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SECOND NOTE ON DAVID HARRISON'S
THEORY OF PREPRIMES

D. W. DUBOIS

Some classes of partially ordered rings are studied by
means of representations in C(X), where X is a compact
Hausdorff space. The first theorem generalizes the characte-
rizations, due, respectively, to Harrison and the author, of
the subrings of the real field, and the subrings of C(X).
Among the many consequences proved are the following:

1. If A is a simple ring (no two-sided ideals) partially
ordered so that (a) if n is a positive integer and nx ^ 0, then
x ^ 0; and (b) for all x in A there exists an integer n exceed-
ing x; then A is a commutative field.

2. Let F be a field, let P be a conic prime in F whose
intersection Pc in the center C of F is a primitive (AC) cone
in C. Then Pc is an Archimedean order in C.

3. The compact Hausdorff space X admits a base of power
at most 2**o of open-and-closed sets if and only if C(X) contains
a dense subfield.

We prove three theorems and many corollaries on infinite pre-
primes with Archimedean conditions. Theorem 1 generalizes the main
result of our first note on preprimes, Theorem 2 relates two Archimedean
conditions for infinite primes, and Theorem 3 is concerned with infinite
preprimes in a field. The corollaries to Theorem 1 generalize Hubert's
Theorem that an Archimedean ordered field is commutative; these tend
to confirm (but see also the examples) our conjecture that any primitive
(AC) conic prime in a field is an order. An application is given in the
corollary to Theorem 3 which characterizes a large class of totally
disconnected compact Hausdorff spaces by a property (that makes no
reference to partial order or preprimes) of the rings of continuous real
functions on the spaces. A rather large collection of examples is given
to show that conditions in the theorems are not superfluous. For
furnishing us with encouragement, ideas and unpublished notes we are
very grateful to David Harrison, whose influence shows (we hope)
throughout this note.

The best historical account we can give of the problems studied
here is a chronological list of theorems needed later. See § 2 b, or our
previous note for the definitions. Although Theorem 02 is not precisely
equivalent to any statement in the first three references it is easily
deduced by methods of each of them; it is proved in the fourth refer-
ence by a routine Zorn's lemma argument. We denote by X a compact
Hausdorff space and by C(X) the partially ordered topological ring (or
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real algebra) of all continuous real functions on X, with the topology
of uniform convergence and with f^>giΐ and only if f(x) Ξ> g(x) holds
for all x in X. The theorems are stated in our terminology; Stone
added a completeness condition to the hypotheses of Theorem 03 but
noted that it was not really essential to the method of proof. We
denote by N the set of all positive integers.

THEOREM 01. (Hubert [9].) // a field contains an Archimedean
order then it is commutative.

THEOREM 02. (Artίn [1]; Artin-Schreier [2]; Baer [3]; cf. [4].)
Let P be a conic division preprime containing all squares in the
commutative field F. Then P is the intersection of all the orders
in F that contain P.

THEOREM 03. (Stone [11]). Let A be a commutative ring with
unit 1 such that for all n in N there exists x in A with nx — 1.
Let <(A, Py be a Stone ring, where P contains all squares in A. Then
<(A, Py is order-isomorphic with a subring of C(X).

THEOREM 04. (Kadison [10].) Every complete Archimedean or-
dered algebra is a C(X).

THEOREM 05. (Dubois [4].) If P is a primitive (AC) division
cone in a commutative field F then P is an intersection of orders
in F.

THEOREM 06. (Harrison [7].) A prime is finite if and only if
it is a subring.

THEOREM 07. (Harrison [7].) Let P be a prime in the commuta-
tive ring A, and let u be a unit of A belonging to P. Then u~ι

belongs to P if and only if ~u does not belong to P.

THEOREM 08. (Harrison [7]; see also [5].) If A is partially
ordered by a real infinite Archimedean conic prime then A is order-
isomorphic with a subring of the real field R.

THEOREM 09. (Dubois [5]; uniqueness is conjectured by Harrison
[8].) Let <(A, Py be a Stone ring. Then there exists a unique com-
pact Hausdorff space X = XA satisfying: The ring C(X) contains a
subring S which is order-isomorphic with ζA, Py and whose ring SN

of fractions with respect to N is dense in C(X).
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Proof, {of uniqueness). Let X and Xf be compact Hausdorff
spaces, let S and S' be subrings of C(X) and C(X'), respectively, such
that SN and S'N are dense in C(X) and C(Xf) and let φ be an order-
isomorphism of S onto S'. The canonical map φN: SN—+S'N is also
an order-isomorphism. The density conditions imply that φN extends
uniquely to a bicontinuous order-isomorphism of C(X) onto C(X'). By
[6; Th. 4.9] X and Xf are homeomorphic.

2* New theorems and definitions*

a. Statements of the theorems corollaries. In these theorems
we are using 'Archimedean' in a different sense from the previous note.
We say that P is Archimedean, where P is an infinite preprime, when
for every p in P, there exists an integer n with n — p in P. The
definitions are given after the statements of the theorems.

THEOREM 1. Let P be an infinite N-cancellation preprime in the
ring A, let B = BP, J = JP.

A. c.f. Harrison [8]. If P is Archimedean then P* is an
infinite Archimedean N-cancellation (AC) preprime. If P is full
Archimedean then P* is also full Archimedean.

B. If P is full Archimedean then ζA/J, P*/jy is a Stone ring.
Hence A/J is commutative.

C. Let Pι — P n By considered as a preprime in B. Then
ζβjJ, PL*/jy is a Stone ring.

D. If P is Archimedean then <((P — P)/J, P*/jy is a Stone ring.

COROLLARY 1. Let P be an N-cancellation infinite preprime in
the ring A. Each of the following conditions implies that A is com-
mutative:

A. For every x in A, 1 + x2 is invertible, and P is an (AW)
cone containing all squares in A.

B. A is a field and P is an (AW) cone containing all squares
in A.

C. P is a full-infinite (AW) cone, and for every p e P, 1 + p has
an inverse in P.

D. A is a field, P is a primitive (AW) cone containing (1 + p)"1

for every p in P.
E. A is a simple ring and P is full Archimedean.

COROLLARY 2. Let F be a field, let P be a conic prime in F
whose intersection Pc in the center C of F is a primitive (AC) cone
in C. Then Pc is an Archimedean order in C.
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COROLLARY 3. Let F be a field with center C, let P be an (AC)
cone in F, and for each x in F let Px = P Π C(x), where C(x) is the
extension field of C by x. Suppose for each x, Px is a full-infinite
prime in C(x). Then P is an Archimedean order in F.

THEOREM 2. // P is an infinite N-cancellation (GAC) preprime
in the ring A then P contains no large elements. If P is a nonzero
prime, if P f] ( —P) = {0} and if P contains no large elements, then
P is a (GAC) N-cancellation cone.

THEOREM 3. Let F be a field, let P be a full Archimedean N-
cancellation cone in F. Then <^F, Py is a Stone ring, P is a division
cone, F is isomorphic (algebraically) with a sub field of the reals, and
the space XF of Theorem 09 is totally disconnected with a base of
power not exceeding c = 2**° of open-and-closed sets. Conversely, if X
is a totally disconnected compact Hausdorff space with a base of
power at most c of open-and-closed sets then C(X) contains a dense
sub field.

COROLLARY. Let X be a compact Hausdorff space. Then X
admits a base of power at most c of open-and-closed sets if and only
if C(X) has a dense sub field.

b. Definitions.

Let P be an infinite preprime in the ring A with unity 1; that
is P contains zero and one and is closed under addition and multipli-
cation. P is conic (or a cone) when P f l ( - P ) = {0}. We denote by
N the set of all positive integers. We say P is an N-cancellation
preprime when from nx in P, where n e N, x e A, follows x e P. P
is full or full-infinite (or real-infinite) whenever P — P = {pγ — p2;
px, p2 e P} is equal to A. We define sets:

P* = {x e A; for all n e N, 1 + nx e P} ,

BP = {x 6 A; for some ne N, n ± x e P} ,

Jp = {x e A; for all ne N, 1 ± nx e P) .

Elements of BP are called bounded elements, those of JP are infini-
tesimal. Observe that P Π (-P) c JP = P* Π (~P*) c BP. If P is
an JV-cancellation preprime (more generally, if 2xe P implies xeP)
then BP is a subring and JP is an ideal in BP; see [4; §2]. P is (AC),
or Archimedean in the sense of Clifford, when P* = P, is (AW), or
Archimedean in the weak sense, when JP = {0}. From the observa-
tion just above we see that an (AW) preprime is conic. Call P Archi-
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medean whenever PaBP. In our first note we used "Archimedean"
to mean what we are now calling "full Archimedean"; thus a Stone
ring is a pair (A, P) where P is an infinite conic preprime which is
full, Archimedean, and (AC). To say that P is a full Archimedean
preprime is equivalent to the condition A — BP. An element p (neces-
sarily in P) is large if p — n belongs to P for all n in JV. P is (GAC),
where G stands for 'generalized', provided for each p in P, the set
{x; for all n in JV, p + nx e P} is contained in P (therefore equal to P).
In the special case that A is a field (commutative or not) the pre-
prime P in A is primitive if it is not contained in any proper subfield
of A (this is weaker than full, for if P is full then it is contained in
no proper subring of A), and P is a division preprime if it contains
the reciprocal of each of its nonzero members. In the general ring
situation again, we call P an order if it is conic and P\J (-P) = A.
Our Theorem 2.1 of [4] becomes: If P is a division cone in the
commutative field A then P is primitive if and only if A is the field
of quotients of BP. For an order P in a field A all these Archimedean-
like conditions are equivalent to the condition that P contains no
large elements. If P is full Archimedean in A then we denote by P/J
the set of all cosets y in A/J (J — JP) such that y contains a member
of P.

3* Proof of Theorem 1 and its corollaries. Let P be an (in-
finite) JV-cancellation preprime in a ring A. [For example, let O be a
non-Archimedean order in a field F, and let p be a large element.
Then p and — p~ι belong to O* but their product —1 does not. Thus
P* is not always closed under multiplication.] We state without proof
some easy properties of P*: (1) for each nΣ and n2 in JV, P* = {xeA;
for all n e JV, nγ + n(n2x) e P}; (2) —1 is not in P*; (3) P* contains
P and is additively closed; (4) if P* is a preprime then BP* = BPj

JP* = JP and P* is an infinite JV-cancellation (AC) preprime, which is
conic if and only if P is (AW). These are due to Harrison [8].

A. Next suppose that P is Archimedean, still assuming that P
is an infinite JV-cancellation preprime. We have to prove that P* is
an Archimedean JV-cancellation preprime. By (2) and (3), proof that
P* is a preprime requires only closure under multiplication. Let x and
y be members of P*. By (2) and (3) again, x + y belongs to P* and
so 1 + x + y is in P. By the Archimedean property of P there exists
m in JV with m — 1 — x — y in P. Let n be arbitrary in JV. Then
1 + nx, 1 + ny and n — 1 all belong to P and consequently n(l + x +
y + nxy) = n — 1 + (1 + nx)(l + ny) is also in P. From the left side
of this equality cancel n and then add m — 1 — x — y to get m + %#?/
in P. By (1) above, xy belongs to P. If x is any member of P*
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then 1 + x is in P and there exists m in N with m — 1 — x in P.
This implies that m — x belongs to P, hence to P*; hence P* is
Archimedean. If P is full Archimedean then P* is clearly also full
Archimedean since BP* = JBP = A. The rest of part A is included in
(4) above, now that we have shown that P* is a preprime.

B. Let P be a full Archimedean JV-cancellation preprime in A.
From what we just proved we may assume that P is also (AC). Put
J — JP, B — BP. Let x be an element of P and suppose x — y belongs
to J. Then for all n in N, 2 + ny = 1 + nx + (1 + (̂̂ / - a?)) belongs
to P. By (1), and the (AC) condition on P, # is also in P. Hence a
coset belongs to P/J if and only if all its members belong to P. It
follows that — 1 is not in P/J, while closure under addition and multi-
plication is obvious. Thus P/J is an (infinite) preprime. If n — x
belongs to P, for x in A and n in N then n — (x + J) belongs to P/J.
Hence P/J is full Archimedean. If 1 + n(x -f /) belongs to P/J for
all n then 1 + nx e P for all w. Since P is (AC) this implies x in P
and so sc + J belongs to P/J; thus P/J is (AC). The same argument
shows that if 1 ± n(x + J) belongs to P/J for all n then 1 + nx
belongs to P for all n, x is thus in J, x 4- J — 0. So P/J is (AW)
and is therefore a cone. We have shown that ζAjJ> P/jy is a Stone
ring, completing the proof of part B.

C. Since Px = P n J3 is full Archimedean in J? the assertion C is
an immediate consequence of part A.

D. This is deduced from part B by observing that an Archimedean
P is full Archimedean in the ring P ~ P.

Proof of Corollary 1. A. Since for any x, 1 + x2 is invertible
we may write x = x(l + x2)~ι(l + x2); putting a = x(l + x2)~\ b =
(1 + x2)~\ we have x — αίr 1 . Theorem 1C guarantees that B is com-
mutative. Hence the proof will be complete if we show that each
of a and b belongs to B. Since P contains all squares, b = (1 + x2)"1 =
(1 + x2)~2 + x2(l + &2)"2 is positive which implies positivity of 1 — Z> =
αf(l + x2)-1. Thus 1 ± 6 e P, 6 6 B. Also 4[1 ± a?(l + x2)~ι] =
(1 + a?2)-1(4a;2 ± 4x + 4) = (1 + x2)~ι[(2x ± I) 2 + 3] e P. By cancellation
we see that 1 ± a e P, a e B.

B. Immediate from part A.

C. As in part A, the representation p = [p(l -f p)~1][(l -I- p)^1]"1

has the form ab~\ with α and 6 in B, provided p belongs to P; in
fact, 0 g (1 + p)~ι g 1, 0 ^ p(l + p)-1 g 1 is valid. This shows that
the elements of P commute with each other. By the full-infinite pro-
perty, any two elements x and y can be written x — p — q,y = pr — q',
PiQ, PΊ Q' all i n P But then certainly xy — yx. Hence A is commu-
tative.



SECOND NOTE ON DAVID HARRISON'S THEORY OF PREPRIMES 63

D. The argument of part C shows that if M is the smallest
subring of A containing P then M is commutative, and so, therefore,
is its field of quotients. Since P is primitive this last field is A.

E. The hypotheses imply that A — B. Since J is an ideal in the
simple ring B, and 1 is not in J, J is null. That is, P is (AW) so
Theorem 1C applies to show that A — B is commutative.

Proof of Corollary 2. For each s in the center of F, let

P<V> = {p + qs; p, q, qs2 belong to P} .

Then simple computations show that P<V> is an additively and multi-
plicatively closed subset of F containing P. We show that for every
s in C, at least one of P<s)> and P( — s> is equal to P. Suppose both
contain P properly so that —1 belongs to both. From membership of
— 1 in P<V> follows — 1 = p + qs for some p, q in P, q ^ 0. Hence
8 = — q~~\l + P) = — (1 + ^(Γ 1 . Since also —1 belongs to P<( — s>,
we get — s = — v ^ l + u) = — (1 + u)?;-1 for some u, v in P, v ^ 0.
Combining these we find (1 4- u)q = —v (1 + p), so (1 + u)q belongs to
P Π ( — P), hence is zero. But q is not zero so u = —1, contrary to
^ e P .

If p is any nonzero member of Pc then — p is outside P so by
Theorem 07, p"1 belongs to P, and in fact p"1 belongs to Pc. Thus
Pc is a division cone in C Since P c is also a primitive (AC) cone
Theorem 05 applies to guarantee that Pc contains all squares in C,
whence P<V> = {p + qs; p, q e P}. For every s in C, s = 0 + Is belongs
to P<s)>. The italicized statement of the first paragraph shows that
for every s, either s or - s belongs to Pc (s in C); this means that
Pc is an order in C. The (AC) condition implies that Pc is an Archi-
medean order in C.

Proof of Corollary 3. Let x e F. The hypotheses imply that Px

is a full-infinite (AC) conic prime in C(x). By Corollary 2, Px is an
Archimedean order in C(x)(C(x) is commutative). If x is any member of
F, there accordingly exists an integer n with n — x in P x c P. This
implies that P is itself Archimedean. Moreover, either x or — x be-
longs to Px, and P is therefore an order.

4* Proof of Theorem 2. The first claim is trivial, since if
p > n holds for all n in N then p + n( — l)eP for all π so, by (GAC),
— l e P , contradiction. Now let P be a prime with P n ( — P) = (0),
P ^F {0}. Then P is not finite, since finite primes are additive sub-
groups according to Theorem 06. Hence 1 belongs to P, and n 1 for
neN, cannot be zero, since n 1 = 0 implies — 1 = (n — 1) 1 e P. Let
P' be the set of all x in A such that for some n in N, nx e P. This
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is obviously closed under addition and multiplication. From — 1 in P'
follows n( — l)eP for some n. But n-lePson l = 0, contrary to
what was just proved. So Pf is a preprime which contains the prime
P. Thus Pf = P and we have proved that P is an iV-cancellation
cone. That is, if P is a nonzero prime and P Π ( — P) = (0), then P is
infinite and is an N-cancellation cone. Now suppose further that
there are no large elements in P. In order to deduce (GAC) it is
necessary and sufficient to show that the set Px of all x such that for
some p in P, p + nx e P holds for all n in JV, is equal to P. If x
belongs to P then 0 + nx belongs also to P for all n so P is contained
in P1# Next we show that Px is a preprime and the proof is then
complete, since P is a prime. Let x and y be members P1? say p + nx,
q -f ny belong to P for all n and p and q belong to P. For all n,
p + q + n(x + y) belongs to P, p + q belongs to P, so x + y is in P1#

Also members of P are pq + w ĝ — (p + %#)g, £>g + npy = p(g + ^̂ /)
and pq + ?ι(#g 4- py) + tΛci/ = (p + wa;)(g + ny), for all % in N; putting
n = 2 in the first two expressions we see that 2(pg + xq + #2/) =
(#>g + 2$g) + (pg + 2py) belongs to P. By cancellation, pq + xq + py
is in P. Also πpg + n(xq + #w/) + ^2α;τ/ ^> pq -\- n(xq + ^ ) + n2xy, the
last belonging to P. Cancelling ^ we get pq + xq + py + nxy in
P. We just showed that P contains pq + xq + py, and w is arbitrary.
Hence xy belongs to Plm Finally, if — 1 belonged to Pγ then for some
p in P we would have p + n{ — l)eP for all n, which would imply
p > n for all n, and this asserts that p is large, contrary to our hypo-
thesis that P contains no large elements. This completes the proof
that Px is a preprime and the theorem is proved.

5* Proof of Theorem 3* Since F is a field, the ideal J in F =
BP is null, and ζF, P*)> is a Stone ring by Theorem IB. Identify F
with a subfield of C(X),X= XF. Then F is dense in C(X), P is
dense in P*. Since .F is a field, every nonzero member of F vanishes
nowhere in X. If / is a nonzero member of P* then, by compactness
of Xy there exists m in N such that f(x) > 1/m holds for all x in X.
Since P* is the set of all nonnegative functions in F, /— 1/m belongs
to P* and hence f = (f — 1/m) + 1/m belongs to P. This shows that
p* ~ p. Clearly P* is a division cone in F. Let x0 be fixed in X
and define φ,F—>R = reals, by φ(f) = f(x0). This is a field mono-
morphism which establishes an isomorphism of F with the subfield
φ{F) of R. Let x1 and x2 be distinct points of X. The subring F, as
a dense subring of C(X) containing the rational constant functions,
separates points in X, since X is a compact Hausdorff space. Hence there
exists a function f in F with f(Xί) ^ f(x2), and so there is a rational
r between f(xλ) and f(x2). But / — r is a continuous function on X
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which has opposite signs at xx and x2, but has no zeros. Thus no
connected subset of X contains both xx and x2, and we have proved
that X is totally disconnected. By compactness, X has a base of
open-and-closed sets [6; Th. 16.17]. Let T be such a base. For
every open set G in T, the characteristic function of G is continuous
so we see that the power of C(X) is at least as great as the power
of T. But C(X), as completion of the metric space F, has power at
most c*° = c, since \F\ ^ c (F is a subfield of R). We have shown that
every base of open-and-closed sets has power at most c.

Now for the converse, let T be a base of power at most c of open-
and-closed sets in a compact Hausdorff space X. Let the members of
T be indexed by ordinals:

GUG2, . . , G , , - *;(ξ<A)

where A is the least ordinal with the same power as T, and let

* Ί 1 > ^ 1 2 > ̂ 2 1 > ̂ 2 2 > ' * " > ί f l > ^ £ 2 > * " " > ( £ ^ Λ )

be a well-ordered algebraically independent sequence of transcendental
reals. For each ξ define fξ by the formula: fξ(x) — tςι if x belongs to
Gξyfζ(χ) = tξ2 if % is not in Gξ. These functions are continuous. Let
D be the subring of C(X) generated by all the fξ and the rational-
valued constant functions. To show that D is dense in C(X) we need
only show that D separates points in X and apply one form of the
Stone-Weierstrass theorem. If xx Φ X2 then for some ξ, xι belongs to
Gξ and x2 does not. Then fs(Xj) = tξl, fξ(x2) = tξ2 Φ tξί. Thus D sepa-
rates points. It remains only to show that no nonzero member of D
has any zeros and then put F equal to the field of quotients of D in
C(X). Let / be a member of D. Then / is a polynomial in the fς

with rational coefficients. An equality f(x) — 0, for x in X, implies
an algebraic relation among the fξ(x). But for any x, the fξ(x) are
algebraically independent, as distinct entries in the well ordered list
tlu ί12, •••. Hence if f(x) = 0 then all the rational coefficients for /
are zero, / = 0.

Proof of the corollary. Obvious in view of Theorem 3 and the
uniqueness assertion of Theorem 09.

6. Examples, We recall briefly Hubert's construction [9; §33],
Let F be a field (not necessarily commutative), let P be an infinite
preprime in F, let a be an automorphism of F such that σ(x) belongs
to P if and only if x belongs to P. In the additive group of all
formal Laurent series ^akt

k with only finitely many negative powers,
the usual multiplication is altered as follows: instead of assuming that
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the indeterminate t commutes with every element of F we make
tka = σk(a)tk for all integers k, and all a in F. The resulting struc-
ture is a field H = H(F, σ) which is noncommutative unless F is
commutative and σ is the identity. In H set P1 equal to the set of
all series whose lowest coefficient belongs to P and denote by
P2 the set of all series whose lowest coefficient belongs to P. Then
always P2 is properly contained in Pu and both are infinite preprimes.
If P is conic then so are Pγ and P2; if P is an order then Pι is an
order but P2 is never an order (nor even a prime). Suppose now that
P is a cone. Then neither Pι nor P2 can be Archimedean while Pί

can never be (AC): 1 + n( — t) belongs to P1 for all n but — t is not
in P1% In case P is an order and σ is not the identity, then P t gives
a (non-Archimedean) ordering of the noncommutative field H. This is
Hubert's example. Note further that if P is full then so are Pι and
P2. In the examples below Q is the field of all rational numbers.

EXAMPLE 1. Take F = Q(χ/"2~), let P be the intersection of the
two distinct orders in F: P = {a + by/ 2 a ± b\/ 2 are positive reals},
and let σ(a + b\/ 2) = a — by 2 . Then H is noncommutative and P2

is a full-infinite (AC) iV-cancellation cone in H.

EXAMPLE 2. The set P of all nxn matrices with every entry
a nonnegative real is a full-infinite (AC) conic iV-cancellation prime in
the noncommutative simple ring A of all real nxn matrices. It is not
Archimedean.

EXAMPLE 3. The set P of all positive reals in the field UR of all
real quaternions is an Archimedean ΛΓ-cancellation (AC) conic prime in
a noncommutative field. It is not full-infinite.

EXAMPLE 4. The set P of all lower triangular nxn matrices
containing the zero matrix and all those with strictly positive real
entries on the diagonal is an Archimedean full-infinite iV-cancellation
cone in the noncommutative ring of all real lower triangular nxn
matrices. P is not (AW) since every nilpotent element is infinitesimal.

EXAMPLE 5. (Dubois [4].) Let F be a commutative field, let P
be an JV-cancellation cone in F with JP Φ {0}, and let θ be integral
over Bp of degree n. In F{θ)y

P(θ) - Ml + Σ S α#); peP^a.e JP}

is an iV-cancellation cone. If P is full-infinite or a division cone then
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so is P{θ). For the special case of the following example, more is
true:

EXAMPLE 6. (Harrison [7].) Let P be a non-Archimedean order
in the field F, let θ = i,i2 = — 1. Then P(i) is a prim,e in F(ί).
Example 8 shows that P can be a prime while P(θ) is not a prime.
But the following is plausible: with the notation of Example 5, let P
be an order and suppose F(θ) is not formally real (i.e., suppose F(θ)
cannot be ordered). Then P(θ) is (we conjecture) a prime.

EXAMPLE 7. With F and P as in Example 6, let UF be the field
of quaternions over F, with generators 1, klf k2, k3, k\ — — 1, and let

Σ (tiki); a, e JP} .

Then P ' is a full-infinite iV-cancellation conic division prime in UF.

Note. By Theorem 07, for a prime in a field the division and
conic properties are equivalent.

EXAMPLE 8. Let F = Q(x), where x is an indeterminate and let
P be the order containing x as an infinitesimal. The cone P(i/ 2) of
of Example 5 is not a prime since it is properly contained in the
order Po in Q(x, V 2 ) which induces the usual (real) ordering of Q(Λ/ 2 )
and contains x as an infinitesimal.

An immediate corollary of Theorem 05 is that any primitive (AC)
conic division prime in a commutative field is an Archimedean order.
Corollary 2 generalizes this as follows: Let P be a primitive (AC) conic
prime in a commutative field F. Then P is an Archimedean order
in F.

EXAMPLE 9. Let F be the (commutative) field of all formal
Laurent series in x, with coefficients in Q and let P be the set of all
such series with all coefficients nonnegative. Then P is a primitive
(in fact a full-infinite)(AC) cone in F. But (1 + x2)~ι is a sum of
squares that is not in P. Thus the division condition cannot be deleted
from Theorem 05.

EXAMPLE 10. Let F and P be the same as in Example 9, let
Q(x) be the subfield of all rational functions in F, and let S =
P Π Q(x). Then S is a full-infinite (AC) cone in Q(x). But Q(x) is not
the field of quotients of Bs; in fact Bs — Q.
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