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A REPRESENTATION OF A BOUNDED FUNCTION
AS INFINITE PRODUCT IN A DOMAIN WITH
BERGMAN-SHILOV BOUNDARY SURFACE

M. SKWARCZYNSKI

In this paper we consider a closed domain @ in the space
of two complex variables along with its decomposition into
two parameter family ¢(1;, 1;) of segments of analytic surfaces,
Under some additional assumptions about the domain @ one
introduces using Poisson formula the real-valued functions
of the real extended class. These functions are harmonic in
each (1, 2;). This in turn enables us to define the complex
valued functions of the complex extended class, The aim of
the paper is to show that a bounded analytic function which
has infinitely many zero surfaces 7,2) =0, 2 = (24,2:), s=1,2, -+
can be represented in the domain @ in the form

) = w(p) T ex(p), pe @, w(p) # 0.

Here ¢,(p) are functions of the complex extended class.

Potential theoretical methods play a great role in the theory of
functions of one complex variable. However, the generalization of
these methods to the case of two complex variables is not immediate.
The Dirichlet problem for harmonic functions (real parts of analytic
functions of one complex variable) has in general a solution. An
analog of this result does not hold in the case of two complex variables.
In order to overcome this obstacle, Bergman introduces the so-called
functions of extended class for a certain type of domains with a
Bergman-Shilov boundary surface. See[1]. In contrast to harmonie
functions these functions depend upon the domain. The problem relating
to values prescribed on the Bergman-Shilov boundary of these domains
admits a solution for functions of the extended class. One is able
to introduce an analog of the Green’s function and the generalized
Poisson formula. This is done for slightly more general domains in
§1-8§3. In §4-85 a further step in this direction is made, namely
it is shown that one obtains an analog of the Blaschke product for
a bounded analytic function which has infinitely many zero surfaces.
Such a function can be represented inside the domain @ as an infinite
product of functions of complex extended class with given zero
surfaces and the nonvanishing function continuous in @ and analytic
on surfaces q(\;, \,).

In the case of an analytic polyhedron bounded by two segments
of analytic hypersurfaces, the functions of extended class have been
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studied by Bergman in [1] and [2]. The analogues of Green’s function
for this case have been introduced and investigated in [4].

1. The domain @ and its representation. We shall assume
that the domain @ < C? is given as a homeomorphic image of the
cartesian product of two unit dises A2 + A2 <1 and |£] = 1.

T = T\ Ay, 8) = (Ti00iy Ny §), ToMiy My, §)) = pEQ .

Further, the homeomorphism T is analytic with respect to the variable
& and

oT,

0&

o,
15

0Q = AU B, where A is a segment of an analytic hypersurface
A={p:p=TO, N ), M+ NM=1

and
B={p:p=TMN, N3, || =1}.

We assume that B is a homeomorphic image of the cartesian product
of the unit disc and the unit circle |{]| <1, 0 < ¢ < 27, respectively.
Further, this homeomorphism # is assumed to be analytic with respect
to £ and

ot,

=
ol

ot
o

>0.

+

ty, Q) = (e, 0), t1t, 0)) = pe B,

Hence B is a segment of an analytic hypersurface. Let & = ¢%,
P = Py My, 1), We assume that

' a@(xu Ay, #)

» o

is continuous and different from zero.

Without loss of generality we can require that:

(1) {T(uy Nay €9): N, = N, = 0} = {#(s1, O): £ = 0}

(2) 29(0, 0, £) =1.

o

The intersection S = AN B forms the Bergman-Shilov boundary surface
of @. In the following all definitions and theorems pertain to the
fixed representation of the domain @, in particular to the fixed mappings
T and t. For briefness we shall write » = [\, N, &] instead of p =
T (M, Ny, &) and similarly p = [, {] instead of p = #(x¢, {). We shall
call the segments of surfaces
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g, X)) = {pt D=y Ny, €], 16 = 1}
b(p) ={p: p=1, ¢, 1L =1}

the laminas of Q@ and B, respectively. A function defined on the
lamina is said to be analytic (harmonic) if it is an analytic (harmonic)
function of the variable & (or ¢) in the disc || <1 (]{|<1). An analytic
(biharmonic) function of two complex variables (z,, %) =z defined in
Q is analytic (harmonic) in each lamina.

2. Functions of REC. Poisson formula and Harnack theorem
for regular functions of REC.

DEFINITION. The continuous real function i(p) defined in @ belongs
to the REC (real extended class) if it is harmonic in each lamina,
except perhaps for a finite number of logarithmic poles. If h(p) has
no poles (in open laminas), it will be called a regular function of REC.

REMARK. In [1], [2] Bergman has introduced the functions of
REC regular in Q. He denotes this class by & (Q).

A function u(z) biharmonic in Q is a regular function of REC.
By using the Poisson formula we can express the values h(p), pe@,
of the regular function 4 < REC in terms of its values on S, namely
for p = [\, \,, §] we have

W) = - {1 nde ¥ ) PPepdedyy

47*
where
P, = P(p(1) = 1 — o _, & = pei
1 —2p¢cos (v — p(p) + 0°
Py = Py(vy) = 1 1 {=re’

— 2rcos (0 — ) +

The kernel P.P;p’ is a continuous positive function of the variables
2, v, peQ. (See also [2], p. 320.) Hence for each closed subset
K c Q there exist constants M, and M, such that

(1) 0< M, = PPy < M,, for pe K .

The following analog of Harnack’s theorem holds:

LEMMA. A series of nonnegative regular fumnctions h, € REC
converges almost uniformly in Q if it converges at one point p < Q.
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The proof follows immediately from inequality (1).
We can also apply this lemma to the functions of the REC
considered in the domain

—_ 2
(2) @ ={pp=Dwr gl xf+>»§§(1—%>, HESIY
for, the restriction of 2 € REC to the domain @, can be regarded, in
a natural way, as a function of the REC of the domain Q;
REC = REC (Q) c REC (Q),) .

3. Green’s function of the REC. Let us consider the function
heREC. Using Poisson’s formula, we can define a unique regular
function hye REC such that Ay =h on S. The function G, p) =

hs(p) — h(p) will be called the Green’s function of REC with singularity
h. (See also [1], p.420.) If h <0, we have the inequality

0=Gkh,p = —h.

If h, — h, is a regular function of REC, then G(k,, ») = G(h,, D).
Denote by G,(h, p) the Green’s function of REC (Q,). Then for 2 <0,

0 = G,(h, p) = Gi(h, p) = G(R, D) , for Q; CQ; .
For h,, h,e REC
G(h, + h,, p) = G(hy, p) + G(h, D)
holds. If k(p) has no singularities on S, then
lim G,(h, p) = G(h, D) .
J—roo
Let n,(2) =0,s=1,2,---, be the equations of analytic surfaces in Q.
We assume that
(1) log|mn,|eREC;
(2) n,z) =0 for zeS,s=1,2,.--;

(3) surfaces 7,(2) = 0 have no accumulation points on @ — A.
Let us denote

I, = {s: n(z) = 0 for ze @, .

4. THEOREM 1. In order that u(p) exists, with almost uniformly
convergent representation,

(3) wp) = 3 ),

such that
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(1) h(p) =0

(2) h,eREC

(3) for l large emough, >\i_.h, — Zsﬂj log |n,| is a regular
Sfunction of the REC (Q,),
it is mecessary and suffictent that -

(4) gG(loglnsl,p)<oo
at one point P, € Q.

Proof. Necessity: We shall show that the partial sums of (4)
are bounded at some points of @;. From condition (3) follows that
for fixed m and j large enough,

3 Gyllog [m, |, 7) < 5 Gyllog [ m, |, p) = Gy 3% log .1, p)
s=1 sezj S€Lj
l !
=X ) S = S ) = —u(v) .
k=1 k=1
Since log | n,(z) | has no singularities on S,
gG(log |7, |, p) = lim ZZIIGj(log |7, ], p) = —u(p) .

Hence series (4) converges at points p for which —w(p) < . From
condition (3) follows that there are points p e @; for which =,(p) =0,
s=1,2,-.-. For these points (3') yields —h,(p) < e, b =1,2, +--.
Hence —u(p) < oo.

Sufficiency: Let &,(p) = G(log|n,|, »). The conditions (1), (2), (3")
hold for functions h,(p). Let K be a closed subset of @ and let
KcQ,, P,eQ,. For large enough k the functions %, are regular of
the REC (@;). Since series (4) converges in the point p,e @, its
almost uniformly convergence on @; follows from the lemma. Hence
it converges uniformly on K and we can define

w(p) = 35 hu(p)

In order to formulate an analog of Theorem 1 for complex functions,
we introduce the following:

DEFINITION. A function e(p) continuous in @ and analytic in each
q(My, M) is said to belong to the CEC (complex extended class) if
log | e(p) | € REC.

5. THEOREM 2. In order that f(p) exists with an almost uni-
formly convergent representation
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@) = T e, peq,

such that
(1) le®| =1,
(2 e.p)eCEC, l
(8) forllarge enough kzﬂlog le(p) | — g_‘; _log [n,(p) | 78 @ regular
function of the REC (@)), ’
it 1s necessary and sufficient that >, G(log |n,|, p) < o at one point
D0 € Q.

Proof. Necessity: We have
log | f(p)| = 3 log | eu(p) | -

The convergence of (4) follows from Theorem 1.

Sufficiency: G(log |n,|, ) = log | n,|)s — log | n,(p)|. Let v, denote
a function which in each lamina q(\,, \,) is conjugate to (log|n,|)s
and vanishes at p = [\, Ny, 0]. Let », be the radius of the largest
disc such that n,(p) #0 for » =[A, Ny, &], M + N < 7. Let £, (r)
denote the continuous funection defined as follows: for =, = 0,

0 1=zr=1r
£,(r) = {linear for »? = r = %,
1 rP=r=0

and for », =0, k,(r) = 0. Let us consider the function arg (n.(p)).
This function can be regarded as univalent in the simply-connected
domain {p = [Ay, Ny, El: N + N < (72)%}.  Define

Cs = Vg — (arg ng — le(’I") arg ns([xly K’2y O])) ’ rt = 7\'% a X%

5
(5) e.(p) = exp (G(og | n, |, p) + tci(p)) .

The conditions (1'), (2'), (3’) of the theorem hold for functions e,(p).
The series >, G(log |n,|, » + ic,(p) converges almost uniformly in
Q. For, if k is large enough, the function e¢,(p) is conjugate to
G(og |n,|,p) on each lamina ¢\, ) C@Q; and ¢, ([\, Ay 0]) = 0.
Hence the series 37, ¢.(p) converges almost uniformly on @; simul-
taneously with 27, G(log | n, |, »). Consequently, the product

£) = T ex(p)
converges almost uniformly in Q.

COROLLARY. Let f(z) be a bounded analytic function defined in
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Q — A. Let n,(z) = 0 be the zero surfaces of f, i.e., for each Q; let
log |f] = 3. log|m,|

be regular im Q. Then f(z) can be represented in the form of an
almost uniformly convergent product

(6) @) = w) T o) , peq,

where e, are given by (5). Here log|e.(p)| = G(log|n,|, p). The
conditions (1), (2'), (83") of Theorem 2 are fulfilled and w(p) is con-
tinuous, different from zero and analytic in each lamina g(n, \,) CQ.

Proof. Without loss of generality we may assume that | f(p)| < 1.
The representation

o) = TLAp)

where fi(p) = f(z), fi(p) =1, for k > 1, satisfy the conditions of
Theorem 2. Let us consider the function

9(p) = kH; e.(p) .

Setting w(p) = f(p)/9(p), we obtain (6).
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