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PRODUCTS AND QUOTIENTS OF PROBABILISTIC
METRIC SPACES

RUSSELL J. EGBERT

In this paper some results concerning the products and
quotients of probabilistic metric spaces are presented.

Probabilistic metric spaces were first introduced by K. Menger in
1942 and reconsidered by him in the early 1950's [3, 4, 5]. Since
1958, B. Schweizer and A. Sklar have been studying these spaces,
and have developed their theory in depth [9, 10, 11, 12, 13]. These
spaces have also been considered by several other authors [e. g., 2, 14,
15, 16]. An extensive, detailed up-to-date presentation may be found
in [7].

In the sequel, we shall adopt the usual terminology, notation and
conventions of the theory of probabilistic metric spaces, with but one
exception: In all previous work, the distribution functions which
determine the distances between points were required to have supremum
one. Our investigations have led us to drop this requirement and
the results which we present here show that doing so is natural.
It is easy but tedious to check that the restriction to distribution
functions with supremum one is not required in any of the previously
established results which will be needed in the sequel.

In concluding this introduction we remark that products of pro-
babilistic metric spaces have previously been considered by V. Istratescu
and I. Vaduva [2]. However, their definition of Cartesian product
employs associative functions which are stronger than Min, the
strongest possible triangular norm. Because of this, and in view of
the discussion given in [10], their results appear somewhat restrictive.
Also, a number of the results concerning finite products, which are
presented in § 1 and which were announced in [1], have recently been
obtained independently by A. Xavier [17].

1* Product spaces*

DEFINITION 1. Let (Si, %d and (S2, $2) be PM spaces and let T
be a left-continuous ί-norm. The T-product (Si, &) x (S2, %2) of (Sx, gi)
and (S2, %2) is the space (S1 x S2, T(j§19 %2)), where Sλ x S2 is the
Cartesian product of the sets Sx and S2 and T(gi, f$2) *s the mapping
from (Si x S2) x (St x S2) into the set of distribution functions Δ
given by
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, β) =

for any p = (pu p2) and q = (&, g2) in Si x Sa.
We shall often denote S, x S2 by S αwd T(%u g8) by gΓ, and when

there can be no doubt, omit the reference to T and write %τ(p, q) — Fpg.
As immediate consequences of Definition 1 we have:

THEOREM 1. The T-product (S, %τ) of two PM spaces (Sly gx) and

(S2, f$2) is a PM space.

THEOREM 2. // (S l f gi, T) and (S2, g2, ϊ1) are Menger spaces
under the same left-continuous t-norm Γ, £/ιew their T-product is a
Menger space under T.

COROLLARY 1. // (Slf %19 ϊ\) and (S29 g2, T2) are Menger spaces
and if there exists a left-continuous t-norm T which is weaker than
Tλ and T29 then their T-product is a Menger space under T.

We now determine conditions under which the product of equilateral,
simple, or α-simple PM spaces is again a PM space of the same type.
We begin with,

THEOREM 3. If (S19 gi) and (S2, g2) are equilateral spaces generated
by the same distribution function G, then their Min product (S1 x S2, %Mi%)
is an equilateral space generated by G.

Proof. Let p — (p19 p2) and q = (qu q2) be distinct points in Si x S2

and consider

Fvq(x) = Min (F9ιqι(x), FP2q2(x)) .

In all three cases, (1) p, Φ q19 p2 Φ q2; (2) p, = q19 p2 Φ q2; (3) p, Φ qu

Ί>2 — Q2, we have Fpq(x) = G(x) from which the result follows.
It should be noted that the choice of Min in the above theorem

is necessary, since we must have

T(H(x), G(x)) = T(G(x)9 G(x)) - G(x) ,

where H is the distribution function defined by

IO, x < 0

In general, this is true only for T = Min. Similarly, it is necessary
that (Si, gi) and (S2, g2) be generated by the same distribution function.
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THEOREM 4. If (S19 gi) and (S2, %2) are simple spaces generated
by the metric spaces (S19 dj and (S29 d2), respectively, and the same
distribution function G, then their Min-product (Sx x S2, SMin) is a
simple space generated by the metric space (S1 x S29 Max (d19 d2)) and G.

Proof. Let p = (pu p2) and q = (qlf q2) belong to St x S2. It
follows from Theorem 1 that Fpq = H if and only if p — q. Thus
we have only to show that whenever p Φ q Fpq(x) = G(x/d(p, q)), where
d(p, q) = Max {dt(pl9 qj, d2(p2, q2)). There are again three cases to
consider:

( 1 ) If pL Φ qι and p2 Φ q2, then

Fpq(x) = Min {Gix/d^, qd), G(x/d2(p2, q2))}

= G(α;/Max (dfa, q,\ d2{p21 q2))) - G(x/d(p, q)) .

( 2 ) If pL = qx and pz Φ q2, then dx{pu qx) = 0 and

Fpq(x) = Min (H(x), G(x/d2(p2, q2)) = G(x/d2(p2, q2))

- G(xfd(p, q)) .

( 3 ) If Pi ^ gx and p2 = g2, we proceed as in (2) above.

DEFINITION 2. A distance distribution function G is strict if it
is continuous and strictly increasing on [0, oo) and with Supx G(x) = 1.

The restriction of G to [0, oo) has an inverse which we will denote
by G* and refer to as the inverse of G.

THEOREM 5. Let (Sl9 %ι) and (S29 %2) be a-simple spaces, a ^ 1,
generated by the metric spaces (Slf dy) and (S29 d2), respectively, and
the same strict distribution function G. Let T be the strict t-norm
whose additive generator is (G*)-mla, where m >̂ 1 [12]. Then the
T-product (St x S29 %τ) is <^n a-simple space generated by the metric
space (S1 x S2, (d? + d?)ιlm) and G.

Proof. Let d = {d? + d2

m)1/m and let p = (pu p2) and q = (ql9 q2)
be distinct points of Sx x S2. We have to show that

Fpq(x) = G(x/d«(p, q)) .

We again split cases:

( 1 ) If pι Φ qx and p2 Φ q2, then

Fpq(x) = T(G(xld%pu qd), G(x/d«(p2, q2)))

d%pu Ql)) + fG(x/da

2(p2, q2))} ,
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where / = (G*)~m/α and / * = G(j-a!m) and j denotes the identity func-
tion. It follows that fG = i~m/*, whence

Fpq(x) = f*{x-mla(d?(pu ? 1) + d?(p2, q2))}

= G{x(d?(Pl1 ? 1) + df(p2, g2))-α/m} - G(xld*(p, q)) .

( 2 ) If Pi = (h and p2 Φ q2, then for a; > 0

Fpq(x) = T(H(x), G(x/d«2(p2, q2))) = G(x/d*(p, q)) .

( 3 ) If px Φ q1 and p2 = g2, we proceed as in (2).
As a result of Theorem 2 in [12] it follows that for a > 1 the

α-simple spaces above are all Menger spaces under the £-norm T'
whose additive generator is (G*)1/(1~α). Moreover as B. Schweizer
has observed, if we want to have T — T", then a and m must satisfy
the equation 1/(1 — a) = —m/a, from which it follows that

1/α + 1/m = 1 .

We now turn to the question of topologies on the T-product
spaces and state as our final result of this section.

THEOREM 6. Let (Su %ι T) and (S2, %2 T) be Menger spaces under
the same left-continuous t-norm. Let S3' denote the e — λ neighborhood
system in (Si x S2, $τ> T) and let 33 denote the neighborhood system
in (Si x S21 $τ, T) consisting of the Cartesian products NPl x NPz,
where NPl and NP2 are e — λ neighborhoods in the respective component
spaces (Su %l9 T) and (S2, $2, T). Then S3 and S3' induce equivalent
topologies on (Sx x S2y %τ, T).

Proof. We first note that since T is assumed to be left-continuous,
the neighborhood systems S3 and 33' are in fact bases for their respec-
tive topologies [10]. Consequently, it suffices to show that for each
B in S3 there exists a Bf in S3' such that Br g δ , and conversely. Let
Ax x A2 be an element of S3. Then there exist neighborhoods NPl(ε19 λ j
and NP2ι(s2, λ2) contained in Aλ and A2, respectively. Let

ε = Min (εly ε2), λ = Min (Xu λ2)

and p = (pu p2). We will show that Np(e, X)SA1 xA2. To this end,
let q = (qu q2) belong to Np(e, λ). Then we have

ι ι ^fa ^εJ, FPzH(ε2))
^ T(FPiqi(ε)y FP2H(ε)) - Fpq(ε) > 1 - λ ^ 1 - \ .

Similarly, FPlH(e2) > 1 - λ2. Thus qx e NPl(εu λ j and q2εNP2(ε2i λ2), from
which the result follows.
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Conversely, suppose that Np(e, λ) is an element of 83'. Since T
is left-continuous, Supβ < 1 T(x, x) = 1, so that there exists an η such
that

Let q = (qu q2) belong to NPl(ε, η) x NP2(ε, η). Then

Fpq(ε) = T(FPiqι(ε), FP^(ε)) *> Γ(l - V, 1 - 77) > 1 - λ

so that g e iVp(ε, λ) and NPl(ε, η) x iVP2(ε, 97) S?Np(s, λ). This completes
the proof.

Note that the proof of the first half of Theorem 6, i.e., of the
fact that for any B in S3 there exists a Bf in S3' such that Bf ϋ 5, is
independent of any hypothesis on the ί-norm Γ, while the proof of
the second half requires only that $xx$x<1T(x, x) = 1.

We conclude this section by remarking that all the above results
may be extended in an obvious way to include products of any finite
number of PM spaces.

2* Diameter of and distance between sets. Throughout this
section (S, ^~, T) will denote a Menger space with a continuous ί-norm.

DEFINITION 3. Let A be a nonempty subset of S. The function
DAf defined by

DA(x) = Sup Inf Fpq(
t<x Lp,qeA

will be called the probabilistic diameter of A.
We now establish the properties of the probabilistic diameter.

Proofs requiring only routine calculations will be omitted.

THEOREM 7. The function DA is a distribution function.

DEFINITION 4. A nonempty subset A of S is bounded if
Sup,, DA(x) = 1, semi-bounded if 0 < Sup DA(x) < 1, and unbounded if

THEOREM 8. If A is a nonempty subset of S, then DΛ = H if
and only if A consists of a single point.

THEOREM 9. If A and B are nonempty subsets of S and AξΞ=B,
then DA ^ DB.

THEOREM 10. If A and B are two nonempty subsets of S such
that Af]B= 0 , then
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(2.1) DAΌB(x Λ - y ) ^ T(DA(x), DB{y)) .

Proof. Let x and y be given. To establish (2.1) we first show
that

(2.2) I n f Fpq(x + y)^ τ(lnί Fpq(x), In f Fpq(y)) .
p,qeAlJB \p,qeA ptqeB /

There are two distinct cases to consider:

Case (1).

(2.3) Inf FM(x + y) = Inf FM(x + y) .
p,qeA\JB peA

qeB

Now for any triple of points p, q and r in S, we have

FM{x + y)ϊ> T(Fpr{x), Frq(y)).

Taking the infinum of both sides of this inequality as p ranges over
A, q ranges over B and r ranges over AΓ)B, and using (2.3) we have,

Inf FJX + y)^ Inf T(Fpr(x), Frq(y)) .
p,qeA{JB \ peA /qeB

reAOB

However, since T is continuous and nondecreasing we obtain

I n f Fpq(x + y)^ τ(lnΐ F9r(x)9 I n f Frq(y)) .
p,qeA{JB \p,reA r,qeB /

Case (2).

I n f Fpq{x + y)< I n f Fpg(x + y) .
p,qeA\JB peA

qeB

In this case one of the equalities,

or

Inf Fpq(x + y) = Inf Fpq(x + y)
p,qeA{JB p,qeA

Inf FM(x + y) = Inf Fpg(x + y)
ρ,qeA\JB P,qεB

must hold. If the first equality holds, we have

Inf Fpq(x + y)^ i f l n f FM(x), H(y))
p,qeA[)B \p,qeA /

2: Γ(lnf Fvq{x), Inf FM{y)) .
\p,qeA P,qeB /
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The same argument works for the second equality. This establishes
(2.2).

Finally, using the fact that the rectangle

{(s, t): 0 ̂  s ^ x, 0 ̂  t ^ y)

is contained in the triangle {(s, t): s, t ^ 0, s + t < x + y}, the inequality
(2.2) and the continuity of T we have

D A U B ( x + y ) = S u p I I n f F p q ( s + t ) \
s + t<x + y\_p,qeA{JB J

Inf
s<x Lp,qe AIJB
t<y

^ τ(Sup Γ Inf FM(s)Ί, Sup Γ Inf
\ s<a; [_P,qeA J ί<y Lί?,?e^

= T(DA{x), DB{y))

THEOREM 11. If A is a nonempty subset of S, then DA = Dj,
where A denotes the closure of A in the ε — λ topology on S [10].

Proof. Since ASA, it follows from Theorem 7 that Z^ ^ D2.
Let 77 > 0 be given. In view of the uniform continuity of g with

respect to the Levy metric L on J [8] there exists an ε > 0 and a
λ > 0 such that for any four points pu p2y p3 and pk in S,

L(FW FP5H) < η

whenever FPιPs(e) > 1 - λ and FP2PJβ) > 1 - λ.
Next, with each point p in A associate a point p{p) in A such

that Fp(~)-(e) > 1 - λ. Then, in view of the above for any pair of
points p and q in A,

Fp-q-) < Ύj .

In particular, for all t we have,

FpiϊuΦ ~V)-η^ Fp~q(t) .

Let Aη = {p(p): peΆ). Then since Aη S A,

Jnf_ FTq{t) ^ Inf p{-]qΓq)(t -V) -V

= Inf Fpq(t -rj)-r/^Inί FJjt - η) - η .
p,qeAη P,qεA

Now, taking the supremum for t < x of the above inequality yields
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D-Ax) = Sup Γ Inf F^(ί)l ^ Sup Γ Inf FPί(t -η)~\-η
t<x Lp,qe~A J t>x Lp,qeA J

= SupΓInf FPq(t)~] -η = DA{x - V) - V
t<x-η Lp,qeA J

Since the above inequality is valid for all η and since DA is left-
continuous it follows that

D2(x) ^ DA(x) .

Whence DA(x) = DA{x) and the proof is complete.

DEFINITION 5. Let A and B be nonempty subsets of S. The
probabilistic distance between A and B is the function FAB defined by

(2.4) FAB(x) = Sup T (inf Γsup Fvq{t)\ Inf ΓsupFpq(t)]) .
t<% V p e i L ? 6 ΰ J qeB L peA J/

In establishing the properties of FAB we again omit the routine
proofs.

THEOREM 12. FAB is a distribution function.

THEOREM 13. If A and B are nonempty subsets of S, then
TP ΊP

*AB — *BA

THEOREM 14. If A is a nonempty subset of S, then FAA = H.

THEOREM 15. If A and B are nonempty subsets of S, then
FAB =

Proof. It is sufficient to show that FAB = FAB since this result
together with Theorem 13 yields

ΊP ΊP ΊP ΊP ΊP
•f AB — * AB = - Γ l i = - Γ Ϊ I — -Γ AB •

With this in mind we first show that FA-% fS FAB. Since BQB for
all t,

(2.5) Inf [Sup Fpg(t)] ^ Inf Γsup FP,(t)] .
qeBLpeA J ~eBLpeA J

Let ΎJ > 0 be given. The argument given in the proof of Theorem
11, establishes that for each point qeB, there exists a point q{q) in
B such that for all t,

Let Bv = {q(q): qeB}. Since BVSB we have,
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S u p F φ -η)-η^ SupFM ( 5 )(ί) = SupFvq(t)
B

^ Sup Fpg(t) .
qeB

Consequently,

Inf Γsup Fpl(t - v)\ - V ^ Inf [Sup Fpg(t)] .
peALae~B J peALqeB J

(
t<x \qeB L P e A

Moreover, taking the supremum on t < x of the above inequality,
yields for any η,

f(x) = Sup (Inf [Sup Fpq(t)]) 2> Sup (inf Γsup Ffq(t - V)Ί) - η
t<x \peALqeB J / t<χ \ p e A L q e B Λ'

= Sup (inf [Sup Fp-q{t)\) - rj = g(x - η) - η .
ί > z - J ? \ qeA L g e~B -1'

Now since both / and g are left-continuous and ΎJ is arbitrary, it
follows that fix) ^ gix). This together with (2.5), and the continuity
of T yields

FAB(x) = φup( lnf
I t < z \ peA

^ ΓJSup (inf [Sup FPϊ(t)\), Sup (inf Γsup
I t<χ \peA L q e B J / t<x \ q e β LpeA

= Sup ϊ f Inf [Sup Fpq(t)\ Inf Γsup Fpq(t)\) = F^^(x) .
ί < a ; V p e ^ L g e β J g e l LpeA J/

A similar argument shows that FAB ^ ^ ΰ . Combining these
inequalities yields the desired result.

THEOREM 16. If A and B are nonempty subsets of S, then
FAB — H if and only if A — B.

Proof. Suppose FAB — H and let ε > 0 be given. Then

1 = FAB(e) - T (Sup (inf Γsup Fpq(t)]\ Sup (inf Γsup Fpq(t)\)}
l ί < £ \ peALqeB J / t<ε \ qeB L peA J/)

= Sup (inf [Sup Fpq(t)]) = Inf Γsup Fpq(ε)] .
t<ε \ qeB L peA J/ qeB L peA J

So that for any qeB and every λ > 0 there exists a point p in A
for which Fpq(e) > 1 — λ. Consequently, q is an accumulation point
of A and we have ΰ g l . A similar argument shows that AQB.

Conversely, suppose A = B. Then in view of Theorems 14 and
15, FAB = FAB = F-AA = H.

THEOREM 17, // A, B and C are nonempty subsets of S, then
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for any x and y

FAB(x + y)^ T(FΛC(x), FBC(y)) .

Proof. Let u and v be given. Then for any triple of points
p, q and r in S we have

Fpq(u + v)^ T(Fpr(u), Fqr(v)) .

Making use of the continuity and monotonicity of T we have the
following inequality:

geB \ rεC reC L geB 1/

Consequently,

Inf Γsup Fpq(u + v)~\ ^ T (Inf Γsup Fpr{u)\ Inf Γsup Fqr(v)\) .
peALgeB J \peALreC J reC L geB J/

Similarly,

Inf [Sup Fpq(u + v)] ^ T (inf Γsup Fpr(u)\ Inf Γsup Fqr(v)]) .
qeBLpeA J \ reC L peA J geB L reC J/

Therefore, since T is associative, we have

i f Inf [Sup Fp g(^ + v)l, Inf Γsup Fpq(u + v)T)
V peA L ?e5 J geB L pei J/

^ τ\τ (inf [Sup ̂ (w)], Inf Γsup ί1,,^)!) ,

ϊflnf [Sup F,r(v)\ Inf Γsup Fqr(v)~\)\ .
\ geB L reC J reC L geB J / J

Now arguing as in the last step of the proof of Theorem 10, we have

FAB(x + y)= Sup ϊflnf Γsup FJμ + v)λ ,
u+v<x+y \ peA L. geB J

Inf Γsup FJμ + v)l)
geB L peA J/

^ Sup T (inf Γsup FJμ + v)\ Inf Γsup Fpq(u + v) T)
u<% \peA L geJ5 J geB L pei _!/
υ<y

= T {Sup Γ (inf [Sup Fvr{u)\ Inf Γsup Fpr{u)Ύ) ,
K u<x \peALreC J reC LpeA J/

Sup T (inf [Sup Fqr(v)\, Inf Γsup F?r(v)~hl
v<y \ geB [_ reC J reC L. geB J/J

- T(FAϋ(x), FBC{y)).

Let (S, g, T) be a Menger space under a continuous ί-norm, ϊ7,
and let 8 be a nonempty collection of nonempty subsets of S. Then
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ABjthe function g @ defined for any A and B in @ by %&(A, B) =
where FAB is given by (2.4), is a mapping from @ x @ into z/.
Furthermore, as a direct consequence of Theorems 12-17 we have,

THEOREM 18. If each set in @ is closed, then (@, %& T) is a
Menger space.

3* Quotient spaces. Let (S, g) be a PM space. In [4] K.
Menger introduced three types of distinguishability for pairs of points
p, q in S depending upon the behavior of the distance distribution
function Fpq near zero. These notions may be summarized in the
following:

DEFINITION 5. Let (S, g) be a PM space, let p and q be points
in S and let tpq = Inf {x : FM(α0 > 0}. Then the distance between p
and q is:

(A) certainly positive if tpq > 0;
(B) barely positive if tpq — 0 and i^g(0+) — 0;
(C) perhaps zero if Fpq(Q+) > 0.

In Menger's paper a somewhat different terminology was used.
Namely, he said that p and q are: (A) certainly distinguishable if the
distance between them is certainly positive; (B) barely distinguishable
if the distance between them is barely positive; (C) perhaps indis-
tinguishable if the distance between them is perhaps zero. The
reasons for the slight change in the terminology introduced here will
become apparent latter (see Definition β, ff.).

The above mentioned types of distinguishability were recently
reconsidered by B. Schweizer [6] who defined two relations C and D
on S as follows:

(c) pCq if and only if the distance between p and q is perhaps
zero, i.e., if and only if (C) holds.

(d) pDq if and only if the distance between p and q is not certainly
positive, i.e., if and only if either (B) or (C) holds.

Concerning these relations, he obtained the following results:

THEOREM 19. If (S, %, T) is a Menger space and T a t-norm
such that T(a, b) > 0 whenever a > 0 and b > 0, then the relation C
is an equivalence relation.

THEOREM 20. Under the hypotheses of Theorem 19, (S, t) is
always a pseudo metric space. Moreoverf (S, t) is a metric space if
and only if the distance between every pair of distinct points of S
is certainly positive.
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THEOREM 21. If the hypotheses of Theorem 19 are satisfied, then
the relation D on S is an equivalence relation.

THEOREM 22. If (S, fj, T) is a Menger space such that

Sup T(a, a) = 1

and T(a, b) > 0 whenever a > 0 αwd! 6 > 0, ί&ew £Aβ equivalence classes
in S determined by the equivalence relation D are closed subsets of
S in the e — λ topology.

In view of the fact that we no longer require that all the distance
distribution functions have supremum one, various types of behavior
at infinity are possible and can be distinguished. Indeed, the entire
preceding discussion concerning behavior at zero can be dualized.

DEFINITION 6. Let (S, g) be a PM space, let p and q be points
in S, let spq = Sup {x : Fpq(x) < 1} and let Fpq(^) = l i m ^ Fpq(x). Then
the distance between p and q is:

(A') perhaps infinite if Fpq(oo) < 1;
(B') barely finite if spq = <χ> and i ^ 0 0 ) = 1;
(C) certainly finite if sM < °o.
We define two relations C" and Df on S which are dual to C and

D, respectively, as follows:
(c') pC'q if and only if the distance between p and q is certainly

finite, i.e., if and only if (C) holds.
(d') pD'q if and only if the distance between p and q is not

perhaps infinite, i.e., if and only if Fpq(oo) = ly or equivalently if and
only if (B') or (C) hold.

THEOREM 23. If (S, %, T) is a Menger space, then C is an
equivalence relation on S.

Proof. The fact that C" is reflexive and symmetric is an immediate
consequence of the definition of C. To show that C is transitive
suppose pC'q and qCr, so that spq < °o and sqr < oo. Then for any
ε > 0 ,

Fpr(spq + sqr + ε) ^ T(Fpq(spq + ε/2), Fqr(sqr + e/2))

= Γ(l , 1) = 1 .

Consequently, spr ^ sp g + sqr < oo and ^CV.

THEOREM 24. //(S, fj, Γ) is a Menger space in which the distance
between every pair of points is certainly finite, then (S, s) is a metric
space.
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Proof. In view of the proof of the previous theorem, we need
only show that spq = 0 implies p = q. To this end let spq — 0, then
Sup {x : Fpq(x) < 1} = 0. Whence, Fpg(0+) = 1 and consequently Fpq = H
so that p = q.

THEOREM 25. If (S, $, T) is a Menger space under a continuous
t-norm T, then the relation D' on S is an equivalence relation.

Proof. From Fpp(^) = H(oo) = 1 and Fpq = Fqp it follows that
Dr is reflexive and symmetric. To show that D' is transitive suppose
pD'q and qD'r. Then for any x,

Fpr(x) ^ T(Fpq(x/2), Fqr(xβ)) .

Since T is continuous the above inequality yields

and thus pD'r.

THEOREM 26. Let (S, f$, T) be a Menger space under a continuous
t-norm T. Then the equivalence classes in S determined by the
equivalence relation D' are closed subsets of S in the ε — λ topology.

Proof. We first note that since T is continuous on the unit
square it is uniformly continuous. Now let pe S and let D'{p) be the
equivalence class determined by p. To show that D'{p) is closed we
show that S — D'(p), the complement of D'{p), is open. Let r be any
point in S — D\p). Then there is a λ > 0 such that Fpr(^) = 1 — λ.
Since T is uniformly continuous and since T(a, 1) = α, there exists an
ε > 0 such that T(α, 1 — ε) > a - λ/2 for all a in [0, 1]. Let q e Nr(ε, ε).
Then for any x > ε we have

Fpr(2x) ^ T(Fpq(x), Fqr(x)) ^ T(Fpq(x), 1 - ε)

> Fpq(x) - λ/2 .

Taking the limit as x —> oo yields

1 - λ = F,r(oo) ^ ^ ( o o ) _ λ/2 ,

whence Fpq(oo) ̂  1 - λ/2. Thus qίD\p) and it follows that

iV r (ε,ε)SS-£'(p),

hence S — D'(p) is open.

THEOREM 27. // (fi , S> ϊ7) ^s a Menger space such that T is
continuous and T(α, 6) > 0 whenever a > 0 and b > 0, ί/ieti £/ιe equiva-
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lence classes in S determined by p and the equivalence relation C are
closed in the ε — λ topology.

Proof. Let peS and let C(p) be the equivalence class determined
by p. We show that S — C(p) is open. Let reS- C(p). Then
Fpr(0+) = 0 so that Fpr is continuous at 0. Hence for every ε > 0
there exists a δ > 0 such that Fpr(δ) > ε/2 and a λ > 0 such that for
all a e [0,1] T(a, 1 - λ) > a - ε/2. Let q e Nr(δ/2, λ), then

ε/2 > Fpr(δ) ^ T(Fpq(δ/2), Fqr(δ/2))

^ T(Fpg(δ/2), 1 - λ) > FpQ(δ/2) - ε/2.

Hence for every ε > 0 there exists a δ > 0 such that Fpq(δ/2) < ε.
Consequently, Fpq(0+) = 0. Thus qeS - C(p), whence Nr(δ/2, λ ) S
S — C(p) and S — C(p) is open.

THEOREM 28. Let (S, f$, T) be a Menger space under a continuous
t-norm T. Let peS and let C'(p) be the equivalence class in S
determined by p and the equivalence relation C. Suppose further
that there exists a number M such that for any u and v in C'(p)
we have Fuυ(x) = 1 whenever x ^ M. Then C\p) is closed in the
ε — λ topology.

Proof. Suppose q belongs to G'(p), the closure of C'(p), but not
to C'(p). Then Fpq(x) < 1 for all finite x, so that for any t > 0 there
is an ε > 0 such that Fpq(t + M) > 1 — ε; and since q e C'(p), there
exists a u e C'{p) such that Fqu(t) > 1 — ε/2. Whence,

1 - ε > Fpq(t + M) ̂  T(Fpu(M), Fqu(t))

= Γ(l, Fqu(t)) = Fq%(t) > 1 - ε/2 ,

which is a contradition. Thus C'(p) = G'(p).
The next four theorems show that, under suitable conditions, each

of the equivalence relations, C, C", D, D', can be "divided out".

THEOREM 29. Let (S, g, T) be a Menger space under a t-norm
T which is continuous and such that T(a, b) > 0 whenever a > 0 and
b > 0. For each peS, let D(p) be the equivalence class in S deter-
mined by p and the equivalence relation D and let S/D be the collec-
tion of all such equivalence classes. Then (S/D, g5/Z), T) is a Menger
space in which the distance between distinct elememts is certainly
positive.

Proof. The fact that (S/D, %SID, T) is a Menger space follows
directly from Theorems 18 and 22.
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Let D(p) and D(q) be distinct equivalence classes, and suppose
that

/o o\ / — f)

Since peD(p) and qeD(q), there is an xQ > 0 such that Fpq(x0) = 0.
In view of (3.2), we thus have

^ Γ ( Inf ΓsupF.,(a;.)"|, Inf Γ Sup F

Hence,

0 < Inf Γ Sup F β .
ueD(p) L.veD{q)

whence for each ueD(p)

Sup FM(α?o) > 0 .
veD(q)

Consequently there exists a qoeD(q) such that FpqQ(x0) > 0. Thus
since F ^ is left-continuous, there is an ε, 0 < ε < x0, such that
FPQQ(X0 - ε) > 0. Hence

0 = FPQo(xQ) ^ T(^ g o(x o - e), ^ ( ε ) ) > 0 ,

since both FpqQ(xQ — ε) and Fqqo(e) are positive. However, this is a
contradiction and hence tDίp)D{q) > 0.

THEOREM 30. Let (S, S, T) be a Menger space under a continuous
t-norm T. For each p e S let D'(p) be the equivalence class in S
determined by p and the equivalence relation D'', and let S/D' be the
collection of all such equivalence classes. Then (S/Df, %SID>, T) is a
Menger space in which the distance between distinct elements is
perhaps infinite.

Proof. In view of Theorems 18 and 26 (S/D'f %SID>, T) is a Menger
space.
Let Dr(p) and D'(q) be distinct equivalence classes and suppose that
FD,{p)D>(q)(d) = 1. Since p e D\p) and q e Df{q), there is an ε > 0 such
that Fpq(oo) < 1 — ε. Since T is continuous

1 = FD,{p)D,{q)(oo)

= lim Sup T ( Inf Γ Sup ^ . ( ί ) ] , Inf Γ Sup Fuv(t)])
Z-+00 t<x \ueDf(p) LveD'(q) J veD'(q) LueD'(p) J/

= Sup τ( Inf Γ SupF.,(ί)l, Inf Γ Sup F.,(ί)l)
t KueD'ίp) LveD'iq) J veD'iq) LueD'(p) J/

= ΓJSup ( Inf Γ Sup Fuv(t)]\ Sup( Inf Γ Sup ^ (
L t \ueD'{p) LveD'(q) J / t \veD'{q) [_ueD>{p)
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But T(a, b) = 1 if and only if a = b = 1. Consequently,

Sup( Inf Γsup ίUt)T) - 1 .
t \ D ' ( ) L D ' ( ) J /t \ueD'(p) L_veD'(g)

Thus, there exists an x0 such that

Inf Γ Sup Fuv(x0)] > 1 - ε/2 .

Hence,

^Sup Fpv(xQ) > 1 - ε/2 .

Since Fpv is nondecreasing

Sup Fpυ(oo) ^ Sup i ^ ( O > 1 - ε/2 .
veD'(q) veD'(q)

Consequently, there exists a g £ G D r { q ) such t h a t

^ (°°) < Sup i ^ ( o o ) - ε/4 > 1 - 3ε/4 .

e veD'(q)

and we have

1 - e > Fpq(oo) s> T(Fp, ε(oo), F M /oo)) = ̂ ( o o ) > 1 - 3ε/4 .
which is a contradiction. Hence FDt{p)D,{q)(oo) < 1 and the distance
between distinct equivalence classes is perpaps infinite.

THEOREM 31. Let (S, g, T) be a Menger space under a t-norm
T which is continuous and such that Γ(α, b) > 0 whenever a > 0 and
b > 0. For each pe S, let C(p) be the equivalence class in S deter-
mined by p and the equivalence relation C, and let S/C be the collection
of all such equivalence classes. Then (S/C, %sιc, T) is a Menger
space. Moreover, if each C(p) in S/C is such that Inίu>veC{p)Fuυ(0+) > 0,
then the distance between distinct elements is not perhaps zero.

Proof. The first part of this theorem is a direct consequence of
Theorems 18 and 27.

To establish the second part, let C(p) and C(q) be distinct equiva-
lence classes, and suppose that Fc{p)c(q)(0+) > 0. Since p e C(p) and
qeC(q), we note first that

(3.3) Fpq(0+) = 0 .

Next we have
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0 < Fcwom(0+)

= lim Sup τ( Inf Γ Sup Fuv{t)\ Inf Γ Sup FM(ί)Ί)
h~*Q+t<h \ueC(p) LυeCiq) J vec(q) LueC(p) J/

S lim T ( Inf Γ Sup F%v{h)\ Inf Γ Sup F.,(Λ)"h

= Γ f lim Inf Γ Sup Fuv(h)\ lim Inf Γ Sup Fuv(h)~\) ,

whence

lim ( Inf Γ Sup F.,(^)l>) = λ > 0 .

Thus, in particular,

lim ( Sup Fpv(h)) ^ λ > λ/2 > 0 .

Since Sup^e^^^ is increasing, for any h > 0 we have,
(3.4) Sup Fpv(h) > λ/2 .

veC(g)

From (3.4) it follows that for each h > 0 there exists a, qhe C(q) such
that

(3.5) F,qh(h) > λ/2 .

Now let lnίUtVeC{q)Fuυ(0+) = 37. By hypothesis, 77 > 0, whence

Γ(λ/2,17) > 0 .

Moreover, since gΛ € C(q)

(3.6) i^A(/0 ^ ^ ,

for all h > 0. Next, in view of (3.3), there exists an h0 > 0 such
that

(3.7) Fpq(2h0) < Γ(λ/2,77) .

Combining the inequalities (3.5), (3.6) and (3.7) we have

Γ(λ/2, η) > Fpί(2Λ0) ^ T(pqhQ(hQ), FqqhQ(hQ)) ^ Γ(λ/2, 27) ,

which is a contradiction. Hence Fc{p)c{q)(0+) = 0 and the proof is
complete.

THEOREM 32. Let (S, §> ϊ1) ê α Menger space under a continuous
t-norm T. For each peS let C'{p) be the equivalence class in S
determined by p and the equivalence relation C", and let S/C be the
collection of all such equivalence classes. If each C'{p) in S/C is
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such that for some Mp, suv < Mp for all u and v in C'(p), then
(S/C, %s!c>i T) is a Menger space in which the distance between
distinct elements is not certainly finite.

Proof. In view of Theorems 18 and 28 (S/C, %slc,, T) is a Menger
space.

Let C'{p) and C\q) be distinct equivalence classes and suppose that

(3.8) Scww < °°

Since p e C'(p) and q e C'{q) for each λ > 0 there is an ε > 0 such that

(3.9) Fpq(sc,{p)c,{q) + Mq + λ) < 1 - ε ,

where suv < Mq for all u and v in C'(q). In view of (3.8),

1 — -Γ c(p)Cf(q)\sc'(p)C'(q) ~

= Sup τ( Inf Γ SupFUΨ(t)\ ,

Inf
veC'(q) L.ueC'(p)

= τ( Inf Γ Sup Fm(80.lf)0H9) + λ/2)Ί ,
\ueCf{p) L veC'(q) J

Inf Γ Sup Fnv(scnp)cnq) + λ/2)Ί) .
veC'iq) LueC'ip) J/

Since T(a, 6) = 1 if and only if a = b = 1, it follows that

Inf Γ S\xpFuv(sc,{p)C,{q) + λ/2)Ί = 1 ,

whence, in particular,

jSup FJpa.Mc.rn + V2) = 1

Thus, there exists a qε e CXg) such that

(3.10) F^iβowm + V2) > 1 - e/2 .

Combining (3.9) and (3.10), we have

1 - ε > Fpq(s0,{p)C,m + Mq + λ)

^ Γ(F, ί ε(S ( 7, ( ί > ) C, ( g ) + λ/2), FO T ε(M, + λ/2))

= T(FH.(80.Wc'W + λ/2), 1)

= F«.(*o>ww + λ/2) > 1 - 6/2 .

This is a contradiction, whence sc,(p)c,m = <χ> and the proof is complete.
In conclusion we note that under the hypotheses of Theorem 31
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the equivalence classes in S/C are either bounded or semi-bounded
and under the hypotheses of Theorem 32 the equivalence classes in
S/C" are bounded.
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