SIMPLE MODULES AND HEREDITARY RINGS

ABRAHAM ZAKS

The purpose of this note is to prove that if in a semiprimary ring Λ , every simple module that is not a projective Λ -module is an injective Λ -module, then Λ is a semi-primary hereditary ring with radical of square zero. In particular, if Λ is a commutative ring, then Λ is a finite direct sum of fields. If Λ is a commutative Noetherian ring then if every simple module that is not a projective module, is an injective module, then for every maximal ideal M in Λ we obtain $\operatorname{Ext}^1(\Lambda/M, \Lambda/M) = 0$. The technique of localization now implies that gl.dim $\Lambda = 0$.

1. We say that Λ is a semi-primary ring if its Jacobson radical N is a nilpotent ideal, and $\Gamma = \Lambda/N$ is a semi-simple Artinian ring.

Throughout this note all modules (ideals) are presumed to be left modules (ideals) unless otherwise stated. For any idempotent e in Λ we denote by Ne the ideal $N \cap \Lambda e$.

We discuss first semi-primary rings Λ with radical N of square zero for which every simple module that is not a projective module is an injective module. We shall study the nonsemi-simple case, i.e., $N \neq 0$.

Under this assumption N becomes naturally a Γ -module.

Let e, e' be primitive idempotents in Λ for which $eNe' \neq 0$. In particular $Ne' \neq 0$. From the exact sequence $0 \rightarrow Ne' \rightarrow \Lambda e' \rightarrow S' \rightarrow 0$, it follows that S' is not a projective module since $\Lambda e'$ is indecomposable. Since S' is a simple module it follows that S' is an injective module.

Next consider the simple module $\Delta e/Ne = S$. Since $eNe' \neq 0$, since Ne' is a Γ -module, and since on N the Γ -module structure and the Λ -module structure coincide, Ne' contains a direct summand isomorphic with S. This gives rise to an exact sequence $0 \rightarrow S \rightarrow \Lambda e' \rightarrow K \rightarrow 0$ with $K \neq 0$. If S were injective this sequence would split, and this contradicts the indecomposability of $\Lambda e'$. Therefore S is a projective module.

Hence Ne' is a direct sum of projective modules, therefore Ne' is a projective module. The exact sequence $0 \rightarrow Ne' \rightarrow Ae' \rightarrow S' \rightarrow 0$ now implies $l.p.\dim S' \leq 1$, and since S' is not a projective module, then $l.p.\dim S' = 1$.

Hence $l.p.dim_{\Lambda} \Gamma = 1$, and this implies that Λ is an hereditary ring (i.e., $l.gl.dim \Lambda = 1$) [1].

Conversely, assume that $l.gl.dim \Lambda = 1$. Every ideal in Λ is the direct sum of N_1, \dots, N_t where N_1 is contained in the radical, and

the others (if any) are components of Λ , i.e., $N_i = \Lambda e_i$ where e_2, \dots, e_i are primitive orthogonal idempotents in Λ [4].

Let $\Gamma e'$ be any simple Λ -module. Since $N_1 \subset N$, N_1 is a Γ -module. Since on N the Γ -module structure coincides with the Λ -module structure, it easily follows that there exists a nonzero map of N_1 onto $\Gamma e'$ if and only if $\Gamma e'$ (up to isomorphism) is a direct summand of N_1 . This in particular implies that $\Gamma e'$ is a projective Λ -module, since then $\Gamma e'$ is isomorphic to an ideal. If $\Gamma e'$ is not a projective Λ -module, it follows that $\operatorname{Hom}_{\Lambda}(N_1, \Gamma e') = 0$. As a consequence, every map from an ideal in Λ into $\Gamma e'$, extends to a map of Λ into $\Gamma e'$, hence $\Gamma e'$ is an injective Λ -module.

This proves:

THEOREM A. Let Λ be a semi-primary ring with radical of square zero. Then every simple Λ -module that is not a projective Λ -module is an injective Λ -module if and only if Λ is a hereditary ring.

If Λ is a semi-primary ring with radical N and $N^2 \neq 0$, then a simple module is projective if and only if it is isomorphic to a component, hence if $\Lambda e/Ne$ is a projective module Ne = 0, and the idempotent e, when reduced mod N^2 (i.e., in Λ/N^2) will still give rise to a projective module. If $\Lambda e/Ne$ is an injective module e will give rise to an injective Λ/N^2 -module. This will follow from the following two lemmas:

LEMMA 1. Let e, e' be primitive idempotents in Λ . Then Λe is isomorphic to $\Lambda e'$ if and only if $\operatorname{Hom}_{\Lambda}(\Lambda e', \Lambda e/Ne) \neq 0$.

Proof. If Λe is isomorphic to $\Lambda e'$ then obviously

 $\operatorname{Hom}_{\Lambda}(\Lambda e', \Lambda e/Ne) \neq 0$.

Conversely, let $f: \Lambda e' \to \Lambda e/Ne$ be a nonzero map. Since $\Lambda e/Ne$ is a simple module f is an epimorphism. Denote by π the canonical projection $\pi: \Lambda e \to \Lambda e/Ne$ then since $\Lambda e'$ is a projective module there exists a map $g: \Lambda e' \to \Lambda e$ such that $f = \pi \circ g$. Since $\pi(Ne) = 0$, it follows that g is an epimorphism. Since Λe is a projective module and $\Lambda e'$ an indecomposable module g is an isomorphism.

LEMMA 2. Let S be an injective simple Λ -module and I an ideal that is contained in the radical. Then Hom₄(I, S) = 0.

Proof. Let f be a nonzero map of I into S. Since S is an

injective Λ module it follows that f extends to a map of Λ onto S, $f: \Lambda \to S$, but this implies that f(N) = 0. Since $f(I) \subset f(N)$ this is a contradiction. Therefore every map of I into S is the zero map.

THEOREM B. Let Λ be a semi-primary ring then the following are equivalent:

(i) Λ is an hereditary ring with radical of square zero.

(ii) Every simple module that is not a projective Λ -module is an injective Λ -module.

Proof. That (i) implies (ii) follows from Theorem A.

 $(ii) \rightarrow (i)$: Let e_1, \dots, e_t be a complete set of orthogonal idempotents, i.e., each e_i is a primitive idempotent, and

$$\Lambda = \Lambda e_1 + \cdots + \Lambda e_t$$
.

Set $S_i = \Lambda e_i / N e_i$. We denote by $\overline{e_1}, \dots, \overline{e_t}$ the images of e_1, \dots, e_t in Λ/N^2 under the canonical epimorphism $\Lambda \to \Lambda/N^2$. Then S_1, \dots, S_t may be viewed as simple Λ/N^2 -modules, and every simple Λ/N^2 -module is necessarily isomorphic with some S_i . If S_j is Λ -projective then $Ne_j = 0$, and necessarily S_j is Λ/N^2 -projective. If S_j is Λ -injective then we claim that S_j is Λ/N^2 -injective. It suffices to prove that for any ideal I' in Λ/N^2 , and any Λ/N^2 -map f from I' to S_i , f extends to a map of Λ/N^2 into S_j . Since I' is a direct sum of ideals I_1, \dots, I'_r , $I_1' \subset N/N^2$ and the others (if any) are components of Λ/N^2 , we will be done if we prove that $\operatorname{Hom}_{A/N^2}(I'', S_j) = 0$ whenever $I'' \subset N/N^2$. Let I be the inverse image of I'' under the homomorphism $\Lambda \rightarrow \Lambda/N^2$, then Hom₄ $(I, S_i) = 0$ since $I \subset N$ (Lemma 2). If we denote by h the map $I \rightarrow I''$ (restriction of the canonical projection) and if f is any map of I'' into S_j then if f is not the zero map, $f \circ h$ from I into S_j is a nonzero A-map of I into S_j . This contradiction implies that S_i is an injective Λ/N^2 -module.

By Theorem A it now follows, since Λ/N^2 is a semi-primary ring with radical of square zero, that $l.gl.dim \Lambda/N^2 \leq 1$. This necessarily implies that $N^2 = 0$ [2].

Remark that if all simple modules are projective modules, or if all simple modules are injective modules, then Λ is a semi-simple ring [1].

Finally, if $N \neq 0$ then there exist a simple projective (injective) module that is not an injective (projective) module.

ABRAHAM ZAKS

References

1. M. Auslander, Global dimension, Nagoya Math. J. 9 (1955), 67-77.

2. S. Eilenberg and T. Nakayama, Dimension of residue rings, Nagoya Math. J. 11 (1957), 9-12.

3. B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650.

4. A. Zaks, Global dimension of Artinian rings, Proc. Amer. Math. Soc. 18 (1967), 1102-1106.

Received December 5, 1967.

TECHNION, HAIFA Israel