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THE APPROXIMATE SOLUTION OF / = F(x,y)

R. G. HϋFFSTUTLER AND F. MAX STEIN

In general the exact solution of the differential system

y' = F(x, y) , 7/(0) = 0 ,

is either unattainable or is impractical to handle, even though
a solution is known to exist and may even be obtained in
certain cases. Thus some method of approximation is often
employed. After the choice of approximating functions has
been made, there still remains the questions of goodness of
approximation and, if infinite processes are employed, the
question of convergence.

The system described above is restricted in this paper to
those cases in which F(x, y) is an analytic function of x and
y for — 1 ^ x ^ 1 and all y. Then F(x, y) can be written as
a convergent power series

F(χ, 2/) = Σ a^χiyj

i,3=0

By considering a sequence of n-ίh degree polynomials {P%(x)}
which are ε-approximate solutions of the truncated system

Lk(y) = y>- 2 aijxψ = F{x1Q)f 7/(0) = 0 ,
i=o,i=i

the solution of the original system can be uniformly approxi-
mated by polynomials which satisfy P«(0) = 0 and which
minimize

11 F(x, 0) - Lk[P£(x)] 11 - sup I F(x, 0) - Lk[PΪ(x)] | .

1* Introduction* The differential equation to be considered is the
equation

(1) v' = F(x, y) ,

where F(x, y) is an analytic function of x and y for — 1 <£ x ^ 1 and
all y; that is, F(x, y) has the power series expansion

i,3= 0

which is valid for - 1 <£ x ^ 1 and all y. Along with (1) we apply
the initial condition

( 2 ) 2 / ( 0 ) - 0 .

It is known that (1) possesses a unique solution satisfying the initial
condition [1],

We wish to consider the equation (1) in the form
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( 3 ) L(y) = y'- Σ atjxψ = F\<c,O) ,
i=o,j=i

where F(x, 0) = ΣΓ=o^o^'. Let jβA(ί&, y) = j^α?, 2/) - ^ ( α , 2/), where
-F7*^, 2/) is defined by the equation

k

Fk(x, y) = Σ α<i«V .
ί,J=0

Associated with (3) we consider the truncated system in either the
form

(3A) Lk(y) Ξ ί / ' - X aijxψ = F(x, 0) , 2/(0) = 0 ,
i=0,j=l

or

(3Λ) 2/' - FΛ(a?, 2/) - Λ*(a, 0) , 2/(0) = 0 ,

where Rk(x,0) = Σ i H i V ' . Note that Rk(x,0) is not the same as
F(x, 0). However, since (3.^) and (3.k2) are the same equations, a
solution of one is a solution of the other. Observe also that the
conditions assumed for (1) are sufficient to insure solutions for (3.^)
or (3.&2).

We wish to consider the best approximate solution of (1) by the
use of polynomials P%{x) as approximating functions in the sense that

( 4 ) II F(x, 0) - Lk[Pi(x)] II - sup I F(x, 0) - Lk[P£(x)] \

is a minimum for each fixed n and k. Here the superscript k in
Pn(x) represents the k of (3.^), and n is the degree of P£(x). That
is, we consider the conditions under which a sequence of minimizing
polynomials of (4) will converge uniformly to the unique solution y
of (1).

2. Preliminary results* In a paper to appear in the Proceedings
[3], the authors consider the problem of best approximation of the
solution of the equation

( 5 ) N(y) = y' - Σ fu(x)yk = R(x) , x e [0,1] ,
fc = l

satisfying y(0) = 0, by the use of polynomials Pn{x) as approximating
functions. The approximation there is a best approximation in the
sense that the approximating polynomial is required to minimize

( 6 ) II R(x) - N[Pn(x)] II = sup I R(x) - N[Pn(x)] \ .

From [3] we have the following theorem:
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THEOREM 1. If y(x) is the unique solution of (5) which satisfies
the initial condition y(0) — 0 and which has a continuous first
derivative, and if Pn(x) is a polynomial which minimizes (6) and is
such that Pn(0) = 0, then Pn(x) and Pή(x) converge uniformly throughout
[0, 1] to y(x) and y'{x) respectively as n increases without bound.

If we return now to equation iS.kJ, we see that the conditions of
Theorem 1 are satisfied, and we know that for each fixed k there
exists a sequence of polynomials P£(x) which satisfy P%

fc(0) = 0, which
minimize (4) for that fixed k, and which uniformly approximate the
solution of (3.&J.

The following definition will be useful in our work to follow [1].
Let f{x, y) be a real-valued continuous function on a domain D in the
ix, 2/)-plane, and consider the equation

( 7 ) y'= f(x, y) .

An ε-approximate solution of (7) on an x interval J is a function
Φ eC on I such that

( i) (x, Φ(x)) e D, x e I,
(ii) ΦeC1 on /, except possibly for a finite set of points S on

/, where Φf may have simple discontinuities, and
(iii) I Φ\x) - f(x, Φ(x)) \^e, X e l - S .

Denote the set of all ε-approximate solutions of (3.&2) by Se. We
know that given any ε > 0, there exists a i£(ε) such that

( 8 ) Σ
j k

aidx
%y3 < e

if k ^ if(ε), since the series is convergent, an observation we shall
need in the following sequence of lemmas which lead to the proof of
the principal result of this paper.

LEMMA 1. // y(x) is any solution of (1), then y(x) is in Sί for
all k sufficiently large, say k ̂ >

Proof. If yi%) is a solution of (1), then

y' = Fix, y) = Fk(x, y) + Rk(x, y) .

Given any ε > 0, then for sufficiently large k, say k >̂ K(ε), we have
that \Rk(x, y) \ ̂  ε/2 (and hence \Rk{x, 0) | ^ e/2) by (8). Therefore

I y' - Fkix, y) - Rk(xf 0) | = | F(x, y) - Fkix, y) - Rkix, 0) |

^ I Rkix, y)\ + \ Rkix, 0) i ^ ε/2 + ε/2 - ε .

But this is precisely the statement of the fact that y(x) is in Sk

ε for
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k ^ K(ε).

LEMMA 2. If Pk is a minimizing polynomial of (4), and if the
conditions of Theorem 1 are satisfied, then for n sufficiently large,
Pk(x) is an ε-approximate solution of (3.&2).

Proof. Since Fk(x, y) = Σ?,i=oαiiβV\ then Fk(x, y) is a continuous
function of y. Thus, given any ε > 0, there exists a δ > 0 such that

I F k ( x , y k ) - F k ( x , P k ) | ^ 6 / 2 ,

provided that | yk — P* | < δ, where yk is the solution of the k-th
truncated equation (3.fc2). Since the conditions of Theorem 1 are
satisfied,

\yk-P*\<δ, for x e [0, 1] ,

for n sufficiently large, say n > Nx(ε, k). Likewise, by Theorem 1, for
n > N2(ε, k) we have that

12/ί - (PHY I ̂  e/2 , for α? e [0, 1] .

If we choose N = max (N19 N2), then

I Fk(xf yk) - Fk(xf Pt) I ^ e/2 and | yk - {Pk

n)
f \ ^ e/2

for all x e [0, 1] and for n ^ N. Thus

I (Pn

fc)' - Fk(x9 Pk

n) - Rk(x, 0) I

^ I (P*) ' - Fk(x, yk) - Rk(x, 0) I + I Fk(x9 yk) - Fk(x, Pk

n) \

^ I (PknY -y'k\ + \ Fk(x, yk) - Fk(xf Pk

n) \ ^ e/2 + e/2 = ε .

Thus Pn(x) is an ε-approximate solution of (3.&2) f ° r ^ sufficiently
large.

LEMMA 3. // Pί(a ) is an ε/3 approximate solution o/(3.fc2), £Λ<m
Pw

fe(α;) is α^ ε-approximate solution of (1), provided that k ^ if(ε).

Proo/. Since P£(&) is an ε/3 approximate solution of (3.&2), we

have that

I (P*)' - F(x, Pk

n) I

^ I (PΪY - ^ ( α , P.fe) - Rk{x, 0) I + I F,(x, P*) - F{x, Pk) I

+ I Rk(x, 0) I
= I (P*) ' - F4(αj, P.fc) - Λt(aj, 0) | + | Bfc(α;, P.fc) | + | Rk(x, 0) |

^ ε/3 + ε/3 + ε/3 = ε ,
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since for k sufficiently large, say k ^ K(ε),
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^ e/3 and Σ aioχi

i=k+l

LEMMA 4. // Pi(x) is an e/5 approximate solution of (3.k2) where
k ^ K(ε), then for any j such that k ^ j ^ K(ε), Pi(x) is in the
class S{.

Proof. Since Pϊ(x) is an e/5 approximate solution of (3.A;2) we
have that

I (PΪ)' - F k ( x , Pk

n) - R k ( x , 0 ) | ^ 6 / 5 .

Also i Rk(x, Pi) I ̂  e/5 and | Rά(x, P%) \ ̂  e/5 by hypothesis. Thus by
adding and subtracting Fk{x, Pi) and Rk(x, 0) we can write

(PΪ)' - Fj(xf Pi) - Rs(x, 0) I

^ I (p y - Fk(x, Pi) - Rk(χ9 o) |

+ I Fk(x, Pi) - F, (x, Pk

n) - Rd(x, 0)

^ I (Pί)' - F,(x, Pi) - Rk(x, 0) I + I iί^ί

+ I Rs(x, 0) I + I Rk(x, 0) I

^ e/5 + e/5 + e/5 + e/5 + e/5 = ε ,

where use has been made of the fact that

I Fk(xf Pi) - Fά{x, Pi) I = I Rk(x9 Pi)

Rk(x, 0) |
ίc, Pi) I + P*)

Pi) \

Hence, Pi is an ε-approximate solution of (S.k2) when k2 = j and thus
belongs to the class S{.

It is useful to note that any solution of a given differential equation
is an ε-approximate solution of that equation for all positive ε, and
also if y(x) is an ε-approximate solution of a given differential equation
for all ε > 0, then y(x) is a solution of that given differential equation.

3* The approximate solution of the differential equation*
We now consider the approximate solution of (1) by a sequence of
polynomials Pi(x) which minimize (4). Let {εk} be a monotone null
sequence of positive numbers with ε: < 1. For each ε̂  there exists a
a Kk(εk) such that whenever h ^ Kk1

Σ
jh

From Lemma 3 an e/3 approximate solution Pi(x) of (S.k2) is an ε-
approximate solution of (1) provided that k ;> Kk. Then for ex there
exists a Kt such that
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are ex-approximate solutions of (1). Here we are denoting by ^/
any εJZ approximate solution of (3.&2) when k2 = JEi + i . We also
note that P^/(0) = 0; i.e., the polynomials satisfy the boundary con-
dition for all j — 0, 1,

For ε2 there exists a ϋΓJ such that

are ε2-approximate solutions of (1). Choosing K2 = max (Ku K2') leads
to the sequencePξ2, Pξ2+1, , P*///, , where Pnf+* is an ε2/3 approxi-
mate solution of (S.k2) when k2 = K2 + j , and for i = 0, 1, , and
P^2

+Y(0) = 0. It should be noted that P£*+* is an ε r and ε2-approximate
solution of (1).

Define inductively the sequence of solutions

pxjc pκk+ί . . . pκk+j . . .

where P^.fc

κ is an εk/S approximate solution of (3.&2) for k2 ~ Kk + j
having the property that P ^ y ( 0 ) = 0, j = 0, 1, . Again P^+ J ' is
an ε/Γapproximate solution of (1).

Consider the sequence

τ>κι τpκ2+ι p/^3+2 φ # # pKj+(j—i) . β

Denote this sequence by {YJ. We observe that each Yt is at least
an εrapproximate solution of (1), ί = 1, 2, .

At this point we need a theorem given by Coddington and Levinson [1],

THEOREM 2. Suppose that /(a?, T/) is continuous in some domain
D of the (x, y)-plane and further that f(x, y) satisfies a Lipschitz
condition with respect to y in D with Lipschitz constant K. Let Φι

and Φ2 he ε r and ε2-approximate solutions of (7) of class C\ at least
piecewise on [a, 6], satisfying

I Φi(Xo) - 0 2(£o) I ^ δ

for some x0 such that a fg x0 rg b, where δ is a nonnegative constant.
If s — βi + ε2, then for all x e [α, 6]

i(») Φ&) I ^ δβ + ( e 1) .

K
By a theorem given by Coppel [2] and stated in [3], we know

that the solutions yk of (Z.k2) are uniformly bounded on [0, 1]. Hence
the polynomials of the set {FJ are uniformly bounded, and there exists
a uniform Lipschitz constant K for (1) for x in [0,1].



THE APPROXIMATE SOLUTION OF yr = F(x, y) 289

Hence if ί* and j * are chosen so large that ε^ and e3 * are both
less than eβC for arbitrary small ε > 0, where C = (| eκ — 1 \)/K, then

j . ΐ*[x) x. j*\X) —^ \J* e ~f~ ~— ye J~J

* / I *K 1 I \

= ε , a?e[0, 1] .

Thus, the sequence {Yi(x)} is a Cauchy sequence and hence converges
uniformly on [0, 1], Therefore there exists a continuous limit function
Y(x) on this interval such that Yi(x) —•> F(B) as i —* co uniformly on
[0, 1]. Recalling the fact that each member of {Y{} is at least an
εrapproximate solution of (1), it is clear that Y(x) is a solution of
(1) satisfying Y(0) = 0, since it is an ε-approximate solution of (1) for
all ε > 0. Applying the uniqueness of solutions of (1), it is necessary
that Y(x) = y(x).

Thus we have shown the existence of a sequence of polynomials,
{Yi(x)}9 such that 3 (̂0) = 0 and each Yi(x) is a minimizing polynomial
of (4). Furthermore, this sequence converges uniformly to the solution
of (1) as i increases without bound. We state these results in the
following theorem.

THEOREM 3. If y(x) is the unique solution of (1) having the
value y(0) =0, then y(x) may be uniformly approximated on [0, 1] by
a sequence of polynomials {P%(x)} which are ε-approximate solutions
of (3.Jfc2) which satisfy P*(0) = 0 and which minimize condition (4).
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