(4,) V(@) = @ [ (@)
and
(B.) (@) = [m 1111 V(w‘“”ic‘”’“)](ﬁw

for each x € G and for each positive integer n. From (4,), each A"
is a central endomorphism related to >\2, C(n, t)r* € C(G) where X\ is
related to 7. One readily sees that )\ is idempotent if and only if
—7 is idempotent. Under this assumption, 7%*! = ¢ = —7% for each
positive integer j.

Observe that the 2" factors on the right of (B,) can be rearranged
at will. In fact, if one considers the mapping P(\) = 3%, a;\' where
the a; are integers with a, # 0, where \° =¢, and where P(\)x =
T2, Ai(x*s) for each x € G, then the terms of P(\) can be rearranged
in any way. Nevertheless, P(\) need not be an endomorphism. If,
however, it is an endomorphism, then it is normal. Call n the degree
of P,

THEOREM 1. Let T be a center-endomorphism with related central
endomorphism : on a group G.

(a) Suppose that there exist integers m >0 and k=0 such
that v2™+% 4 ™ = 0, Then there exists a formal polynomial P with
wntegral coefficients and of degree 2m + 2k for which N\ is a zero.

(b) If there exists an integer m = 3 such that 7 + 7" =0 =
T2 + "%, then N is idempotent if m is odd; while if n ts even, Imt
1s elementary 2-abelian, \° = N\, and N\ is idempotent.

Proof. (a) From z*m+*  ¢m+¢ — () and the above remark on
idempotents, the central endomorphism ¢ related to z™** must be
idempotent. From (B,.,), ¢ must be of degree m + k as a polynomial
in A. Let T be the formal polynomial corresponding to 0. Let P =
T — T.

(b) 7 =7%so that z* =%, all odd powers reducing to 7, even
to 7%, If n is odd, then z"—! = ¢* while t"* = 7, from which 7> = —7
and M2 =\. If n is even, "' = ¢ whence 7" + 7 = 0 yields 7(2*) = 14
for every xeG. At once, Im7 is elementary 2-abelian. Now, (A4,)
leads to M(x) = x7%(x) in this case. Applying N, N (x) = xt(x®)T(x) = N(2).
Thus, A = A%, all higher powers reducing to A2, In particular, \? is
idempotent.

As an example of (b), take G to be the group of m-by-m non-
singular real matrices, and, for each matrix A therein, let 7(4) =
diag,, (|det A|~¥™). It is clear that = is a center-endomorphism of G
and that 72 + 7 = 0. If we take n = 3, we have the situation in (b).
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2. The sum of the coefficients. If P is a polynomial with
integral coefficients, let ¢(P) denote the sum of these coefficients.

LEMMA. Let a be a center-endomorphism of a group G, and let
B be a member of G°. Then « + B is an endomorphism of G if and
only tf B is an endomorphism.

Proof. (a + B)(xy) = a(x)a(y)B(zy) while (a + B)(@)(a + B)(y) =
a(x)B(x)a(y)B(y). Since a(y) is in the center, the result is clear.

If & is an integer, let [k] be that member of G which is given by
[k]x = «* for each € G. Observe that if ¢ is a center-endomorphism
of G, then 7 generates a subring {z} of C(G).

THEOREM 2. Let T be a center-endomorphism of a group G, and
let N be its related central endomorphism. Let P be a polynomial
with integral coefficients.

(a) If t(P) =0, then P(\) is a center-endomorphism, a member
of {r}.

(b) If t(P) =1, then P(\) is a central endomorphism related
to some member of {t}.

(¢) If G is noncommutative and tf t(P) = 2, then P(\) is mo
endomorphism.

(d) If t(P)=0,1,2, then P(\) ts: (1) an endomorphism if and
only, if [t(P)] is an endomorphism on G; (2) a center-endomorphism
if and only if [t(P)] ts a center-endomorphism on G; (3) a central
endomorphism if and only if [t(P) — 1] s a center-endomorphism
on G.

Proof. Suppose that P(\) = >, a,\* for integers a;. Note that
A" = ¢ and that, from (4,), ' = ¢+ 3}i_, C(3, j)r? if 4 > 0. Upon sub-
stitution, P(\) = S\, ai(c + Do C(3, 7)77) = t(P)e + S\i, q,7t for suit-
able integers ¢;. (a) and (b) are now immediate. If ¢(P) = 2, the
lemma says that 2¢ = [2] is an endomorphism of G if and only if
P(\) is an endomorphism. But [2] is an endomorphism if and only
if G is abelian, establishing (c). For #(P) = 0, 1, 2, the lemma gives
(d), (1) and (2), directly. Now P(\) is central and related to a center-
endomorphism if and only if P(\) = ¢ + o for some center-endomorphism
o. Equivalently, (¢(P) — 1)¢ + 3%, ¢, — 0 = 0; that is, (((P) — 1)¢ =
[t(P) — 1] is a center-endomorphism on G, establishing (d), (3).

By (a) above, each A" — X\ is a center-endomorphism, n =1,2, ...
By (c¢), if G is noncommutative, no A" 4+ \ is an endomorphism, n =
1,2, ---.

Recall that a group is (nilpotent) of class 2 if its inner automor-
phism group is abelian.
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THEOREM 3. Let G be a class 2 group, M a central endomorphism
of G, and P a polynomial with integral coefficients. Then P(\) is
a normal endomorphism of G if and only if (H(P) — LE(P)/2 is an
exponent of Q.

Proof. Note that P(\) = X%, a\' is a normal endomorphism if
and only if it is an endomorphism. Each M\ is central (by A4;). For
z,y €@, let w denote [y, x7'] = y~'2~'yx. For a class 2 group, recall
that y'2* = a*w*® and that (xy)* = xy*wee"% for all integers a
and b. By the centrality of the powers of A, M(y°)A(2%) =N (2*)N (y*)w*®
for all z,ye@G, all nonnegative integers ¢ and j, and all integers
a and b. It is now easy to show that P(\)(zy) = P\)(x)P(\)(y)w?
where the integer E = 37 a,(a; — 1)/2 + Sic;a;a;. From a routine
observation one sees that E = (t{(P) — 1)i(P)/2.

COROLLARY. [2, Th. 7, Corollary] Let s be an integer = 0,1, 2.
Let G be a class 2 group for which s(s — 1)/2 is an exponent for Q.
Then [s] is an integral endomorphism jfor Q.

Proof. By the theorem, any polynomial P with integral coefficients
and with coefficient-sum s has P(\) an endomorphism for each central
endomorphism A, and the set of all such X\ is nonempty. By Theorem
2, (d), [s] is an endomorphism on G.

As an example of this corollary, let F' be a commutative ring of
finite characteristic and with a unity. Suppose that the characteristic
k = s(s — 1)/2 for some integer s > 2. Let G be the set of all ordered
triples {a, 8, ¢) over F' with multiplication given by (a, b, ¢)(a’, b, ¢') =
(@ +a,b+¥,c+ ¢ + ba’). We have the well known class 2 group
G of triangular matrices

1 0 0
a 1 0
¢c b 1

where Z = Q is the set of all (0,0,x). Since (0,0, x)" = (0, 0, nx),
the characteristic & is an exponent for Q. In general, (a,b, ¢)* =
(na, nb, nc + (n(n — 1)/2) bc) for each integer n. An easy calculation
now shows that ((a, 8, c)a’, &', ¢'))* — (a,8,¢}*(@, b, ¢')* = (0,0, (s — s)ba').
But (s — s®)ba’ = —2kba’ = 0, so that [s] is indeed an integral endo-
morphism of G.
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