AN L^{1} ALGEBRA FOR LINEARLY QUASI-ORDERED COMPACT SEMIGROUPS

Neal J. Rothman

This paper is concerned with obtaining an L^{1} algebra for compact commutative linearly quasi-ordered topological semigroups. It will be shown that there is a suitable measure on such a semigroup so that the maximal ideal space of the L^{1} algebra with respect to this measure and the bounded measurable semicharacters modulo equal almost everywhere can be identified. It is also proved that the condition $x^{2}=$ $y^{2}=x y$ implies $x=y$ is necessary and sufficient that the L^{1} algebra be semisimple.

Before we begin the study of the semigroups in the title, we wish to point out the differences in the measures discussed here and the L^{1} algebra constructed here with those found in such papers as [3], [4], [7], [9], [10] and [11]. It is shown in [11] that " r^{*}-invariant" measures on compact semigroups are supported on the minimal ideal of such semigroups. The measures used here will have support outside the minimal ideal. The work in [4] on compact simple semigroups reduces to the compact group situation in commutative semigroups and thus there is no relation to our work. In [3], the use of idempotent measures insures that the support is an ideal, again distinct from the situation here. The measures in [10] and [11] are again supported on the minimal ideal of the semigroup and for compact commutative semigroups would reduce to Haar measure on the minimal ideal, which is a compact topological group. The development in [7] of the L^{1} algebra of an interval of idempotent elements is more interesting, since it involves part of the structure of S / \mathscr{J} (see below). In this paper, if such an interval is in the semigroup we have required it to have measure 0 . In the special case of algebraically irreducible compact connected semigroups [14], an L^{1} algebra, which combines the measure in [7] and the techniques to follow, could provide interesting results.

Let S be a compact commutative topological semigroup with identity satisfying the condition (*) $x, y \in S$ and $x^{2}=y^{2}=x y$ implies $x=y$. It is known [8, VIII 1.3] that such an S is the union of a family of nonintersecting subsemigroups each of which is a cancellation semigroup and that there is a finest such decomposition. This finest decomposition may be too fine for the proper introduction of a measure on S. In fact, the maximal subgroups of S need not be contained in elements of the decomposition. We will consider a class
of semigroups which allow a decomposition into cancellation subsemigroups each element of which will be either a compact topological group or a cancellation semigroup, which is embeddable in a locally compact topological group as a subset with interior. In this way, we will be able to introduce a measure on such an S, construct $L^{1}(S)$ as in [12] and use some of the theory developed there.

Let S now also satisfy the condition that the principal ideals of S are linearly ordered by inclusion. Such S were called linearly quasiordered in [13] and their structure was considered there. We will use the results concerning this order without further reference here.

Let E denote the idempotent elements of S and for each $e \in E$, let $H(e)$ be the maximal subgroup of S containing e. Since S is commutative with identity, $S e$ is the principal ideal generated by e. If $e, f \in E$ and $S e \subset S f$, then we write $e \leqq f$ and note that $e \leqq f$ if and only if $e f=e$. It is also clear that E, with \leqq, is a naturally totally ordered set in the sense of Clifford [1]. Let $e, f \in E$ with $e \leqq f$, then $[e, f]=H(e) \cup(S f-S e),(e, f)=S f-S e$ and $(e, f)=$ $S f-(H(f) \cup S e)$.

Let $\mathfrak{D}(S)$ be that decomposition of S such that $A \in \mathscr{D}(S)$ if and only if either $A=H(e)$ for some $e \in E$ or $A=(e, f) \neq \varnothing$ where $e, f \in E$ and $(e, f) \cap E=\varnothing$. We will show that $\mathfrak{D}(S)$ is a decomposition of S into cancellation subsemigroups.

Lemma 1. Let S be a compact commutative linearly quasiordered topological semigroup with identity and satisfying (*). If $(e, f) \in D(S)$ then (1) (e, f) contains a subsemigroup $N(f)$ and $N(f)$ is either isomorphic to the usual open unit interval $(0,1)$ or isomorphic to $\left\{2^{-n}\right\}_{n=1}^{\infty}$ as a subset of the usual unit interval. (2) $(e, f)=N(f) H(f)$ and (3) (e,f) is a cancellation semigroup.

Proof. Let $e, f \in E$ with $(e, f) \neq \varnothing$ and $(e, f) \cap E=\varnothing$.
(1) Let us consider (e, f) as a subset of $S_{0}=S f / S e(S f-S e \approx$ $S f / S e-\{0\})$ and let \mathscr{J} be the equivalence relation of Green [2]; i.e., $x \mathscr{J} y$ if and only if $S_{0} x=S_{0} y$. Set $T=S_{0} / \mathscr{J}$ and let ϕ be the natural map. Then T is a naturally totally ordered semigroup in the sense of Clifford [1] and is a compact topological semigroup with 0 and 1 and no other idempotents in the order topology (which agrees with the original topology). If $0 \leqq a, b, c \leqq 1$ in T and $a c=b c$ then (since $a \leqq b$ or $b \leqq a$, we assume $b \leqq a$) there is a $d \in T$ such that $b=a d$. From $a c=b c=a d c=a d^{n} c$ for all integers $n>0$ and the compactness of $T, d^{n} \rightarrow 0$ or $d^{n} \rightarrow 1$ and thus $a c=0$ or $a=b$, since $b d^{n}=a d^{n+1}$. If $x, y \in T$ with $x^{2}=y^{2}=x y$ and $x y \neq 0$ then $x=y$ by the above and if $x y=0, x^{2}=0$ and if $x \neq 0$ there is an $s \in(e, f)$
with $s^{2} \in H(e)$. Then $s^{2}=e s^{2}=e^{2} s^{2}=(e s)(s)$ in S and $e s=s$ since S satisfies (${ }^{*}$), a contradiction. Hence $x=0=y$ and T satisfies (*).

If $a c=0$ in T, we assume without any loss of generality that $a=t c$ for some $t \in T$. Then $T a^{2}=T a t c=T t a c=0$. Thus $a^{2}=0=$ $0^{2}=0 a$ and $a=0$ since T satisfies $\left(^{*}\right)$. This is a contradiction, hence $b=a$ and $T-\{0\}$ is a cancellation semigroup which is easily seen to be archimedean. By a result of Hölder [1], T is isomorphic to a subsemigroup of the usual unit interval [0, 1].

It is clear that $T=[0,1]$ if $1 \in(T-\{1\})^{-}$(the bar denotes closure) and $T=\{1\} \cup\{0\} \cup\left\{x_{0}, x_{0}^{2}, \cdots, x_{0}^{n}, \cdots\right\}$ if $1 \notin\left(T-\left\{1^{\prime}\right)^{-}\right.$. When $T=$ $[0,1], N(f)$ exists by [13]; in the other case, for any $s \in(e, f)$ which maps to x_{0} under the \mathscr{J} equivalence $N(f)=\left\{s^{n}\right\}_{n=1}^{\infty}$ will work.
(2) Let $x \in N(f)$, then for any $g \in H(f), S g x=S f x=S x$ and $g x \mathscr{J} x$. On the other hand, if $y \mathscr{J} x$ then there exists s_{1} and $s_{2} \in[e, f]$ so that $x=s_{1} y$ and $y=s_{2} x$. Now

$$
\phi(x)=\phi\left(s_{1}\right) \phi(y)=\phi\left(s_{1}\right) \phi\left(s_{2}\right) \phi(x)
$$

so that $\phi\left(s_{1}\right) \phi\left(s_{2}\right)=1$ and s_{1} and $s_{2} \in H(f)$; thus $y \in x H(f)$. It follows that $N(f) H(f)=(e, f)$.
(3) It is clear that (e, f) is a subsemigroup of S. In order to see that (e, f) is a cancellation semigroup, let a, x and $y \in(e, f)$ with $a x=a y$. Let us choose the representations $a=t_{1} g_{1}, x=t_{2} g_{2}$ and $y=t_{3} g_{3}$ where $t_{1}, t_{2}, t_{3} \in N(f)$ and $g_{1}, g_{2}, g_{3} \in H(f)$. From $a x=a y$, we have $t_{1} t_{2} g_{1} g_{2}=t_{1} t_{3} g_{1} g_{3}$, hence $t_{1} t_{2}=t_{1} t_{3}$ and then $t_{2}=t_{3}$. Thus, for some $t \in N(f), g_{3}^{-1} g_{2} t=t$. If $N(f)=\left\{s^{n}\right\}_{n=1}^{\infty}$ and $g s^{k}=s^{k}$ for some $k>1$ and $g \in H(f)$, then $g s=s$. For if not, and if $g s^{2}=s^{2}$ then $g^{2} s^{2} \neq s^{2}$ by (*), and if $g s^{2 l}=s^{2 l}$ then $g^{2} s^{2^{l}} \neq s^{2 l}$; but $g s^{k}=s^{k}$ implies $g s^{m}=s^{m}$ for all $m \geqq k$ and $g^{2} s^{2^{l}}=s^{2^{l}}$ for $2^{l} \geqq 2 k$ and $g s=s$. It follows that $H(f)$ has a subgroup G leaving $N(f)$ fixed. Now $x=t_{2} g_{2}$ and $y=t_{2} g_{3}$ and $g_{2} g_{3}^{-1} \in G$ implies $x=y$, but $t_{1} t_{2} g_{1} g_{2}=t_{1} t_{2} g_{1} g_{3}$, which implies $g_{2} g_{3}^{-1} \in G$ and thus $x=y$. If $N(f)=(0,1)$ the open unit interval, and if $g x=x$ where $g \in H(f)$ and $x \in N(f)$, then $g \sqrt{x}=\sqrt{x}$ since

$$
(g \sqrt{x}) \sqrt{\bar{x}}=g(x)=x=\sqrt{x} \sqrt{x}=(g \sqrt{x})^{2}=g(g x)=g x .
$$

Thus g leaves $N(f)$ fixed. Let $x_{n} \rightarrow f,\left\{x_{n}\right\} \subset N(f)$. Then $g x_{n} \rightarrow g f=g$ but $g x_{n}=x_{n} \rightarrow f$ so $g=f$ and it is clear that $N(f)$ is a cancellation semigroup.

It should be noted that the proof above shows that if $(e, f) \in \mathscr{D}(S)$ and $(e, f) / \mathscr{J} \approx(0,1)$, then $H(f)$ operates in a fixed point free manner on (e, f). Thus, ($e, f]$ is a cancellation semigroup. We also note that if $(e, f) / \mathscr{J} \neq(0,1)$ then $(e, f]$ need not be a cancellation semigroup, for let $[e, f]=\{-1,1\} \cup\{0\} \cup\left\{2^{-n}\right\}_{1}^{\infty}$ where -1 and 1 both act as the identity on their complement.

It was shown in [5] that the condition (*) was necessary and sufficient that the l_{1} algebra of a discrete topological semigroup be semisimple. We have used the condition here first to obtain the preceding lemma so that the choice of a decomposition for a linearly quasi-ordered semigroup into subsemigroups on which measures can be introduced would be as natural as possible. We now will drop the condition (*) until the time to prove it is a necessary and sufficient condition for the semisimplicity of the algebra we shall construct. However, in order to be able to introduce a measure on S satisfying conditions such as in [12,2.5], we assume that the sets (e, f), with $(e, f) \cap E=\varnothing$, are subsemigroups of S.

Let $\mathfrak{D}(S)$ be such that $D \in \mathscr{D}(S)$ implies D is a subsemigroup of S.
Let $E^{1}=[e \in E: e \in \overline{S e \backslash H(e)}]$. Let $\mathfrak{Y}(S)$ be that decomposition of S into subsemigroups such that $A \in \mathfrak{A}(S)$ if and only if
either (1) $A=H(e)$ for some $e \notin E^{1}$;
or (2) $A=(e, f]$ where $(e, f) \in \mathfrak{D}(S)$ and $f \in E^{1}$;
or (3) $A=(e, f)$ where $(e, f) \in \mathscr{D}(S)$ and $f \notin E^{1}$;
or (4) $A=H(e)$ where $(f, e) \notin \mathfrak{D}(S)$ for all $f \leqq e$.
A measure can be introduced on each $A \in \mathfrak{N}(S)$ in the following manner. If $A=H(e)$ and $e \notin E^{1}$, let m_{e} be normalized Haar measure on the compact group $H(e)$. If $A=H(e)$ and $e \in E^{1}$, let $m_{e}=0$. In the remaining cases, $A=(e, f]$ or $A=(e, f)$. Let $\tau: N(f) \times H(f) \rightarrow$ (e, f) be given by $\tau(t, h)=t h$; then τ is a continuous function. Let μ_{f} denote Haar measure on $H(f)$. Let λ_{f} denote Lebesgue measure on $N(f)$ if $N(f) \approx(0,1)$ and counting measure on $N(f)$ if $N(f) \approx$ $\left\{2^{-n}\right\}_{n=1}^{\infty} \cdot$ Giving $N(f) \times H(f)$ the product measure $\lambda_{f} \times \mu_{f}$, we decree $B \subset(e, f)$ measurable if $\tau^{-1}(B)$ is measurable in $N(f) \times H(f)$, and define $m_{f}(B)=\lambda_{f} \times \mu_{f}\left(\tau^{-1}(B)\right)$.

In this way each $A \in \mathfrak{A}(S)$ has a measure m_{A} assigned such that $E \subset A$ and $x \in A$ imply $m_{A}(E x) \geqq m_{A}(E)$. A set $B \subset S$ is measurable if and only if $B \cap A$ is measurable for all $A \in \mathfrak{A}(S)$ and $m(B)=$ $\sum_{A \in \mathfrak{A}(S)} m_{A}(B \cap A)$ is a measure on S.

Theorem 1. Let S be a compact commutative linearly quasiordered topological semigroup with identity. If the decomposition $\mathfrak{D}(S)$ is such that each element of the decomposition is a subsemigroup of S, then the decomposition $\mathfrak{Y}(S)$ consists of semigroups and there is a measure m on S such that $A \in \mathfrak{N}(S), E \subset A$, and $x \in A$ imply $m_{A}(E x) \geqq m_{A}(E)$, where $m_{A}=m \mid A$.

Definition. For S a locally compact topological semigroup and m a regular Borel measure on $S, L^{1}(S, m)=[\mu: \mu \in M(S)$ and $\mu \ll m]$.

The definition of $L^{1}(S, m)$ above is the same as we used in [12]. The measure m has been chosen so that the conditions of [12, Th. 2.5] are satisfied. We also note that for each $A \in \mathfrak{A}(S)$ the hypotheses of [12, Th. 2.3] and [12, Th. 3.3] are satisfied. The Theorem 3 and 4 to follow arise because the condition, $\bar{x} * L^{1}(S, m) \subset L^{1}(S, m)$ for all $x \in S$ of [12, Th. 3.4] need not hold. However, that condition was sufficient but not necessary. We have here a weaker condition that is sufficient to obtain the same conclusions.

Theorem 2. Let S be as in the previous theorem. Each measurable semicharacter θ on an $A \in \mathfrak{N}(S)$ can be uniquely extended to a measurable semicharacter $\hat{\theta}$ on S which is zero below A; i.e.,

$$
\begin{aligned}
& A=H(e), x \in S e \backslash H(e) \\
& A=(e, f], x \in S e \quad \Rightarrow \hat{\theta}(x)=0 . \\
& \Rightarrow \hat{\theta}(x)=0 .
\end{aligned}
$$

Proof. If $A=H(e)$, then θ measurable on $H(e)$ implies θ is continuous on $H(e)$.

Define $\hat{\theta}$ on S by

$$
\hat{\theta}(x)=\left\{\begin{array}{cl}
\theta(x e) & \text { if } x \in(S \backslash S e) \cup H(e) \\
0 & \text { if } x \in S e \backslash H(e)
\end{array}\right.
$$

Since $\hat{\theta}$ is continuous on $S \backslash S e \cup H(e)$ and $S e \backslash H(e)$ is open, hence measurable, $\hat{\theta}$ is measurable on S.

If $A=(e, f]$ then let

$$
\hat{\theta}(x)=\left\{\begin{array}{cl}
\theta(x f) & x \in S \backslash S e \\
0 & x \in S e
\end{array}\right.
$$

Now $\hat{\theta}$ is continuous on $S \backslash S e$. Since θ can be extended to the group generated by $N(f) \times H(f)$ to be measurable, and therefore continuous, and $S e$ is closed, $\hat{\theta}$ is measurable on S.

Corollary. If in addition S is connected, then each such extension of a measurable semicharacter on an $A \in \mathfrak{A}(S)$, is continuous a.e. (m).

This makes for the great distinction between groups and semigroups. Let $S=[0,1], x y=\min (x, y)$. Then, every set is measurable and for each $A=H(e), m_{A}=0$ unless $A=\{0\}$, where m_{A} is point mass at 0 and so is m. Thus each semi-character is measurable and continuous a.e.

However, in the above example, all nonzero and not identically 1 semicharacters are equal almost everywhere to 0 . Hence, they all
generate the multiplicative linear functional h on $L^{1}(S, m)$,

$$
h(\mu)=\int \tau d \mu=\int 0 d \mu=0
$$

It should also be noted that the above semigroup satisfies condition (*).
Definition. Let Δ denote the m measurable semicharacters on S modulo the relation equal almost everywhere with respect to m.

Let τ be a representative of an element of Δ. For $\mu \in L^{1}(S, m)$, define $h(\mu)=\int \tau d \mu$. Then, for $\mu, \gamma \in L^{1}(S, m)$,

$$
\begin{aligned}
h(\mu * \gamma) & =\int \tau d(\mu * \gamma)=\iint \tau(x y) \mu(d x) \gamma(d y)=\iint \tau(x) \tau(y) \mu(d x) \gamma(d y) \\
& =h(\mu) h(\gamma)
\end{aligned}
$$

and h is a multiplicative linear functional on $L^{1}(S, m)$. Further, if $\lambda=\tau$ a.e. (m), then

$$
\int \lambda d \mu=\int \lambda-\tau d \mu+\int \tau d \mu=\int \tau d \mu
$$

since $\lambda-\tau=0$ a.e. (m) and hence $\lambda-\tau=0$ a.e. (μ). Thus, there is

Theorem 3. Let S be a compact commutative linearly quasiordered topological semigroup with identity. Let S be such that the decomposition $\mathfrak{A}(S)$ consists of semigroups and m the measure on S defined as above. Then each measurable semicharacter τ on S induces a multiplicative linear functional h on $L^{1}(S, m)$ such that $h(\mu)=\int \tau d \mu$. Further two measurable semicharacters induce the same h if and only if they are equal a.e.(m).

Let h be any multiplicative linear functional on $L^{1}(S, m)$. It was shown in [12] that if $x \in S$ and $\mu \in L^{1}(S, m)$ imply $\bar{x} * \mu \in L^{1}(S, m)$ then $\tau(x)=h(\bar{x} * \mu) / h(\mu)$ was a measurable semicharacter on $S(h(\mu) \neq 0)$. It is not always true that $\bar{x} * \mu \in L^{1}(S, m)$, but we will still be able to construct the measurable semicharacter from a given multiplicative linear functional.

Example. Let $S=[0,2]$ where [0,1$]$ is a usual unit interval, $[1,2]$ is a usual unit interval and each element of [1,2] acts as an identity element on $[0,1]$. Let μ be Lebesgue measure of the interval $[3 / 2,2]$ and $x=1 / 2$. Then $\mu \ll m$ but

$$
(\bar{x} * \mu)(\{x\})=\mu[y ; x y=x]=\mu([1,2]) \neq 0
$$

while $m(\{x\})=0$. Thus $\bar{x} * \mu \notin L^{1}(S, m)$.
Let h be a nonzero multiplicative linear functional on $L^{1}(S, m)$. Now, for some $A \in \mathfrak{A x}(S), h \mid L^{1}\left(A, m_{A}\right) \neq 0$, for if not then since $L^{1}(S, m)$ is the least closed subalgebra of $C(S)^{*}$ containing all $L^{1}\left(A, m_{A}\right), A \in \mathfrak{A}(S), h$ woule be identically zero.

Consider then $\mathfrak{N}_{0}=\left[A: A \in \mathfrak{X}(S)\right.$ and $\left.h \mid L^{1}\left(A, m_{A}\right) \neq 0\right]$ and partially order by $A_{1} \leqq A_{2}$ if and only if $S A_{2} \subset S A_{1}$. Now if $A=H(e), e \in E$, then $S A=S e$ and if $A=(e, f), e, f \in E, S A=S f \backslash H(f)$ and if $A=$ $(e, f], e, f \in E, S A=S f$. We now have a family of closed sets $\left\{S A: A \in \mathfrak{U}_{0}\right\}$, and these are nested; thus $\bigcap_{A \in \mathfrak{A}_{0}} S A \neq \varnothing$. If \mathfrak{H}_{0} has a maximal element A_{0}, let $\mu_{0} \in L^{1}\left(A_{0}, m_{A_{0}}\right)$ such that $h\left(\mu_{0}\right) \neq 0$. If $x \in\left(S \backslash S A_{0}\right) \cup A_{0}$, then $\bar{x} * \mu_{0} \in L^{1}(S, m)$. If $x \in A_{0}$ then trivially

$$
\bar{x} * \mu_{0} \in L^{1}\left(A_{0}, m_{A_{0}}\right) .
$$

If $x \in S \backslash S A_{0}$, then, letting e denote the maximal idempotent element of $A_{0}, x e \in A_{0}$ is such that $\overline{x e} * \mu_{0}=\bar{x} * \mu_{0}$ and hence $\bar{x} * \mu_{0} \in L^{1}(S, m)$.

Let us now define

$$
\tau(x)=\left\{\begin{array}{cl}
h\left(\bar{x} * \mu_{0}\right) / h\left(\mu_{0}\right) & x \in\left(S \backslash S A_{0}\right) \cup A_{0} \\
0 & \text { otherwise } .
\end{array}\right.
$$

Then τ is a semicharacter on S and its restriction to A_{0} is a measurable semicharacter on A_{0}. Thus τ is measurable on S.

If \mathfrak{N}_{0} has no maximal element, let $T=\bigcap\left[S A: A \in \mathfrak{A}_{0}\right]$ and $x \in S \backslash T$. Now $x \in A_{0}$ for some $A_{0} \in \mathfrak{Y}(S)$ and there is an $A \in \mathfrak{A}_{0}$ such that $S A \subset S A_{0}$. Hence, there is a $\mu_{0} \in L^{1}(S, m)$ whose support is contained in A and $h\left(\mu_{0}\right) \neq 0$. Let e denote the maximal idempotent in A, then $\bar{x} * \mu_{v}=\overline{x e} * \mu_{0} \in L^{1}\left(A, m_{A}\right)$ and $\bar{x} * \mu_{0} \in L^{1}(S, m)$. Note that for any $\nu \in L^{1}(S, m)$ for which $\bar{x} * \nu \in L^{1}(S, m)$ and $h(\nu) \neq 0$,

$$
h(\mu *(\bar{x} * \nu))=h(\mu) h(\bar{x} * \nu)=h(\bar{x} * \mu) h(\nu)
$$

and thus

$$
h\left(\bar{x} * \mu_{0}\right) / h\left(\mu_{0}\right)=h(\bar{x} * \nu) / h(\nu) .
$$

We define

$$
\tau(x)=\left\{\begin{array}{cc}
h\left(\bar{x} * \mu_{0}\right) / h\left(\mu_{0}\right) & \text { if } x \in S \backslash T \text { and } h\left(\mu_{0}\right) \neq 0 \\
0 & \text { otherwise } .
\end{array}\right.
$$

It is easily seen that τ is a well defined semicharacter on S and that $\tau \mid A$ is measurable for each $A \in \mathfrak{Y}(S)$. Hence τ is measurable on S.

Let $\mu \in L^{1}(S, m)$ and let $\phi \in L^{\infty}(S, m)$ such that $h(\mu)=\int \phi d \mu$ is a multiplicative linear functional on $L^{1}(S, m)$. If \mathfrak{N}_{0} has a maximal element and τ is the measurable semicharacter constructed above and
$\mu_{0} \in L^{1}(S, m)$ such that $h\left(\mu_{0}\right) \neq 0, \tau(x)=h\left(\bar{x} * \mu_{0}\right) / h\left(\mu_{0}\right)($ if $\tau(x) \neq 0)$ then

$$
\begin{aligned}
h\left(\mu_{0}\right) \int \tau(x) \mu(d x) & =\int h\left(\bar{x} * \mu_{0}\right) \mu(d x)=\iiint \phi(z w) \bar{x}(d z) \mu_{0}(d w) \mu(d x) \\
& =\iint \phi(x w) \mu_{0}(d w) \mu(d x)=\int \phi(y)\left(\mu_{0} * \mu\right)(d y)=h\left(\mu_{0} * \mu\right) \\
& =h\left(\mu_{0}\right) h(\mu) \text { and hence } h(\mu)=\int \tau d \mu
\end{aligned}
$$

If, on the other hand, \mathfrak{A}_{0} has no maximal element, and τ is constructed as before this case, then we can still obtain $h(\mu)=\int \tau d \mu$. Now

$$
\begin{aligned}
\int_{S} \tau d \mu & =\sum \int_{A} \tau d \mu(\text { the sum over all } A \in \mathfrak{A}(S)) \\
& =\sum \int \tau d(\mu \mid A)
\end{aligned}
$$

Now, for each $A \in \mathfrak{A}(S)$ where $\tau \neq 0$ on A there is a $\mu \in L^{1}(S, m)$ such that $h(\mu \mid A) \neq 0$ and $\bar{x} * \mu_{A} \in L^{1}(S, m)$ for all $x \in A$. Thus by repeating the earlier proof $h(\mu \mid A)=\int_{A} \tau d \mu$ and hence $h(\mu)=\int_{S} \tau d \mu$. There follows

Theorem 4. Let S be a compact commutative linearly quasiordered topological semigroup with identity. Let S be such that $\mathfrak{Y}(S)$ consists of subsemigroups and m is the measure on S defined therefrom. Then each nonzero multiplicative linear functional h on $L^{1}(S, m)$ is such that there is a measurable semicharacter τ on S such that $h(\mu)=\int \tau d \mu$ for all $\mu \in L^{1}(S, m)$.

The above two theorems establish a one to one correspondence between the maximal ideal space of $L^{1}(S, m)$ and the space Δ of equivalent measurable semicharacters on S.

Example. Let $S=[0,3]$ where $[0,1]$ is a usual unit interval and $[2,3]$ is a usual unit interval but [1, 2] is a continuum of idempotent elements and each interval acts as identity for the ones below

The measurable semicharacters on S separate points, but the semicharacters $\chi_{[x, 3]}$ where $1 \leqq x \leqq 2$ agree (a.e.) with $\chi_{[2,3]}$ which is also a measurable semicharacter.

Theorem 5. Let S be a compact connected commutative linearly quasi-ordered topological semigroup with identity and $L^{1}(S, m)$ the associated L^{1} algebra as in the proceeding. Then $L^{1}(S, m)$ is semisimple if and only if $\left(^{*}\right) x, y \in S$ with $x^{2}=y^{2}=x y$ implies $x=y$.

Before proving the theorem, let us note that we do not exclude there being a continuum of idempotent elements in S / \mathscr{J}. It is also clear that condition (*) is equivalent to the separation of points by measurable semicharacters, since as was shown in [6], each $A \in \mathfrak{A}(S)$, $A \neq H(e)$, is a cancellation semigroup.

Proof. If $L^{1}(S, m)$ is semisimple, then $L^{1}(A, m \mid A)$ is semisimple for each $A \in A(S)$. It follows that each $A \in A(S)$ is a cancellation semigroup and hence $\left(^{*}\right.$) is satisfied.

On the other hand, if $\left(^{*}\right)$ is satisfied each $A \in \mathfrak{H}(S)$ is a cancellation semigroup and $L^{1}(A, m \mid A)$ is semisimple. If μ is in the radical of $L^{1}(S, m)$, then $\int \tau d \mu=0$ for all measurable semicharacters τ. Let $A \in \mathfrak{N}(S)$ with $m(A) \neq 0$. Now A is either a compact group $H(f)$ with $f \notin E^{\prime}$, or $A=(e, f)$ or $A=(e, f]$.

Let τ be any semicharacter which is the extension of a semicharacter on A and 0 below A. Let

$$
\theta= \begin{cases}\tau & \text { on } S \backslash A \\ 0 & \text { elsewhere }\end{cases}
$$

Then θ is a measurable semicharacter on S and not equal a.e. (m) to τ. Thus $\int \tau-\theta d \mu=0$. But, $\int \tau-\theta d \mu=\int_{A} \tau d(\mu \mid A)$ and $\mu \mid A$ is in the radical of $L^{1}(A, m \mid A)$, that is $\mu \mid A=0$ and hence $\mu \equiv 0$ and $L^{1}(S, m)$ is semisimple.

References

1. A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954), 631-646.
2. J. A. Green, On the structure of semigroups, Ann. of Math. 54 (1951), 163-172.
3. Henry P. Decell, Jr. L^{1}-spaces in measure algebras over compact semigroups, Duke Math. J. 33 (1966), 709-714.
4. M. P. Heble, The semigroup algebra and representations of a compact simple semigroup, J. Math. Anal. Appl. 12 (1965), 263-300.
5. E. Hewitt and H. S. Zuckerman, The l_{1} algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70-97.
6. R. P. Hunter and N. J. Rothman, Characters and cross sections for certain semigroups, Duke Math. J. 29 (1962), 347-366.
7. L. J. Lardy, $L^{1}(a, b)$ with order convolution, Studia Math. 27 (1966), 1-8.
8. E. S. Ljapin, Semigroups, Translations of Math. Monographs 3, Amer. Math. Soc., Providence, R.I., 1963.
9. J. H. Michael, Right invariant integrals on locally compact semigroups, J. Australian Math. Soc. 4 (1964), 273-286.
10. Paul S. Mostert, Comments on the preceeding paper of Michael's, J. Australian Math. Soc. 4 (1964), 287-288.
11. William G. Rosen, On invariant means over compact semigroups, Proc. Amer. Math. Soc. 7 (1956), 1076-1082.
12. Neal J. Rothman, An L^{1} algebra for certain locally compact topological semigroups, Pacific J. Math. (to appear)
13. —, Linearly quasi-ordered compact semigroups, Proc. Amer. Math. Soc. 13 (1962), 352-357.
14. -, Algebraically irreducible semigroups, Duke Math. J. 30 (1963), 511-518.

Received August 11, 1967. The author was supported in part by the National Science Foundation, Research grant GP 5370.

University of Illinois
Urbana, Illinois

