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SUPERATOMIC BOOLEAN ALGEBRAS

GEORGE W. DAY

A Boolean algebra B can be imbedded in a complete
Boolean algebra C in such a way that all homomorphisms
of B into complete Boolean algebras can be extended to com-
plete homomorphisms on C if and only if B is superatomic,
that is, every homomorphic image of B is atomic. This paper
is a study of the structure of superatomic Boolean algebras,
through the development of techniques of construction and
classification, and through the representation of these algebras
as compact Hausdorff clairsemέ spaces.

It is shown that the weak direct product of any family of super-
atomic Boolean algebras is superatomic, and that any Boolean algebra
generated by the union of a finite family of superatomic subalgebras
is superatomic. The number of nonisomorphic superatomic Boolean
algebras of infinite cardinality ^ *s shown to be greater than ^ .
A complete algebraic and topological description of the countable
superatomic Boolean algebras is given.

The concept of a superatomic Boolean algebra, that is, a Boolean
algebra each of whose homomorphs is atomic, was first studied by
Mostowski and Tarski in their work on Boolean algebras with ordered
bases, [5]. Their results on these algebras are summarized in condi-
tions (a)-(b') of Theorem 1. The superatomic Boolean algebras again
arose in the study of free extensions of Boolean algebras. It was
proven by F. M. Yaqub ([8]) that, if a ^ 2Ko, then the free a-
extension of a Boolean algebra B is α:-representable if and only if B
is superatomic. In considering the question of the existence of free
complete extensions of Boolean algebras, it was found ([1]) that a
Boolean algebra B has a free complete extension if and only if B is
superatomic. Other results are summarized in the following theorem:

THEOREM 1. If B is a Boolean algebra, then the following con-
ditions are equivalent:

(a) B is superatomic; i.e., every homomorph of B is atomic.
(a') No homomorph of B is atomless.
(b) Every subalgebra of B is atomic.
(b') No subalgebra of B is atomless.
(c) No subalgebra of B is an infinite free Boolean algebra.
(d) B has no chain of elements order-isomorphic to the chain

of rational numbers.
(e ) S^(B), the Stone space of B, is clairseme; that is, every

nonempty subspace of S^(B) has at least one isolated point.
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Conditions (c)-(e) are developed in [1]. Mostowski and Tarski
also showed that all homomorphic images and subalgebras of super-
atomic Boolean algebras are superatomic.

The purpose of this paper is the development of several notions
of construction and classification of superatomic Boolean algebras. In
§2, it is shown that the class of these algebras is closed under the
operation of weak direct product. The weak direct product is shown
to be interpreted topologically as the one-point compactification of the
topological sum of the Stone spaces of the factors. Also, we prove
that a Boolean algebra generated by the union of finitely many super-
atomic subalgebras is superatomic, although the corresponding result
does not hold for the concept "atomic". From this result, it follows
that the direct product and free product of a set of superatomic
Boolean algebras are superatomic if and only if the set is finite.

In § 3, the cardinal sequence of a superatomic Boolean algebra
is defined, as a natural classification device for these algebras. Re-
strictions on the possible nature of these sequences are developed,
and several examples are given. The number of nonisomorphic super-
atomic Boolean algebras of a given infinite cardinality is shown to be
greater than that cardinal; the assumption of the Generalized Con-
tinuum Hypothesis then implies that there are as many nonisomorphic
superatomic Boolean algebras of a given cardinality as there are non-
isomorphic Boolean algebras of that cardinality. Section 4 yields a
complete algebraic and topological description of the countable super-
atomic Boolean algebras, and shows that the cardinal sequence of
such an algebra completely characterizes the structure of the algebra.

Boolean concepts which are used without discussion in this paper
are defined in [2] and [7]. Our notation will coincide with that used
in [2]. In the body of this paper, the symbol sBa will represent the
phrase "superatomic Boolean algebra".

2* Constructions with sBas* The structure of sBas may be
studied in several ways, including the examination and elaboration
of relatively simple examples, and the direct construction of clairseme
Stone spaces. In this section, we will consider some of the usual
ways of combining Boolean algebras and describe conditions under
which the result can be superatomic. Observing that a characteristic
of these combining methods is that the basic algebras all appear as
subalgebras of the resulting algebra, and noting Theorem 1, we
restrict ourselves to consideration of combinations of sBas.

THEOREM 2. If the Boolean algebra B is generated by
Bτ U B2 U U Bn, where Bly B2y , Bn are superatomic subalgebras
of B, then B is superatomic.
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Proof. Clearly, we need only prove that this result holds for
n — 2. Moreover, since every homomorphic image of B is generated
by the union of homomorphic images of Bu B2, , Bn, and these
homomorphic images are superatomic, condition (a') of Theorem 1
assures us that it will suffice to prove that if the Boolean algebra
B is generated by B1 U B2, where Bλ and B2 are superatomic sub-
algebras of B, then B has at least one atom.

Suppose, then, that, B, Bu and B2 satisfy these hypotheses. Let
a be an atom of B1 and note that the mapping h defined by h(x) = ax
is a homomorphism of B2 into the Boolean algebra that is the principal
ideal of B generated by a. Since B2 is superatomic, so is h[B2]; thus,
there is an element b of B2 such that ab Φ 0, and, for every xeB2,
(ax)(ab) = 0 or ab. For every u e Bx and x e B2, we then have that
(ux)(ab) = ((ua)x)(ab) = 0 or ab. Hence, since every element of B is
a finite sum of finite products of elements from Bί and B2, ab is an
atom of B.

In spite of the "naturalness" of the statement of the theorem,
the similar statement, "If a Boolean algebra is generated by the
union of finitely many atomic subalgebras, then it is atomic" is false.
Consider the following:

EXAMPLE. Let B be the complete atomic Boolean algebra with
y$0 atoms, and let {xlf x2, •••} be a countable independent set of ele-
ments of B. Let B1 denote the subalgebra of B that is generated
by {xu x29 •••} and the atoms of B. Let B2 be the free Boolean
algebra with countable free generating set {yl9y29 •••}.

Let A denote the direct product of Bt and J52, and define At to
be the subalgebra of A with elements (0, 0), (0,1), (1, 0), (1,1) and A2

to be the subalgebra of A generated by all elements of the form
(z, 0), where z is an atom of B, and the elements (xif #*), i = 1, 2, .
It is easy to see that both At and A2 are atomic, and that their union
generates the nonatomic Boolean algebra A.

COROLLARY. Suppose that g$ is a set of sBas. The following
conditions are equivalent:

( a ) <S$ is finite.
( b ) The direct product of the elements of £% is superatomic.
(c ) The free product of the elements of & is superatomic.

Proof. That (a) implies both (b) and (c) follows from the fact
that both the direct product and the free product of a finite set of
Boolean algebras are generated by the union of a set of subalgebra
isomorphic to the factor algebras. If, on the other hand, & is
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infinite, then the direct product of the elements of έ@ contains an
infinite complete subalgebra, which in turn must have an infinite free
subalgebra; likewise, if έ% is infinite, the free product will have an
infinite free subalgebra.

This corollary greatly limits the usefulness of the free and direct
products as tools in the description of sBas. A device more useful,
and more related to the nature of sBas is the weak direct product.

DEFINITION. If & is a nonempty family of Boolean algebras, let
x ^ denote the direct product of the elements of &. The weak
direct product of & is that subalgebra of x ^ generated by the
elements of x έ%f having only finitely many nonzero coordinates. The
weak direct product of & is denoted by w x έ%?.

THEOREM 3. // & = {Br: 7 e Γ} is a set of sBas, then w x &
is super atomic.

Proof. We shall show that every homomorphic image of w x έ%?
contains an atom. For convenience, let (Br) denote the principal ideal
of w x & naturally isomorphic to Br.

Suppose that 7 is a proper ideal of w x &. If for every 7 e Γ,
(Br) Q I, then I is a prime ideal and w x &/I is atomic. If, on the
other hand, 7 is an element of Γ such that (Br) g£ J, then, since Br

is superatomic, (Br)/[I f] (Br)] has atoms. If x is an element of (Br)
whose image in (Br)/[I n (Br)] is an atom, then the image of x in
w x &\I is also an atom.

We now give a topological characterization of the weak direct
product of any infinite set of Boolean algebras. Together with the
above theorem, this topological approach will prove useful in the
examination of cardinal sequences of sBas. It will also suggest an
alternate proof of Theorem 3, namely, the demonstration that the
one-point compactification of the topological sum of an infinite set of
compact Hausdorff clairseme spaces is also clairseme. The following
lemma, an immediate consequence of the definition of the weak direct
product, will be needed.

LEMMA. Suppose that & — {Br:ieΓ} is a set of Boolean alge-
bras. If C is a Boolean algebra containing a maximal disjointed
set of elements D — {br: 7 e Γ) such that

(a) for each 7 e Γ the principal ideal (br) in C is isomorphic
to Br, and
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(b) C is generated by the set of elements \J {(δr): 7e Γ},
then C is isomorphic to w x έ%.

THEOREM 4. Let & — {Br: Ύ e Γ} be an infinite family of Boolean
algebras. £f(w x ^ ) , the Stone space of w x &, is homeomorphic
to the one-point compactification of the topological sum of the set of
Stone spaces {y(ΰ r ) :7 6Γ}.

Proof. The topological sum of a set of disjoint topological spaces
is a topological space having as point set the union of the point sets
of the summands, and having the open sets of the summands as a
basis for its topology. Recall also that the one-point compactification
of a locally compact, noncompact space is the space obtained by
adjoining one point to the original space, and taking as a basis the
open sets of the original space and the complements (in the augmented
space) of the compact sets of the original space.

The following argument, suggested by Ph. Dwinger, is based on
§13 of [2]: The Stone space of w x & is clearly a compactification
of the topological sum of {£f(βr):yeΓ}, and is a continuous image
of every other compactification of that topological sum. Since the
zero dimensional Hausdorff compactifications of a zero dimensional
Hausdorff space are partially ordered by the continuous mappings that
leave the original space fixed, and the one-point compactification is the
least compactification under this ordering, our theorem follows.

3* Cardinal sequences of sBas* If B is a Boolean algebra, it
is convenient to define a sequence of ideals, Iβ(B), for ordinal β such
that \β\< 2 | B |, as follows:

DEFINITION. Let I0(B) be the zero ideal of B. If β is an ordinal
such that Iβ-άB) is defined, let Iβ(B) be the preimage in B of the
ideal generated by the atoms of B/Iβ^(B). If β is a limit ordinal,
and Ia(B) is defined for all a < β, let Iβ(B) be the ideal in B generated
by U {L(B): a < β}.

It follows immediately that if a > β, then Ia(B) is contained in
Iβ(B); thus, if β is a limit ordinal, then Iβ(B) = U {Ia(B): a < β}.

PROPOSITION. B is superatomic if and only if for some ordinal β,
Iβ(B) = B.

Proof. If B is superatomic, and Iβ(B) Φ 5 , then \Iβ(B)\ ^ | / 3 | .

Thus, for some β such t h a t \β\< 2^9Iβ(B) = B.

Conversely, suppose t h a t Iβ(B) = B and t h a t I is a proper ideal
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of B. Let a' be the least ordinal in the set {a: Ia(B) g /}. a! is
not a limit ordinal; let x be the preimage of an atom of B/Iaf_1(B)
such that x £ I. Since I^^B) <Ξ /, it follows that the image of x
in 5/7 is an atom.

DEFINITION. If B is a sBa, let δ(J5) denote the least ordinal in
the set {β:\β\ < 21*', Iβ(B) = B).

It is important to note that, since the union of a chain of proper
ideals of a Boolean algebra is a proper ideal, δ(B) cannot be a limit
ordinal.

DEFINITION. The cardinal sequence of a sBa B is the sequence
of order type 8(B) whose /3-term, for β < δ(B), is the cardinality of
the set of atoms of B/Iβ(B).

Several elementary properties of the cardinal sequence of a sBa
may be mentioned. Its δ(B) — 1 term is necessarily finite, since the
preimage in B of the ideal of atoms of B/Iι{B)-ι(B) is all of B; also,
all other terms of the sequence are infinite. From cardinality con-
siderations, we can see that if ^ is the cardinality of the set of
atoms of B, then no term of the cardinal sequence of B is greater
than 2*, and | δ(B) | ^ 2*. Also, it is clear that if B1 and B2 have
distinct cardinal sequences, then they are not isomorphic.

EXAMPLES. 1. It is known (see [6]) that there is a family ^
of subsets of the set of integers such that each element of ^ is
infinite, such that any two elements of S*~ have finite intersection,
and such that | j ^ ~ I > V$o. If JB is the field of subsets of the set
of integers generated by the finite sets of integers and the elements
of j ^ ~ , then B is a sBa and has cardinal sequence ^ 0 , | JF' |, 1.

2. Let >$! and fc$2 be infinite cardinals such that Ki < fcta and
Bx and B2 be the Boolean algebras of finite and cofinite subsets of
sets of cardinalities ^ L and ^2, respectively. Consider the direct
products of Bγ with B2, and of B2 with itself. Clearly, both of these
algebras have cardinal sequence fc$2, 2; we note, however, that they
are not isomorphic.

PROPOSITION. If B is an infinite sBa, then the cardinality of B
is the sum of the terms of its cardinal sequence.

Proof. Let S be a set of elements of B consisting of one preimage
in B of each of the atoms of each of the algebras, B/Iβ(B), for β < δ(B).
Let B' denote the subalgebra of B generated by S. Clearly, Bf contains
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I0(B). Also, every element of Iβ+ι(B) ~ Iβ(B) is congruent modulo I3(B)
to a finite sum of elements of S; therefore, if Iβ(B) is contained in
J5', so is Iβ+1(B). It follows that Bf = B; thus the cardinality of the
infinite Boolean algebra B is the cardinality of its generating set S,
which is simply the sum of the terms of the cardinal sequence of B.

The topological interpretation of the cardinal sequence will be
helpful in our further discussion. Recall that the derived set of a
Hausdorff space S' is the set of nonisolated points of £f > and that
one defines the /3-derived set of S', denoted Dβ{S'), by: DIS') = S^;
if β is an ordinal such that D^S') is defined, then Dβ+ι(<9*) is the
derived set of Dβ(SΎ, if β is a limit ordinal, then

Dβ(S') = Π {DΛSΎ. a<β}.

Note that each derived set of S' is closed in S'.

PROPOSITION. Under the natural correspondence between the
structures of a Boolean algebra B and its Stone space S*(&)y the
ideal Iβ(B) corresponds to the open set S^(B) ~ Dβ(S'(B)). If B is
a sBa, then the /S-term of the cardinal sequence of B is the cardinality
of the set of isolated pointed of Dβ(S'(B)).

Proof. The second statement follows from the first and the ob-
servation that if I is a proper ideal of B, then the Stone space of
B/I is homeomorphic to the complement in S'(B) of the open set cor-
responding to I.

If the first statement is true for a fixed ordinal β, then Dβ(S^(B))
is homeomorphic to S^(B/Iβ(B)) and the ideal of atoms of B/Iβ(B)
corresponds to the set of isolated points of Dβ(S^{B)). It follows
that Iβ+1(B) corresponds to the union of S'iB) ~ Dβ(S^(B)) and the
set of isolated points of Dβ{S'{B))\ that is, Iβ+1(B) corresponds to the
open set S'(B) ~ Dβ+1(S'(B)).

If a is a limit ordinal and the statement of the proposition is
true for all ordinals β such that β < a, then Ia(B) = U {Iβ(B): β < a}
corresponds to the open set

U {S*(B) ~ Dβ(S'(B)): β < a) = S?(B) - Da(^(B)) .

We now connect the concepts of cardinal sequence and weak
direct product. By the sum of a set of cardinal sequences, we shall
mean that sequence of cardinals whose /5-term is the sum of the β-
terms of those summands whose order type is greater than β.

THEOREM 5. Let & = {By:y eΓ}bea set o/sBas, and
Let θ be the sum of the cardinal sequences of the elements of & and
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let θβ denote the β-term of θ. Let β* be the order type of θ, and
let βQ be the least ordinal in the set {β: {7: β <δ(By)} is finite}. The
cardinal sequence of B is determined as follows:

(a) // Γ is infinite and β0 = β*9 then the cardinal sequence of
B is of order type β* + 1, has β*-term 1, and for β < β* has β-
term θβ.

(b) If Γ is infinite and β0 = β* — 1, then the cardinal sequence
of B is of order type /?*, has (/S* — lyterm (0|8*_i) + l, and for
β <β* -1 has β-term θβ.

(c) If Γ is finite, or if Γ is infinite and β0 < β* and
β0 φ /3* — 19 then the cardinal sequence of B is θ.

Proof. We need two observations concerning derived sets. First,,
if X is a Hausdorff space with subspace Y, then the /3-derived set
of Y is contained in the /3-derived set of X. From this it follows
that if X is locally compact, and p is an isolated point in the /3-derived
set of X, then p is an isolated point in the /3-derived set of X*, the
one-point compactification of X. We can also conclude that if J2f is a
set of Hausdorff spaces and X is their topological sum, then the β-
derived set of X (respectively, the set of isolated points of that set)
is the union of the /3-derived sets of the elements of <%f (respectively,
of the sets of isolated points of those sets).

If Γ is finite, the Stone space of B is simply the topological sum
of the Stone spaces y ( ΰ y ) , 7 e Γ. From the remarks above, and our
previous topological observations, it is clear that the cardinal sequence
of B is θ.

In case Γ is infinite, £^{B) is the one-point compactification of
the topological sum of the spaces S^(By), 7 e Γ. Let p denote the
adjoined point of this compactification. We see that the /9-derived
set of &*(B) is the union of the /3-derived sets of those S*(By) for
which β < δ(By), with the possible inclusion of p. Thus, to determine
the cardinal sequence of B, it will suffice to determine the ordinal β
such that p is an isolated point of Dβ{S^(B)).

From the definition of the one-point compactification, it follows
that if 6^' is a subspace of S^(B) and p e S^f, then p is an isolated
point of Sf* if and only if &" has empty intersection with all but
finitely many of the subspaces 6^(BΊ). If β < β0, then Dβ(S^(B)) has
non-empty intersection with infinitely many of the spaces S^(By);
since Dβ(S^(B)) is closed, p must be contained in it as a non-isolated
point. Consequently, peDβ0(S^(B)), and is an isolated point of the
that set.

The conclusions of (a) and (b) follow immediately. In the remain-
ing case, given that β0 < /3* and β0 Φ β* — 1, it follows that /3* is a
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non-limit ordinal and for some 7 e Γ, δ(By) > βQ + 1. Hence,
is infinite, Dβΰ(S^(B)) is infinite, and the presence of p in this set
does not affect its cardinality.

The next proposition suggests the structure of an extensive sub-
class of the sBas, and enables us to put a lower bound on the number
of non-isomorphic sBas of a given cardinality.

THEOREM 6. Suppose that θ is a sequence of nonzero cardinals,
that θ has nonlimit ordinal type β0, and that θβ denotes the β-term
of θ. If θ has the following properties:

(a) θβ is finite if and only if β = β0 — 1,
(b) if a<β < β0, then θa ^ θβ,
(c) if β < β0, then I {a : β < a < β0} | £ θβ,

then θ is the cardinal sequence of a sBa.

Proof. Prom Theorem 5(c), we may conclude that if this true
under the added restriction that the last term of θ is 1, then it is
true in general. Suppose, then, that β' is a nonlimit ordinal, that
the theorem is true for all ordinals β0 such that β0 < β', and that θ
is a sequence of type β' that satisfies the hypotheses of the theorem
for βQ = βf and has (βr - l)-term 1.

First consider the case that β' — 1 is a nonlimit ordinal. Let θ'
be the sequence of order type βf — 1 with (βf — 2)-term 1, and such
that if β < β' — 2, then θ'β — θβ. Let B be the weak direct product
of a set of cardinality θβf_2 of sBas each having cardinal sequence θr.
Using Theorem 5(a) with β* — βr — 1 and condition (b) of this theorem,
we find that B has cardinal sequence θ.

Now suppose that β' — 1 is a limit ordinal. For each ordinal β
less than βr — 1, let Bβ be a sBa with cardinal sequence of order
type β + 1, with a-term θa for all a < β and β-term 1. Using
Theorem 5(a) with β* — β' — 1 again, and condition (c) of this theo-
rem, we find that w x {Bβ: β < βr — 1} has cardinal sequence θ.

COROLLARY. If ^ is an infinite cardinal, then there are more
than ^ nonisomorphic sBas of cardinality ^ .

Proof. Let β* be the least ordinal of cardinality greater than ^ .
If β is a non limit ordinal less than β*, then there is a sBa whose
cardinal sequence is of type β, has (β — l)-term 1, and has α:-term ^
for every a < β — 1. By a previous proposition, such a Boolean
algebra will have cardinality ^ .

Since every Boolean algebra of cardinality ^ is a homomorphic
image of the free Boolean algebra on ^ generators, and since that
algebra can have at most 2* ideals, the set of isomorphism classes of
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sBas of cardinality ^ has cardinality greater than ^ and not greater
than 2*. The assumption of the Generalized Continuum Hypothesis
thus implies that there are exactly 2* isomorphism classes of sBas
of cardinality ^ .

It is clear that the cardinal sequence of a sBa must satisfy part
of the hypotheses of Theorem 6; certainly, such a sequence must de
of nonlimit order type, and have only its last term finite. However,
we displayed above a sBa whose cardinal sequence did not satisfy con-
dition (b) of the theorem. Our last example shows that the cardinal
sequence of a sBa need satisfy neither (b) nor (c). (It is not known
whether the cardinal sequence of a sBa may satisfy (b) but not (c).)

EXAMPLE. Let S be a set of cardinality ^ 0 . There is a sequence
of type ωι (the first uncountable ordinal) of infinite subsets of S such
that if a < β < ωy and U and V are the a- and /3-terms of the se-
quence, then U ~ V is finite and V ~ U is infinite (see [6]). Let £f
be such a sequence, and let B be the field of subsets of S generated
the finite subsets of S and the terms of S^. B is atomic, and /, the
ideal of atoms of JB, is simply the set of finite subsets of S. B/I
is generated by the images of the elements of S?. These image form
a well-ordered chain of type ωlm From [3], Theorem 3.3, it follows
that B/I is superatomic; consequently, B is superatomic. The atoms
of B/I are the images of elements of B of the form V ~ U, where U
V are successive terms of &*. The image of B/I modulo its ideal of
atoms is generated by the images of the limit terms of £f\ thus, this
algebra is also generated by a well-ordered chain of type ωlm We can
conclude that the cardinal sequence of B is of type ω1 + 1, that it
has 0-term y ô, and that all other terms except the last are ^ l β Thus,
the cardinal sequence of B satisfies neither conditions (b) nor (c) of
Theorem 6. It is also of some interest to note that for 0 < a < β < ωίf

B/Ia(B) is isomorphic to B/Iβ(B).

4* Countable sBas* We first note that Theorem 6 assures us
of the following:

PROPOSITION. A sequence of cardinals is the cardinal sequence of
a countable sBa if and only if it is of nonlimit order type β < ωlf

has finite last term, and has all other terms equal to ^ 0 .

The topological interpretation of a countable sBa proves to be
extremely simple. We have seen that if B is an infinite sBa, then
the cardinality of £^(B), the sum of the cardinal sequence of B, and
the cardinality of B itself, are all equal. It is well-known that every
compact countable Hausdorff space is totally disconnected and contains
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an isolated point. Since the Stone space of any homomorphic image
of a Boolean algebra B is homeomorphic to a subspace of £^(B), the
next proposition is immediate.

PROPOSITION. The topological space X is homeomorphic to the
Stone space of a countable sBa if and only if X is compact, Haus*
dorίf, and countable.

We can also observe that every countable, compact Hausdorff space
is homeomorphic to a compact subspace of the real line, Euclidean
1-space. Mazurkiewicz and Sierpiήski ([4]) have proven that if Xx and
X2 are bounded, closed, countable sets in Euclidean m-space with non
empty, finite α-derived sets of equal size, then Xx and X2 are homeo-
morphic. Our final result follows from that observation.

PROPOSITION. TWO countable sBas are isomorphic if and only if
they have the same cardinal sequence.
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