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A NOTE ON QUASI-FROBENIUS RINGS

EDGAR ENOCHS

Morita and Curtis proved independently that if A is a
quasi-Frobenius ring and Pa finitely generated, projective,
faithful, left A-module, then the ring of endomorphisms
B = EncL (P) is quasi-Frobenius and P is a finitely generated,
projective, faithful, left J5-module. It also turns out that
A = Encb (P). We prove a theorem implying that every
quasi-Frobenius ring can be represented as such a ring of
endomorphisms.

In fact the following holds:

THEOREM. If A is a quasi-Frobenius ring there is a Frobenius
ring B such that £>/Rad (B) is the product of a finite number of
(not necessarily commutative) fields and a finitely generated, pro-
jective, faithful, left B-module P such that A ~ End5 (P). If Bf if
another Frobenius ring such that J5'/Rad (Br) is the product of a
finite number of fields and Pf a finitely generated, projective, faith-
ful, left B'-module such that A — End^, (P) then there is a semi-
linear isomorphism of the B-module P into the B'-module P''.

We note the results mentioned above appear in [2, pp. 405-406],

Proof. Let As be A considered as a left ^.-module. Let As =
Eλ + + En (direct) where each Ei is nonzero and indecomposable,
and so has a simple socle. Consider the equivalence relation Et = Es

on the set {E19EZ," ,En}. Note EisE, if and only if Si — S, where
Si is the socle of E€ for each i. Choose one representative from each
equivalence class and let P be their direct sum. Then we easily see
that P is a finitely generated, projective, faithful, left A-module.
Let B = End^ (P). Then by Morita and Curtis' result, B is a quasi-
Frobenius ring and P is a finitely generated, projective, faithful, left
.B-module. We claim that if we show I?/Rad (B) is the product of a
finite number of fields then it will follow that B is Frobenius. For
in this case J3/Rad (B) is the direct sum of a finite number of simple
pair-wise nonisomorphic left J5-modules. But since B is quasi-Frobenius
each simple left B-module is isomorphic to a submodule of B [2, p.
401, Corollary 58.13], But to show B/Rad (B) is a product of fields we
only need note that B/Rad (B) = End^(T) where T is the socle of P.
But by the construction of P, T is the direct sum of a finite number
of pair-wise nonisomorphic simple left A-modules so Endyl(Γ) is the
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product of a finite number of fields. But now as remarked above,
A ~ Endβ (P) and P is a finitely generated, protective, faithful, left
i?-module.

Now suppose A ~ End^, (P') where Br is a Frobenius ring with
B'/R&ά (J3') the product of a finite number of fields and that P ' is a
finitely generated, protective, faithful, left J3'-module. Then P' is a
finitely generated, projective, faithful, left A-module and B'~ΈndA(P').
But then since A is quasi-Frobenius, P ' ^ ®?=i E^ where 1 <, ki <. n
for each i = 1, 2, --.,m [2, p. 401, Corollary 58.13]. But P ' is a
faithful left A-module so it's easy to see that for each j , 1 <̂  j <̂  n,
Eki ~ Ej for some ΐ, 1 <* i ίg m. But now if T" is the socle of P '
(as a left A-module), B'/Rad (£') = End^(T'). But jB'/Rad (£') is the
product of a finite number of fields so we see that T" is the direct
sum of a finite number of pair-wise nonisomorphic simple left A-modules.
Thus P ~ P ' (as left A-modules). But then

J5 ^ Endi4 (P) ^ End^ (P') = J5' and

we easily see that there is a semi-linear isomorphism from the jB-module
P to the B'-module P'.

We note that if A is a simple ring (i.e. left Artinian, without
radical and having no nontrivial two sided ideals) we get the usual
representation of A as the ring of matrices over a field (i.e. the endo-
morphism ring of a finite dimensional vector space) since in this case
B is a field.
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