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PRODUCTS AND QUOTIENTS OF PROBABILISTIC
METRIC SPACES

RUSSELL J. EGBERT

In this paper some results concerning the products and
quotients of probabilistic metric spaces are presented.

Probabilistic metric spaces were first introduced by K. Menger in
1942 and reconsidered by him in the early 1950°s |3, 4, 5]. Since
1958, B. Schweizer and A. Sklar have been studying these spaces,
and have developed their theory in depth {9, 10, 11,12, 13]|. These
spaces have also been considered by several other authors [e. g., 2, 14,
15,16]. An extensive, detailed up-to-date presentation may be found
in |7].

In the sequel, we shall adopt the usual terminology, notation and
conventions of the theory of probabilistic metric spaces, with but one
exception: In all previous work, the distribution functions which
determine the distances between points were required to have supremum
one. Our investigations have led us to drop this requirement and
the results which we present here show that doing so is natural.
It is easy but tedious to check that the restriction to distribution
functions with supremum one is not required in any of the previously
established results which will be needed in the sequel.

In concluding this introduction we remark that products of pro-
babilistic metric spaces have previously been considered by V. Istratescu
and I. Vaduva [2]. However, their definition of Cartesian product
employs associative functions which are stronger than Min, the
strongest possible triangular norm. Because of this, and in view of
the discussion given in [10], their results appear somewhat restrictive.
Also, a number of the results concerning finite products, which are
presented in § 1 and which were announced in [1], have recently been
obtained independently by A. Xavier [17].

1. Product spaces.

DErFINITION 1. Let (S, %) and (S,, §.) be PM spaces and let T
be a left-continuous ¢-norm. The T-product (S;, F.) X (S, F.) of (S, F)
and (S,, ¥.) is the space (S, x S,, T(F, F.)), where S, x S, is the
Cartesian product of the sets S, and S, and 7(%,, ¥.) is the mapping
from (S, X S,) X (S, x S,) into the set of distribution functions 4
given by
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T(%u %2)(1): q) = T(%’l(pn q,), %2(1)2’ q:) ,

for any p = (p, p,) and ¢ = (g,, ¢») in S; X S..
We shall often denote S, x S, by S and T(F, §.) by &r, and when
there can be no doubt, omit the reference to T and write F.(p, q) = F,,.
As immediate consequences of Definition 1 we have:

THEOREM 1. The T-product (S, §,) of two PM spaces (S, F.) and
(S., B) s a PM space.

THEOREM 2. If (S, T, T) and (S, . T) are Menger spaces
wunder the same left-continuous t-norm T, then their T-product is a
Menger space under T.

COROLLARY 1. If (S, &, T)) and (S, & T.) are Menger spaces
and tf there exists a left-continuous t-norm T which is weaker than
T, and T, then their T-product is a Menger space under T.

We now determine conditions under which the product of equilateral,
simple, or a-simple PM spaces is again a PM space of the same type.
We begin with,

THEOREM 3. If (S, §) and (S,, §.) are equilateral spaces generated
by the same distribution function G, then their Min product (S, X Ss, Bain)
18 an equilateral space generated by G.

Proof. Let p = (p, p,) and ¢ = (q,, g,) be distinet points in S; X S,
and consider

qu(x) = Min (qul(x): Fpng(x)) .

In all three cases, (1) p, # ¢, P, # @5 (2) D1 = @, P # G5 (3) D, # @,y
P, = ¢,, We have F, (x) = G(x) from which the result follows.

It should be noted that the choice of Min in the above theorem
is necessary, since we must have

T(H(z), G(v)) = T(G(2), G(x)) = G(=) ,

where H is the distribution function defined by

L,x2>0.

In general, this is true only for T = Min. Similarly, it is necessary
that (S, %.) and (S,, §.) be generated by the same distribution function.
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THEOREM 4. If (S, §) and (S,, F.) are simple spaces generated
by the metric spaces (S, d,) and (S,, d,), respectively, and the same
distribution function G, then their Min-product (S; X S, Fuwm) 18 @
simple space generated by the metric space (S, X S,, Max (d,, d,)) and G.

Proof. Let p = (p,p,) and ¢ = (q, ¢.) belong to S, x S,. It
follows from Theorem 1 that F,, = H if and only if p =gq. Thus
we have only to show that whenever p # ¢ F,(x) = G(z/d(p, q)), where
d(p, @) = Max (d\(p,, ¢.), do(Dy @5)). There are again three cases to
consider:

(1) If p, #q, and p, # q,, then

Fm(x) = Min {G(x/di(pu q.)), G(x/dz(pz; Q2))}
= G(z/Max (dy(py, 1), du(Ds, €2))) = G(@/d(p, q)) .

(2) If p,=q, and p, # q,, then d\(p, ¢,) =0 and

F, () = Min (H(%), G(x/d(D:, ¢)) = G(x/dy(,, )
= G(x/Max (0, dy(p,, ¢2))) = G(x/d(p, q)) .

(3) If p, # q, and p, = q,, we proceed as in (2) above.

DEFINITION 2. A distance distribution function G is strict if it
is continuous and strictly increasing on [0, <) and with Sup, G(z) = 1.

The restriction of G to [0, ) has an inverse which we will denote
by G* and refer to as the inverse of G.

THEOREM 5. Let (S, &) and (S, §.) be a-simple spaces, a =1,
generated by the metric spaces (S, d,) and (S,, d;), respectively, and
the same strict distribution function G. Let T be the strict t-norm
whose additive generator is (G*)~™*, where m = 1[12]. Then the
T-product (S, x S, Fr) ts an a-simple space generated by the metric
space (S; X S,, (A" 4+ dM'™) and G.

Proof. Let d = (d" + d7)'™ and let p = (p, p,) and q = (q,, ¢z)
be distinet points of S; x S,. We have to show that

F,(2) = G(z/d*(p, 9)) .
We again split cases:
(1) If p,+ q, and p, # q,, then

Fo () = T(G(x/di(p,, ), G(x/d5(D., =)
= fHfGx/d{(p,, ¢) + fG(x/d5(p,, q2))} ,
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where f = (G*)™/* and f* = G(j~*/™) and j denotes the identity funec-
tion. It follows that fG = j—™/*, whence

F(x) = f*z=™(dMp., ¢,) + d5 (s, 0.))}
= Gl{a(dM(p,, ¢)) + A7 (D ¢2))™"} = G(x/d*(p, q)) .

(2) If p, =q, and p, # q,, then for x >0

F,(») = T(H(x), G(x/d5(p., q2))) = G(x/d*(p, q)) .

(3) If p, #q, and p, = q,, we proceed as in (2).

As a result of Theorem 2 in [12] it follows that for a > 1 the
a-simple spaces above are all Menger spaces under the t-norm 7'’
whose additive generator is (G*)Y“~*. Moreover as B. Schweizer
has observed, if we want to have T = 7", then @ and m must satisfy
the equation 1/(1 — a) = —m/a, from which it follows that

o+ 1/m=1.

We now turn to the question of topologies on the T-product
spaces and state as our final result of this section.

THEOREM 6. Let (S, T) and (S,, F. T') be Menger spaces under
the same left-continuous t-norm. Let B’ denote the € — N neighborhood
system in (S, X S,, Fr, T') and let B denote the meighborhood system
m (S; X Sy, Bry T) comsisting of the Cartesian products N, x N,,
where N, and N,, are e — \ neighborhoods in the respective component
spaces (S, i, T) and (S, Foy T). Then B and B induce equivalent

topologies on (S, X Sy Fr, T').

Proof. We first note that since 7T is assumed to be left-continuous,
the neighborhood systems B and B’ are in fact bases for their respec-
tive topologies [10]. Consequently, it suffices to show that for each
B in B there exists a B’ in ¥’ such that B’ S B, and conversely. Let
A, x A, be an element of B. Then there exist neighborhoods N, (&, \.,)
and N, (e, \,) contained in A, and A,, respectively. Let

¢ = Min (g, &), » = Min (A, \,)

and p = (p, p.). We will show that N,(¢,\) S 4, x 4,. To this end,
let ¢ = (g,, ¢.) belong to N,(¢,\). Then we have
Fplql(el) = T(Fp1q1(51)y 1) = T(Fplql(el)y Fpng(sz))
g T(Fplql(s)r szqz(s)) = qu(E) > 1—-Xx g 1- 7\‘1 .

Similarly, F,,(e) > 1 —X,. Thus g, € N, (s, \) and g.eN,,(¢,, \,), from
which the result follows.
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Conversely, suppose that N,(¢,A) is an element of ¥’. Since T
is left-continuous, Sup,., T(z, x) =1, so that there exists an » such
that

Tl — 7,1 -7 >1—x.
Let ¢ = (¢, ¢.) belong to N, (¢,7) x N,(¢, 7). Then
qu(s) = T(Fplql(e)’ Fpng(e)) = T(l /) 1-— 77) >1—-Xx

so that ge N, (¢, \) and N, (¢, 7) X N, (¢,7) &S N,(e, \). This completes
the proof.

Note that the proof of the first half of Theorem 6, i.e., of the
fact that for any B in B there exists a B’ in ¥’ such that B'S B, is
independent of any hypothesis on the ¢-norm 7, while the proof of
the second half requires only that Sup,., T(z, ) = 1.

We conclude this section by remarking that all the above results
may be extended in an obvious way to include products of any finite
number of PM spaces.

2. Diameter of and distance between sets. Throughout this
section (S, &, T) will denote a Menger space with a continuous ¢-norm.

DEeFINITION 3. Let A be a nonempty subset of S. The function
D,, defined by

D,(z) = Sup [Inf Fm(t)] ,
t<z p,g€ A
will be called the probabilistic diameter of A.
We now establish the properties of the probabilistic diameter.
Proofs requiring only routine calculations will be omitted.

THEOREM 7. The function D, is a distribution function.

DEFINITION 4. A nonempty subset A4 of S is bounded if
Sup, D, (x) = 1, semi-bounded if 0 < Sup D,(x) < 1, and unbounded if
DA = 0.

THEOREM 8. If A 1is a monempty subset of S, then D, = H if
and only if A consists of a single point.

THEOREM 9. If A and B are nonempty subsets of S and AS B,
then D, = D,.

THEOREM 10. If A and B are two monempty subsets of S such
that ANB = @, then
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2.1) D,y + y) = T(D4(x), Du(v)) .

Proof. Let x and y be given. To establish (2.1) we first show
that

(2.2) Inf F@+y) 2 T(Inf Fl,(@), Inf F,)) .

p,q€

There are two distinct cases to consider:

Case (1).
(2.3) Inf F(x+y) = Inf F(x+y).

?,q€ AUB
qu

Now for any triple of points p, ¢ and = in S, we have
F(x + y) = T(F,.(2), F..(v)).

Taking the infinum of both sides of this inequality as p ranges over
A, g ranges over B and r ranges over A N B, and using (2.3) we have,

Inf F, (x +y) = Inf T(F,.(x), Frq(?/))

p,qe AUB
reAﬂB

However, since T is continuous and nondecreasing we obtain

Inf F,(a +9) = T(Inf F,,@), Inf F,,@)).

p,q¢€

Case (2).
Inf F,,q(w + ) < Inf F (e+v).

p,g€4U
qeEB

In this case one of the equalities,

Inf F,,q(w +y) = Inf F(x + y)

p,q€ AU
or

Inf F,(x+y) = Inf Fp(x + v)

?,q€ AUB

must hold. If the first equality holds, we have

Inf F,,( + 1) = 7(Inf F,q(x), Hy)

p,q€ AU

= T(Inf F,(@), Inf F,,@)) -
p,ge A p,q€B
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The same argument works for the second equality. This establishes
(2.2).

Finally, using the fact that the rectangle
{(,0):0=s=2,0=t =y}

is contained in the triangle {(s, t): s, ¢ = 0, s + t < « + y}, the inequality
(2.2) and the continuity of T we have

DAuB(x + y) = Sup [ Inf qu(S + t)]

s+t<z+ylL p,gc AUB

> Sup[ Inf F (s + t)]

s<x p,qe AUB
t<y

(w0} s .00

s<z Lp,qed <y

T(D(x), Ds(y)) .

v

Il

THEOREM 11. If A is a monempty subset of S, them D, = D3,
where A denotes the closure of A in the ¢ — )\ topology on S [10].

Proof. Since A< A, it follows from Theorem 7 that D, = D.

Let 7» > 0 be given. In view of the uniform continuity of § with
respect to the Lévy metric L on 4 [8] there exists an ¢ >0 and a
A > 0 such that for any four points p,, p., »; and p, in S,

L(Fp1p27 Fpgp) < 7]

whenever F,,(6)>1—Xand F,,(¢) >1—A\.

PaPg\"

Next, with each point 7 in A associate a point p(p) in A such
that F,(;);(¢) > 1 — A. Then, in view of the above for any pair of
points » and 7 in A,

L(F,50@, F52) <7 .
In particular, for all ¢ we have,
Fomea(t — 1) — 1 = F3(0) .
Let A, = {p(p): D A). Then since 4,< A,
;Iq_nefz F:(t) Z;Iglfz e —7) — 7

=Inf Ft —9) —np=Inf F,(t —7) —7.
P.gedy p.qcd

Now, taking the supremum for ¢ < x of the above inequality yields
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Dj(@) = Sup [ Inf F;;(t)] > Sup[Inf Fot — 77)] —

<z Lpged

— Sup[ Inf Fou(t) | -7 = Du — 1) — 7.

t<z—

Since the above inequality is valid for all » and since D, is left-
continuous it follows that

Di(x) =z Dy(=) .
Whence D4(x) = D,(x) and the proof is complete.

DEFINITION 5. Let A and B be nonempty subsets of S. The
probabilistic distance between A and B is the function F,, defined by

(2.4) Fu(@) = Sup T (Inf [Sup F,q(t)] Int [%1515) F,,,,(t)]) :

peA geB
In establishing the properties of F',; we again omit the routine
proofs.
THEOREM 12. F,; is a distribution function.
THEOREM 13. If A and B are nmonempty subsets of S, then
F AB — F, BA»
THEOREM 14. If A is a monempty subset of S, them F,, = H.

THEOREM 15. If A and B are monempty subsels of S, then
F 4B — F 4B

Proof. It is sufficient to show that F,; = F,5 since this result
together with Theorem 13 yields
Fgp=Fg=F5 =Fzi=Fj;.

With this in mind we first show that F,3 < F,,. Since BS B for
all ¢,

2.5) Int [ Sup qu(t)] > Inf [Sup F,,,,(t)]

geB qu

Let 7 > 0 be given. The argument given in the proof of Theorem
11, establishes that for each point g B, there exists a point ¢(7) in
B such that for all ¢,

Fp?(t - 7]) -7 = qu(?)(t) .
Let B, = {q(7): e B}. Since B,< B we have,
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Su_p Fatt—n) —n= Su_p Fa(t) = Suép Foi(t)
q€B g€B 9€ By
< Sup F, () .
qeB

Consequently,

Inf [ Sup Fye(t — 1) | — 7= Inf [ Sup F,,0)]

PEA

Moreover, taking the supremum on t < x of the above inequality,
yields for any 7,

f() < Sup (Inf [Sup qu(t)D > Sup (Inf [Sup Fq(t — y;)]) —

t<z pe4d t<z pe4 g€ B

= Sup (Int[Sup Fa®)]) ~ 7 £ 9@ — ) — 7.

t>2—7 \ged L ez
Now since both f and g are left-continuous and % is arbitrary, it
follows that f(x) = g(x). This together with (2.5), and the continuity
of T yields

T{Sup <Inf [Sup Fm(t)]>, Sup (Inf Sup F,,q(y)])}

<z ped geB i<z qeB PEA

T{Sup <Inf [Sup Fy(t)]), Sup <In_f [Sup F,,;(t)])}

t<wz peAd 7€B t<z 2€B ped

Fyp(x)

\%

— Sup T(Inf [Sup ,,;(t)] Inf [ Sup Fm(t)]) = F().

t<z red LgeB 7€B

A similar argument shows that F,z; = F,;. Combining these
inequalities yields the desired result.

THEOREM 16. If A and B are monempty subsets of S, then
F,, = H if and only if A = B.

Proof. Suppose F,, = H and let ¢ > 0 be given. Then

1= Fue) = T{Sup (Int|sup 7 w(‘)D Sup (Inf Sup ”"(t)])}

t<e ped qeB t<e qeB
= Sup ( Inf [Sup F,,q(t)]) = Inf [Sup ,,q(e)] .
t<e qgeB PEA geB

So that for any ge B and every » > 0 there exists a point p in A
for which F,(¢) > 1 — . Consequently, ¢ is an accumulation point
of A and we have B&S A. A similar argument shows that A< B.

Conversely, suppose A = B. Then in view of Theorems 14 and
15, F,; = F35 = F;3 = H.

THEOREM 17. If A, B and C are nonempty subsets of S, then
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for any x and y

Fup@ + ) 2 T(Fao(®), Fpo(y)) .

Proof. Let w and v be given. Then for any triple of points
p,q and r in S we have

Foo(u + v) 2 T(F, (), Fir(v))

Making use of the continuity and monotonicity of T' we have the
following inequality:

Sup Pt + ) 2 T (Sup P00, Inf [Sup P 0)])

Consequently,

Inf Sup (U + v)] = < Inf [Sup ,,,(u)], Irrencf [S(,E? qu(v)]) .

ped peA

Similarly,

Inf [Sup F(u+ v)] =T (Inf [Sup Fm(u)], gl;lﬁ [S,E? qu(v)]> .

qeB reC

Therefore, since T is associative, we have

(Inf [Sup F,(u + v)], Inf [Sup Fo(w + ”)])

peAd geB ped

> T{T(Inf [Sup F,,,(u)] Inf [Sup ,,,(u)]),

peA reC reC

T( Inf [Sup qu(v)] Inf [Sup F. ‘"(”)D}

geB L reC recC

Now arguing as in the last step of the proof of Theorem 10, we have

Fz(x + y) = Sup T(Inf Sup F(uw+ v)]

wt+v<ae+y peEA

Inf [Sup Fo(w + v)])

qe B

>Sup T <Inf [Sup F,(u + v)] Inf [Sup F,(u + v) _D

u<le ped geB
v<y

= {Sup T < Inf [Sup z,,(u):l, rI?Cf [S,,EE F pr(u)]) )

%<z peA

Sup 7 (Inf [Sup qr(v)], Inf [S;gg )}

v<y qeB

= T(F (), Fye(y)).

Let (S,%, T) be a Menger space under a continuous t-norm, T,
and let & be a nonempty collection of nonempty subsets of S. Then
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the function ¥y defined for any A and B in & by F(4, B) = Fly,
where F,, is given by (2.4), is a mapping from & x & into 4.
Furthermore, as a direct consequence of Theorems 12-17 we have,

THEOREM 18. If each set in & 1s closed, then (&, Fg, T) is a
Menger space.

3. Quotient spaces. Let (S,%) be a PM space. In [4] K.
Menger introduced three types of distinguishability for pairs of points
p,q in S depending upon the behavior of the distance distribution
function F,, near zero. These notions may be summarized in the

following:

DEFINITION 5. Let (S, §) be a PM space, let p and ¢ be points
in S and let ¢,, = Inf {&: F, () > 0}. Then the distance betweern p
and q is:

(A) certainly positive if t,, > 0;

(B) barely positive if t,, = 0 and F,(07) = 0;

(C) perhaps zero if F,,(07) > 0.

In Menger’s paper a somewhat different terminology was used.
Namely, he said that p and ¢ are: (A) certainly distinguishable if the
distance between them is certainly positive; (B) barely distinguishable
if the distance between them is barely positive; (C) perhaps indis-
tinguishable if the distance between them is perhaps zero. The
reasons for the slight change in the terminology introduced here will
become apparent latter (see Definition 6, ff.).

The above mentioned types of distinguishability were recently
reconsidered by B. Schweizer [6] who defined two relations C and D
on S as follows:

(¢) pCq if and only if the distance between p and ¢ is perhaps
zero, 1i.e., if and only if (C) holds.

(d) pDq if and only if the distance between p and ¢ is not certainly
positive, i.e., if and only if either (B) or (C) holds.

Concerning these relations, he obtained the following results:

TaEoREM 19. If (S, §, T) ts a Menger space and T a t-norm
such that T(a, b) > 0 whenever a >0 and b > 0, then the relation C
18 an equivalence relation.

THEOREM 20. Under the hypotheses of Theorem 19, (S,t) s
always a pseudo metric space. Moreover, (S, t) is a metric space if
and only if the distance between every pair of distinct points of S
18 certainly positive.
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THEOREM 21. If the hypotheses of Theorem 19 are satisfied, then
the relation D on S is an equivalence relation.

THEOREM 22. If (S,%, T') is a Menger space such that
Sup T(a, a) =1
a<l

and T(a, b) > 0 whenever a > 0 and b > 0, then the equivalence classes
in S determined by the equivalence relation D are closed subsets of
S in the ¢ — ) topology.

In view of the fact that we no longer require that all the distance
distribution functions have supremum one, various types of behavior
at infinity are possible and can be distinguished. Indeed, the entire
preceding discussion concerning behavior at zero can be dualized.

DEFINITION 6. Let (S, &) be a PM space, let p and ¢ be points
in S, let s,, = Sup {x: F,,(x) < 1} and let F,,(co) = lim,_... F,,(x). Then
the distance between p and q is:

(A) perhaps infinite if F, () < 1;

(B') barely finite if s, = = and F, (o) =1;

(C) certainly finite if s,, < co.

We define two relations C’ and D’ on S which are dual to C and
D, respectively, as follows:

(¢’) pC'q if and only if the distance between p and ¢ is certainly
finite, i.e., if and only if (C’) holds.

(d') pD'q if and only if the distance between p and ¢ is not
perhaps infinite, i.e., if and only if F,(c0) = 1, or equivalently if and
only if (B’) or (C’) hold.

THEOREM 23. If (S, %, T) is a Menger space, then C' is an
equivalence relation on S.

Proof. The fact that C’ is reflexive and symmetric is an immediate
consequence of the definition of C’. To show that C’ is transitive
suppose pC’q and ¢C'r, so that s,, < o and s, < . Then for any

e >0,
Fp'r(qu + Sqr + 5) ; T(qu(qu + 8/2)1 FQr(SQT + 8/2))
=T71,1)=1.

Consequently, s,, < 5,0 + 8¢, < oo and pC'r.
THEOREM 24. If (S, ¥, T) is a Menger space in which the distance

between every pair of points is certainly finite, then (S, s) is a metric
space.
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Proof. In view of the proof of the previous theorem, we need
only show that s,, = 0 implies p = ¢. To this end let s,, =0, then
Sup {2 : F(z) < 1} = 0. Whence, F,(0*) = 1 and consequently F,, = H
so that p = q.

THEOREM 25. If (S, %, T) is a Menger space under a continuous
t-norm T, then the relation D' on S is an equivalence relation.

Proof. From F, (o) = H(c) =1 and F,, = F,, it follows that
D' is reflexive and symmetric. To show that D’ is transitive suppose
pD'q and ¢D'r. Then for any z,

Fpr(x) g T(qu(x/2), FQT(x/z)) .
Since T is continuous the above inequality yields
Fp(0) =2 T(Fyo(co), Fol()) = T(1,1) =1
and thus pD'r.
THEOREM 26. Let (S, E, T) be a Menger space under a continuous

t-norm T. Then the equivalence classes im S determined by the
equivalence relation D' are closed subsets of S in the € — )\ topology.

Proof. We first note that since T is continuous on the unit
square it is uniformly continuous. Now let p e S and let D’(p) be the
equivalence class determined by p. To show that D'(p) is closed we
show that S — D'(p), the complement of D’(p), is open. Let r be any
point in S — D'(p). Then there is a A > 0 such that F,,(0) =1 — .
Since T is uniformly continuous and since T(a, 1) = a, there exists an
€ > 0 such that T(a,1 — €) > a — \/2 for all a in [0, 1]. Let g € N,(g, ¢).
Then for any x > ¢ we have

F,(20) = T(F (%), Fo(x)) = T(Fp(x), 1 — €)
> F (%) — N2,

Taking the limit as x — <« yields
1 — N = F,(c0) 2 Fp(e0) — M2,
whence F,() <1 — /2. Thus ¢¢ D'(p) and it follows that
N.(e,e) =S — D'(p) ,
hence S — D’(p) is open.

THEOREM 27. If (S, %, T) is a Menger space such that T 1is
continuous and T(a, b) > 0 whenever a > 0 and b > 0, then the equiva-
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lence classes in S determined by p and the equivalence relation C are
closed in the € — N topology.

Proof. Let pe S and let C(p) be the equivalence class determined
by ». We show that S — C(p) is open. Let reS — C(p). Then
F,(0") =0 so that F,, is continuous at 0. Hence for every ¢ > 0
there exists a 6 > 0 such that F,,(d) > ¢/2 and a A > 0 such that for
all e [0,1] T(a,1 —\) >a —¢/2. Let qe N,(6/2,\), then

€/2 > Fp(8) = T(Fpe(6/2), Fo,(3/2))
= T(F,(0/2), 1 — N) > F0(6/2) — ¢/2.

Hence for every ¢ > 0 there exists a 6 > 0 such that F,(6/2) < e.
Consequently, F,,(0*) =0. Thus geS — C(p), whence N,(9/2,\)&
S — C(p) and S — C(p) is open.

THEOREM 28. Let (S, %, T) be a Menger space under a continuous
t-norm T. Let peS and let C'(p) be the equivalence class in S
determined by p and the equivalence relation C'. Suppose further
that there exists a number M such that for any w and v in C'(p)
we have F,(x) =1 whenever © = M. Then C'(p) s closed in the
€ — )\ topology.

Proof. Suppose ¢ belongs to C'(p), the closure of C’(p), but not
to C’(p). Then F,(x) < 1 for all finite x, so that for any ¢ > 0 there
is an ¢ > 0 such that F,(t+ M) >1—¢; and since ge C'(p), there
exists a u e C'(p) such that F,(t) > 1 — ¢/2. Whence,

= T(ly Fqu(t)) = FQu(t) > 1- 6/2 ’

which is a contradition. Thus C’(p) = C'(p).
The next four theorems show that, under suitable conditions, each
of the equivalence relations, C, C’, D, D’, can be “divided out”.

THEOREM 29. Let (S, %, T) be a Menger space under a t-norm
T which is continuous and such that T(a, b) > 0 whenever a > 0 and
b>0. For each pe S, let D(p) be the equivalence class in S deter-
mined by p and the equivalence relation D and let S/D be the collec-
tion of all such equivalence classes. Then (S/D, Fsip, T') is a Menger
space in which the distance between distinct elememts is certainly
positive.

Proof. The fact that (S/D, Fsp, T) is a Menger space follows
directly from Theorems 18 and 22.
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Let D(p) and D(q) be distinct equivalence classes, and suppose
that

(3-2) tD(p)D(Q) =0.

Since pe D(p) and g € D(q), there is an x, > 0 such that F,.(=,) = 0.
In view of (3.2), we thus have

0 < Fpip@ (@)
< T( Inf [ Sup FM(xo)], Inf [Sup F,,,,(xo)]) :

ueD(p) LveD(q) veD(q) LueD(p)

Hence,

0 < Inf [Sup Fw(xo)] )

uweD(p) Lve D(q)
whence for each w e D(p)
Sup F,.(x) > 0.

veD(q)

Consequently there exists a ¢,€ D(¢q) such that F,.(x) > 0. Thus
since F,, is left-continuous, there is an ¢, 0 <e& < w, such that
F,(x, —¢) > 0. Hence

0= quo(xo) = T(quo(xo —8), quo(e)) >0,

since both F,, (v, —¢) and Fy(c) are positive. However, this is a
contradiction and hence ¢, > 0.

THEOREM 30. Let (S, %, T) be a Menger space under a continvous
t-norm T. For each p €8S let D'(p) be the equivalence class in S
determined by p and the equivalence relation D', and let S/D’ be the
collection of all such equivalence classes., Then (S/D', Fsipy, T) s @
Menger space in which the distance between distinct elements is
perhaps infinite.

Proof. In view of Theorems 18 and 26 (S/D’, &s,p-, T') is a Menger
space.
Let D’(p) and D’(q) be distinct equivalence classes and suppose that
Fop o) = 1. Since pe D'(p) and ¢q € D'(q), there is an ¢ > 0 such
that F,(c) <1 —e. Since T is continuous

1= FD’(p)D’(q)(OO)
= lim Sup T( Inf [ Sup Fm,(t)], Inf [ Sup Fu,,(t)]>

x—oo (<2 ueD’(p) veD'(q) ve D’ (q) weD’(p)

= Sup T( Inf [ Sup Fm,(t)], Inf [ Sup Fu,,(t)])

weD’'(p) LveD’(q) veD’(q) LLueD’(p)

T{Syp( Inf [ Sup)Fw(t)]), Syp( Inf [ Sup Fu,,(t)]>} .

weD'(p) LveD’(q veD’(q) LLueD’(p)
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But T(a,bd) =1 if and only if @ = b = 1. Consequently,

Sltlp( Inf | Sup F,,,(t)]) =1,

uweD'(p) Lve D'(q)

Thus, there exists an x, such that

Inf [ Sup Fu,(xo)] >1—¢/2.

ueD’(p) LveD’(q)
Hence,

Sup F, (%) >1—¢/2.

veD’(q)
Since F',, is nondecreasing

Sup Fy(oo) = Sup F(@) > 1 —¢/2.
veD’(q)

veD’(q)
Consequently, there exists a g, D’(q) such that

Fop (o) < SIDlly)F,,u(oo) —e/4>1—3¢/4.

and we have
1—¢> Fpcoo) = T(Fyg(00), Fog(0)) = Fpq(0) > 1 — 3e/4 .

which is a contradiction. Hence F'y (5 (0) <1 and the distance
between distinct equivalence classes is perpaps infinite.

THEOREM 31. Let (S, 5, T) be a Menger space under a t-norm
T which is continuous and such that T(a, b) > 0 whenever a > 0 and
b>0. For each pe S, let C(p) be the equivalence class in S deter-
maned by p and the equivalence relation C, and let S/C be the collection
of all such equivalence classes. Then (S/C, Bsicy T) ts a Menger
space. Moreover, if each C(p) in S/C is such that Inf, ..c, F,.(0%) > 0,
then the distance between distinct elements is mot perhaps zero.

Proof. The first part of this theorem is a direct consequence of
Theorems 18 and 27.

To establish the second part, let C(p) and C(q) be distinct equiva-
lence classes, and suppose that Fi., . (07) > 0. Since pe C(p) and
g € C(q), we note first that

(3.3) F,(0%) =0.

Next we have
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0 < Fopow(07)
= lim Sup T Inf [ Sup Fut)], Inf [ Sup Fut)])

h—0+t<h ueC(p) LveCl(q) veClq) LueC(p)

< lim 7 ( Inf [ Sup (], Int [ Sup Futh)])

h—ot ueC(p) L veClg) veClq) LueCip)

=T (lim Inf [Sup Fw(h)], lim Inf [Sup Fuv(h)]) ,

h—ot uec(p) Lveciq) =0t veC(q) Luec(p)

whence

lim ( Inf [Sup Fw(h)]) =A>0.

r—0t Nuec(p) Lvec(q)

Thus, in particular,

lim <Sup F,,,,(h)) >A>02>0.

=0t \ veClq)
Since Sup,c¢qF,, is increasing, for any A > 0 we have,

(3.4) Sup F,,(k) > \/2 .

v€C(g)

From (3.4) it follows that for each i > 0 there exists a ¢, € C(q) such
that

(3.5) Foe,(h) > N2,

Now let Inf, .0 Fu.(07) = . By hypothesis, 7 > 0, whence
T(\/2,7) > 0.

Moreover, since ¢, € C(q)

(3.6) Fo,(h) 27,

for all » > 0. Next, in view of (3.3), there exists an %, > 0 such
that

3.7) F,(2hy) < T(N2, 1) .
Combining the inequalities (3.5), (3.6) and (8.7) we have
T(M2, 1) > Fyo@ho) = T(y,(he)y Fug, (o)) =2 T(N2, 7)) ,

which is a contradiction. Hence F,(0*) =0 and the proof is
complete.

THEOREM 32. Let (S, , T) be a Menger space under a continuous
t-norm T. For each pe S let C'(p) be the equivalence class in S
determined by p and the equivalence relation C', and let S/C' be the
collection of all such equivalence classes. If each C'(p) in S/C’ is
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such that for some M, s, < M, for all w and v in C'(p), then
(S/C', Fsiery T) is a Menger space in which the distance between
distinct elements is not certainly finite.

Proof. In view of Theorems 18 and 28 (S/C’, g0, T) is a Menger

space.
Let C'(p) and C’(q) be distinct equivalence classes and suppose that

(3.8) Sorpera < 0 .
Since p € C'(p) and q € C'(q) for each X\ > 0 there is an ¢ > 0 such that
(3.9) Foo(Soiimora + Mq +AM)<1l-eg,
where s,, < M, for all v and » in C’(q). In view of (3.8),
1= Fomewl(Sowmea + M2)

= Sup T( Inf [ Sup Fuv(t)] ’

<80 (p)0 (q)+1/2 ueC’(p) LveC’(q)
Inf | Sup Fu,,(t)]>
veC’(q) L.ueC’(p)

= 7(_Int [ Sup Fulso o + 12)],

ueC’(p) LLveC’(q

Inf [ Sup F,.(S¢r e + 7\'/2)]> .

veC’(q) LueC’(p)

Since T(a, b) =1 if and only if ¢ = b = 1, it follows that

Inf [ Sup Fuu(soiew + V)] =1,

ueC’'(p) LLveC’(q)
whence, in particular,

Sup F,(Se:mor@ + M2) =1.

vel’(q)
Thus, there exists a ¢.¢ C’(¢) such that
(3.10) Foo(Sormeray + M2) > 1 —¢/2.
Combining (3.9) and (3.10), we have

1—¢e> FplSermem + Mg+ N)
= T(Fe(Sortmcr + M2), Foo (M + 1/2))
= T(Fpe (S meray + M2), 1)
= Fo(Scrpera + M2) > 1 —¢/2.

This is a contradiction, whence sy, 0y = o and the proof is complete.
In conclusion we note that under the hypotheses of Theorem 31
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the equivalence classes in S/C are either bounded or semi-bounded
and under the hypotheses of Theorem 32 the equivalence classes in
S/C’ are bounded.
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