SIMPLE MODULES AND HEREDITARY RINGS

Abraham Zaks

Abstract

The purpose of this note is to prove that if in a semiprimary ring Λ, every simple module that is not a projective Λ-module is an injective Λ-module, then Λ is a semi-primary hereditary ring with radical of square zero. In particular, if Λ is a commutative ring, then Λ is a finite direct sum of fields. If Λ is a commutative Noetherian ring then if every simple module that is not a projective module, is an injective module, then for every maximal ideal M in Λ we obtain $\operatorname{Ext}^{1}(\Lambda / M, \Lambda / M)=0$. The technique of localization now implies that $\operatorname{gl} \operatorname{dim} \Lambda=0$.

1. We say that Λ is a semi-primary ring if its Jacobson radical N is a nilpotent ideal, and $\Gamma=\Lambda / N$ is a semi-simple Artinian ring.

Throughout this note all modules (ideals) are presumed to be left modules (ideals) unless otherwise stated. For any idempotent e in Λ we denote by $N e$ the ideal $N \cap \Lambda e$.

We discuss first semi-primary rings Λ with radical N of square zero for which every simple module that is not a projective module is an injective module. We shall study the nonsemi-simple case, i.e., $N \neq 0$.

Under this assumption N becomes naturally a Γ-module.
Let e, e^{\prime} be primitive idempotents in Λ for which $e N e^{\prime} \neq 0$. In particular $N e^{\prime} \neq 0^{\cdot}$ From the exact sequence $0 \rightarrow N e^{\prime} \rightarrow \Lambda e^{\prime} \rightarrow S^{\prime} \rightarrow 0$, it follows that S^{\prime} is not a projective module since Λe^{\prime} is indecomposable. Since S^{\prime} is a simple module it follows that S^{\prime} is an injective module.

Next consider the simple module $\Lambda e / N e=S$. Since $e N e^{\prime} \neq 0$, since $N e^{\prime}$ is a Γ-module, and since on N the Γ-module structure and the Λ-module structure coincide, $N e^{\prime}$ contains a direct summand isomorphic with S. This gives rise to an exact sequence $0 \rightarrow S \rightarrow \Lambda e^{\prime} \rightarrow K \rightarrow 0$ with $K \neq 0$. If S were injective this sequence would split, and this contradicts the indecomposability of Λe^{\prime}. Therefore S is a projective module.

Hence $N e^{\prime}$ is a direct sum of projective modules, therefore $N e^{\prime}$ is a projective module. The exact sequence $0 \rightarrow N e^{\prime} \rightarrow \Lambda e^{\prime} \rightarrow S^{\prime} \rightarrow 0$ now implies l.p.dim $S^{\prime} \leqq 1$, and since S^{\prime} is not a projective module, then l.p.dim $S^{\prime}=1$.

Hence $l . p \cdot \operatorname{dim}_{\Lambda} \Gamma=1$, and this implies that Λ is an hereditary ring (i.e., l.gl.dim $\Lambda=1$) [1].

Conversely, assume that l.gl. $\operatorname{dim} \Lambda=1$. Every ideal in Λ is the direct sum of N_{1}, \cdots, N_{t} where N_{1} is contained in the radical, and
the others (if any) are components of Λ, i.e., $N_{i}=\Lambda e_{i}$ where e_{2}, \cdots, e_{t} are primitive orthogonal idempotents in Λ [4].

Let Γe^{\prime} be any simple Λ-module. Since $N_{1} \subset N, N_{1}$ is a Γ-module. Since on N the Γ-module structure coincides with the Λ-module structure, it easily follows that there exists a nonzero map of N_{1} onto Γe^{\prime} if and only if Γe^{\prime} (up to isomorphism) is a direct summand of N_{1}. This in particular implies that Γe^{\prime} is a projective Λ-module, since then Γe^{\prime} is isomorphic to an ideal. If Γe^{\prime} is not a projective Λ-module, it follows that $\operatorname{Hom}_{1}\left(N_{1}, \Gamma e^{\prime}\right)=0$. As a consequence, every map from an ideal in Λ into Γe^{\prime}, extends to a map of Λ into Γe^{\prime}, hence Γe^{\prime} is an injective Λ-module.

This proves:
Theorem A. Let Λ be a semi-primary ring with radical of square zero. Then every simple A-module that is not a projective A-module is an injective 1 -module if and only if 1 is a hereditary ring.

If Λ is a semi-primary ring with radical N and $N^{2} \neq 0$, then a simple module is projective if and only if it is isomorphic to a component, hence if $\Lambda e / N e$ is a projective module $N e=0$, and the idempotent e, when reduced $\bmod N^{2}$ (i.e., in Λ / N^{2}) will still give rise to a projective module. If $\Lambda e / N e$ is an injective module e will give rise to an injective Λ / N^{2}-module. This will follow from the following two lemmas:

Lemma 1. Let e, e^{\prime} be primitive idempotents in 1 . Then Le is isomorphic to Λe^{\prime} if and only if $\operatorname{Hom}_{\Lambda}\left(\Lambda e^{\prime}, \Lambda e / N e\right) \neq 0$.

Proof. If Λe is isomorphic to Λe^{\prime} then obviously

$$
\operatorname{Hom}_{A}\left(\Lambda e^{\prime}, \Lambda e / N e\right) \neq 0 .
$$

Conversely, let $f: \Lambda e^{\prime} \rightarrow \Lambda e / N e$ be a nonzero map. Since $\Lambda e / N e$ is a simple module f is an epimorphism. Denote by π the canonical projection $\pi: \Lambda e \rightarrow \Lambda e / N e$ then since Λe^{\prime} is a projective module there exists a map $g: \Lambda e^{\prime} \rightarrow \Lambda e$ such that $f=\pi \circ g$. Since $\pi(N e)=0$, it follows that g is an epimorphism. Since Λe is a projective module and Λe^{\prime} an indecomposable module g is an isomorphism.

Lemma 2. Let S be an injective simple 1 -module and I an ideal that is contained in the radical. Then $\operatorname{Hom}_{4}(I, S)=0$.

Proof. Let f be a nonzero map of I into S. Since S is an
injective Λ module it follows that f extends to a map of Λ onto S, $f: \Lambda \rightarrow S$, but this implies that $f(N)=0$. Since $f(I) \subset f(N)$ this is a contradiction. Therefore every map of I into S is the zero map.

Theorem B. Let Λ be a semi-primary ring then the following are equivalent:
(i) Λ is an hereditary ring with radical of square zero.
(ii) Every simple module that is not a projective 1-module is an injective 1-module.

Proof. That (i) implies (ii) follows from Theorem A.
(ii) \Rightarrow (i): Let e_{1}, \cdots, e_{t} be a complete set of orthogonal idempotents, i.e., each e_{i} is a primitive idempotent, and

$$
\Lambda=\Lambda e_{1}+\cdots+\Lambda e_{t}
$$

Set $S_{i}=\Lambda e_{i} / N e_{i}$. We denote by $\bar{e}_{1}, \cdots, \bar{e}_{t}$ the images of e_{1}, \cdots, e_{t} in Λ / N^{2} under the canonical epimorphism $\Lambda \rightarrow \Lambda / N^{2}$. Then S_{1}, \cdots, S_{t} may be viewed as simple Λ / N^{2}-modules, and every simple Λ / N^{2}-module is necessarily isomorphic with some S_{i}. If S_{j} is Λ-projective then $N e_{j}=0$, and necessarily S_{j} is Λ / N^{2}-projective. If S_{j} is Λ-injective then we claim that S_{j} is Λ / N^{2}-injective. It suffices to prove that for any ideal I^{\prime} in Λ / N^{2}, and any Λ / N^{2}-map f from I^{\prime} to S_{j}, f extends to a map of Λ / N^{2} into S_{j}. Since I^{\prime} is a direct sum of ideals $I_{1}, \cdots, I_{r}^{\prime}$, $I_{1}^{\prime} \subset N / N^{2}$ and the others (if any) are components of Λ / N^{2}, we will be done if we prove that $\operatorname{Hom}_{A / N^{2}}\left(I^{\prime \prime}, S_{j}\right)=0$ whenever $I^{\prime \prime} \subset N / N^{2}$. Let I be the inverse image of $I^{\prime \prime}$ under the homomorphism $\Lambda \rightarrow \Lambda / N^{2}$, then $\operatorname{Hom}_{A}\left(I, S_{j}\right)=0$ since $I \subset N$ (Lemma 2). If we denote by h the map $I \rightarrow I^{\prime \prime}$ (restriction of the canonical projection) and if f is any map of $I^{\prime \prime}$ into S_{j} then if f is not the zero map, $f \circ h$ from I into S_{j} is a nonzero 1 -map of I into S_{j}. This contradiction implies that S_{j} is an injective Λ / N^{2}-module.

By Theorem A it now follows, since Λ / N^{2} is a semi-primary ring with radical of square zero, that l.gl. $\operatorname{dim} \Lambda / N^{2} \leqq 1$. This necessarily implies that $N^{2}=0$ [2].

Remark that if all simple modules are projective modules, or if all simple modules are injective modules, then Λ is a semi-simple ring [1].

Finally, if $N \neq 0$ then there exist a simple projective (injective) module that is not an injective (projective) module.

References

1. M. Auslander, Global dimension, Nagoya Math. J. 9 (1955), 67-77.
2. S. Eilenberg and T. Nakayama, Dimension of residue rings, Nagoya Math. J. 11 (1957), 9-12.
3. B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650.
4. A. Zaks, Global dimension of Artinian rings, Proc. Amer. Math. Soc. 18 (1967), 1102-1106.

Received December 5, 1967.
Technion, Haifa
IsRaEL

