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^-SOLVABLE DOUBLY TRANSITIVE
PERMUTATION GROUPS

D. S. PASSMAN

In this paper doubly transitive and 3/2-transitive permuta-
tion groups are classified under hypotheses somewhat weaker
than solvability. We mention two examples.

Let S^(pn) denote the group of semilinear transformations
over GF(pn). The following combines a result of Huppert on
solvable 2-transitive groups and a result of Zassenhaus on
sharply 2-transitive groups.

THEOREM I. Let © be a p-solvable doubly transitive per-
mutation group with Op(©) Φ <1>. Then deg © = pn for some
n and we have one of the following: (i) © £ <cS'Xvn), (π) © is
solvable and p» = 32, 52, 72, II2, 232 or 34, or (iii) © is nonsolv-
able and pn = II2,192, 292 or 592.

The second result reads better as a theorem on linear
groups.

THEOREM II. Let group © act faithfully on vector space
$ over GF(p) and let © act 1/2-transitively but not semire-
gularly on W. If © is imprimitive as a linear group, then
© is solvable and we have one of the following: (i) | 33 | =
p2n for p ψ 2 a n d © is a specific group of order A(pn — 1), (ii)
I 53 I = 34 and | © | = 32, or (iii) | 53 | = 26 and | © | = 18.

The approach here is first to prove that such groups are solvable,
modulo a few exceptions, and then to apply the known results on
solvable groups.

1* Number theoretic results*

THEOREM 1.1. Given integers α ^ 2 and n ^ 3 with

(n, a) Φ (4, 2), (6, 2), (10, 2), (12, 2), (18, 2), (4, 3), (6, 3), (6, 5) .

Then there exists a prime q satisfying

( i ) q\ an — 1 but q \ am — 1 for 1 <̂  m < n,

(ii) either q^>2n + l o r q = n + l and q2\an — 1.

Proof. For integer n, let s = s(n) denote the numbers of its
distinct prime factors, let p(n) denote its largest prime factor and
let q(n) = n + 1 or 1 according to whether n + 1 is prime or not.
Let Qn(x) denote the cyclotomic polynomial of order n and degree
φ(ri), where φ is the Euler function.
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Step 1. We show first that if s ;> 2 and

then n = 6, 10, 12, 14, 18, 20, 24 or 30.
Clearly φ(n) ^ n(l - l/p1)(l - l/p2) (1 - 1/p.) where plf p2, . . . , p .

are the first s primes. Let s = 2. Then 9>(w) ^ w(l - 1/2)(1 - 1/3) =
n/S and hence

This yields easily % < 33. Since s = 2, an easy check shows that
only n = 6, 10, 12,14,18, 20 and 24 occur.

Now let a = 3. Here ^(^) ^ Λ(1 - 1/2)(1 - 1/3)(1 - 1/5) = 4^/15
and hence

2(4n/15)-2 ^ ^ ( ^ + !_)/£ .

This yields easily n < 60 and since s = 3 we have n — 30 or 42. An
easy check shows that only n = 30 occurs.

Finally let s ^ 4. If w = grfig? . . . g , then

^ (Pi -

- 48 (210)-1/2

and hence

φ(n) ^

Clearly

s - 4 ̂  logP5

< log8 (w/210) = (1/3) log2 (n/210)

so that

2s-2

Thus

and clearly n < 210. Since s ^ 4, this cannot occur. Hence this first
result is proved.

Step 2. We show now that if s ^ 2 and

2^)-2s-2 ^ p(n)q(n)

then w = 6,10,12,18 or 30.
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Since n Φ 2, n and n + 1 cannot both be prime. Thus p(n)q(n) ^
n(n + l)/2 and the above applies. A check of these few cases shows
that only n = 6,10,12,18 and 30 occur.

Step 3. If Qn(a) £ P(n)q(n), then (n, a) = (4, 2), (6,2), (10,2),
(12,2), (18,2), (4,3), (6,3), (6,4), (6,5).

If s(n) = 1, then from the known form of Qn(x) we have

Since p(n)q(n) <: n(n + l)/2 we have

and hence w < 16. Since s = 1 and
9,11 or 13. Let n Φ 4 here so that

2nI2 + l

3 we have
= 1 and

= 3, 4, 5, 7, 8,

Thus no values of n occur here. This leaves only n = A so
From α2 + 1 ^ 1 0 we have (n, a) = (4, 2) or (4, 3).

Now let 8 ^ 2. By [4] (bottom of page 88)

so that Step 2 applies. Thus n = 6,10,12,18 or 30. We obtain the
following chart quite easily.

n Qn(x) p(n)q(n) a

6 x2 - x + 1 21 2,3,4, 5

10 x* - x% + x2 - x + 1 55 2

12 x4 - x2 + 1 39 2

18 x6 - x3 + 1 57 2

30 a8 + of - xb - x* - x" + α + 1 155 none .

This completes the proof of this step.

Step 4. We now proceed to prove the theorem. We will follow
[4]. Let us suppose first that for all primes q which divide an — 1
t h a t e i t h e r q \ a m — 1 f o r s o m e l^m<norq = n - \ - l a n d q2 \ a n — 1 .
Let q I Qn(a) so that q | an — 1. By [4] since n > 2 the first possibility
implies that q = p(n) and <z2iQw(α). This yields clearly Qn{a) S
p(n)q(n) and hence by the above (n, a) = (4, 2), (6, 2), (10, 2), (12, 2),
(18, 2), (4, 3), (6, 3), (6, 4) or (6, 5). An easy check shows that (n, a) =
(6, 4) does not satisfy this assumption on the primes.

Hence if (n, a) is not one of these eight exceptions, then there
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exists a prime q with q \ an — 1 but q \ am — 1 for 1 <̂  m < n. Also
if g = n + 1, then g21 an — 1. Now since n is the order of a modulo
q we have n\q — 1 so g = fcw + 1 for some positive integer fc. If
q < 2n + 1, then g = w + 1 and the proof is complete.

As a corollary we obtain the result we generalized.

COROLLARY 1.2. Given integers a ̂  2 cmd w ̂  3 m£/ι (n, a) Φ (6,2).
Then there exists a prime q satisfying q \ an — 1 but q \ am — 1 /or
1 <; m < ^.

Proof. We need only consider the exceptions of Theorem 1.1.
In all these exceptions other than (6, 2) we see easily that q = n + 1
has the required property.

A convenient restatement of the above is

COROLLARY 1.3. Let W denote the multiplicative group of
GF(pn). If σ is a field automorphism, then σ can be viewed as an
endomorphism of SK. Let ouσ2j •• ,0*ί be field automorphisms. If
n ^3 and (n, p) Φ (6, 2), then Π 0- — <**) = 0 e End SPί implies that
some σ{ = 1.

Proof. Sft is cyclic of order pn — 1. If σ is a nonidentity field
automorphism, then σ is of the form x —> #p W with 1 ^ m < n. Say
(V. a; —v # p m ί . Then Π (1 — σi) — 0 a s an endomorphism of W yields

(p - 1) I Π (1 - Pmί)

and this cannot occur by Corollary 1.2 if 1 <* m{ < n for all ΐ unless
n = 2 or (n, p) = (6, 2).

In the exceptional cases above we have with the notation of
Corollary 1.3.

LEMMA 1.4. (i) // n = 2, p Φ 3 ί/^eti Πi (1 — σi) = 0 implies that
some Oi = 1.

(ii) // (w, p) = (6, 2), then Πί (1 — ̂ i) — 0 implies that either
some σ{ — 1 or at least two σ/s have order 3 and that at least one σ{

has order 2.

Proof, (i) If n = 2 and all α 4 ^ 1, then all ^ are equal to say
σ and σ has order 2. This yields easily

Thus every fourth power in SW is in the fixed field of σ and
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I m |/4 £ p ~ 1

a contradiction unless p = 2 or 3. If p = 2, then 4 ̂  | 3K | so σ = 1.
(ii) Here we consider the field automorphisms explicitly. If o(σ)

denotes the order of σ, we have

o(σ)

o(σ)

o(σ)

— 2 vι~"

= 3 x1-"

= 6 a:1-'

= x~7

= x-3

= x~ι

or

or

a;-5'3

ar 3 1

If all σt Φ 1, then a suitable product of these exponents must be
divisible by 26 — 1 = 3 3 7 so we must have at least two elements
of order 3 and at least one of order 2.

2* A solvability theorem*

THEOREM 2.1. Let p be a prime and a = pk. Suppose that ©
is a p-solvable subgroup of GL(n, a) with (an — l)/(αm — 1) 11 © j for
some divisor m Φ n of n. Then either © is solvable or (n, a) =
(2,11), (2,19), (2, 29), (2, 59), (6, 5). Moreover if (n, a) = (6, 5), then
© is solvable unless m — 3.

Proof. Since © is p-solvable it has a ^-complement ©. Now
((Γ — l)/(αw — 1) divides | © | and this number is prime to p so
(an — l)/(αm — 1) I | φ | . If we show that § is solvable, then since ©
is p-solvable it will be solvable. Thus it suffices to assume that
p X I © I. Since p \ | © |, this representation of © is realizeable over
the complex numbers. Hence theorems on complex linear groups
apply here.

Case 1. We consider first the possibility n <; 2. If n = 1, then
© is certainly solvable. Let n = 2. If Z(@) acts irreducibly, then
© is abelian by Schur's lemma and the fact that finite division rings
are fields. Thus we can assume that | Z(©) | divides a — 1. Now
©/Z(©) is a 2-dimensional collineation group and hence if © is not
solvable, then @/Z(Θ) ~ A5 by [11] (Chapter X). Thus | © 11 60(α - 1)
and by assumption (α + 1) 11 ® |. Note that p \ \ © | so p Φ 2, 3, 5
and also g.c.d. {a — 1, a + 1} = 2. This yields a + 11120 and since
a is a prime power we get a — p = 7, 11, 19, 23, 29, 59. Since
®SGL(2, p) and 5 | | © | we have 5 | p2 — 1 so that p ^ 7, 23. This
leaves α = p = 11,19, 29, 59.

We assume now that n ^ 3. Suppose that (w, α) is not one of
the exceptions of Theorem 1.1. Then there exists a prime q with
q I an — 1 but # | αJ — 1 for 1 <. j < n. Thus by assumption q \ \ © [.



560 D. S. PASSMAN

Let D* be a subgroup of © of order q in the center of a Sylow q-
subgroup Q of @. Since q \ aj — 1 for 1 ^j <nf£i* is irreducible.
By Schur's lemma, C(D*)3Q is cyclic. Since A u t Q * is abelian, ©
will be solvable if we show that Q* is normal in ©. By Theorem
1.1, q satisfies one of the following two conditions. Either q211 © |
and q^n + loτq2)(\®\ and q ^ 2n + 1. We consider these in the
following two cases.

Case 2. We assume that q2 | | © | and <? :> w + 1. Let ^ be the
associated complex representation of ©. Then there is a homomorphism,
& — > ^ , yielding a representation of © of degree n over some finite
field § of characteristic g. Let $ be the kernel of the representation
&q. As is well known, S is a g-group. Since q ^ n + 1, the Sylow
g-subgroup of GL(n, g) has period #. Thus since O is cyclic and
I jQ I ̂  g2 we see that Λ a O*. Now jϊ is cyclic so D* Δ © and © is
solvable.

Case 3. We assume now that q2 \ \ © | and q ^ 2n + 1. If
? > 2w + 1, then by Theorem 3 of [1], £} = Π* Δ ©. Moreover if g =
2n + 1 and the representation of © is not absolutely irreducible, then
we can again apply this result. Thus we need only consider the case
q = 2n + 1 and © absolutely irreducible. The latter imples that Z(@)
consists of scalar matrices so | Z(@) 11 a — 1. If Q is not normal,
then by Theorem 4 of [1] we have ®/Z(©) ~ PSL(2, q). We show
now that this cannot occur.

Since | PSL(2, q) \ = q(q - l)(q + l)/2 and q = 2n + I we obtain

(an - l)/(αm - 1) I (a - l)2n(2n + l)(n + 1) .

Note that the order of PSL(2, g) is always divisible by 6 so p Φ 2, 3
and hence a ^ 5.

Let us assume first that w is odd. Since a is odd we see that
(an - l)/(αm — 1) is odd and hence

(an - l)/(αw - 1) I (α - l)n(2n

Thus since a ^ 5 and m | ^

(α - 1)(<T/3 - 1))

^ w(w + l)(2n + 1)

and hence n < 9. Now π is odd and 2n + 1 is prime so we have
n = 3 or 5. Note that m | w implies that m = 1.

If w = 3, then

(a2 + a + l ) | 3 7 ( α -
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and if n = 5, then

(ai + a* + a2 + a + 1) | 3 5.11(α - l)/2 .

An easy check shows that these have no solution with a = pk and
pΦ2,Z.

Now let n be even. Again since a Ξ> 5 we have

^ (αw - l)/((α - l)(αw / 2 - 1)) ^

and hence n < 14. Now n is even and 2n + 1 is prime so we have
n = 6 or 8. In each case there are three choices for m and we ob-
tain the following six facts.

n = 6 m = Z: (α3 + 1) | (a - 1)22 3 7 13

m = 2: (α4 + α2 + 1) 1 (α - 1)22.3 7.13

m = 1: (α5 + α4 + α3 + α2 + α + 1) | (a - 1)22.3 7.13

n = 8 m = 4: (α4 + 1) | (α - 1)24 32.17

m = 2: α 5 < 2 4 . 3 2 17

m = 1: α β < 2 4 . 3 2 17 .

An easy check shows that these have no solution for a ^ 5. This
completes the study of this case.

We need only consider the exceptional cases of Theorem 1.1 now.
Since we do not claim that the subgroup © of GL(6, 5) is solvable if
m = 3, there remains only (n, a) = (4, 2), (6, 2), (10, 2), (12, 2), (18, 2),
(4, 3), (6, 3) and (6, 5) with mΦZ. Hence a = p = 2, 3 or 5.

Case 4. We now study these exceptions with p = 2 or 3. First
let a = p — 2. Then © is a subgroup of odd order of GL{n, 2) with
n ^ 18. Here to avoid unpleasant computation we will just apply
the theorem of Feit and Thompson ([6]) which guarantees that © is
solvable.

Now let a — p — 3 so that n = 4 or 6. If n = 4, then since
® S G L ( 4 , 3 ) and 3 | | © | we have | ®| |2 9.5 13. Since 13 > 2n + 1
we see by Theorem 3 of [1] that © has a normal Sylow 13-subgroup.
By Burnside's two prime theorem, © is solvable.

Now let n = 6. Since © S GL(6, 3) and 311 © | we have
I © 11 21 3.5.7.1Γ.132. Also (36 - 1)/(3W - 1) 11 © | so 7 11 © |. We show
that if © g G L ( 6 , 3 ) , 3 | | © | and 7 | | © | , then © is solvable. By
way of contradiction, let © be a counterexample of minimal order.

Let q = 11 or 13. If © has a normal subgroup of order q2, then
by the minimal nature of © a g-complement is solvable. Hence © is
solvable, a contradiction. If © has a normal subgroup © of order q,
then since l\q — \ we see that 7 | | C ( © ) | . Since @/C(©) is abelian,
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we must have © = C(©). By Griin's theorem, © has a normal sub-
group of index q, again a contradiction. Thus © has no normal sub-
group of order q or q2 for q — 11 or 13. Now 11, 13 > n + 1 and
hence by [5] we must have

28 55.7.1Γ or 2S.55.7 13

where ε = 0,1 3 = 0,1 and s ^ 13.
If I © I is of the second type above, then since 13 = 2n + 1,

Theorem 4 of [1] implies that ®/Z(©) ~ PSL(2,13). This is a con-
tradiction since 3 | | © | . Thus | © | is of the first type.

We show now that 3 = 0. Since © £ GL(6, 3) we see that © has
no elements of order 7-5 or 7-11. Thus if n7 denotes the number of
Sylow 7-subgroups of ©, then n7 = 2 r55ll ε for some integer r. Now
5 = —2 mod 7 and 11 = 22mod7 so n7 = ( — )*2* mod 7 for some integer
t. By Sylow's theorem n7 = 1 and thus 2* == ( —)δmod7. This equa-
tion has no solution if 3 = 1 and thus we must have δ = 0 and hence
I ©I = 2s 7 l l ε . By Burnside's two prime theorem and by the result
of [2] we see that © is solvable, a contradiction.

Case 5. Finally let {n, a) = (6, 5) with m Φ 3. Here

and m Φ 3 so 7 11 © | and 3111 © |. By way of contradiction, let © be
a nonsolvable subgroup of GL(6, 5) of minimal order with 5 | | © | ,
3111 © I and 7 I I © |. Since 7 | 56 - 1 but 7 \ & - 1 for 1 ^ j < 6 we
see that © is irreducible. By [7] since 31 > 2n + 1, © has a normal
abelian Sylow 31-subgroup 2ί. Since 311 53 — 1 and 311 56 — 1 but
31 \ 5j — 1 for any other j with 1 ^ j ^ 6 we see by Clifford's theorem
that the representation restricted to SI breaks up into one or two
irreducible constituents. If 31 is irreducible, then © is clearly solvable,
a contradiction, so there are two irreducible constituents. If these
constituents are inequivalent, then the representation is induced from
a subgroup § of index 2 which is necessarily normal. By the minimal
nature of ©, § is solvable, a contradiction. Hence the two constitu-
ents are equivalent and 21 is cyclic. Since 7 \ 31 — 1 we see that
7, 3111 C(3t) I and so © - C(2I). By Lemma 1.1 of [12], © is contained
isomorphically in GL(2, 53). Thus since © is not solvable, ®/Z(©) ~ A5

by [11] (Chapter X) and 5 | | © | , a contradiction. This completes the
proof.

EXAMPLES. Let © = SL(2, 5), a nonsolvable group of order 120.
Then © has a faithful character χ of degree 2 with Q(χ) = Q(l/5).
For p Φ 2, 3, 5 this representation is realizable over GF(p) if and only
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if λ/~5 eGF(p). By quadratic reciprocity this is true if and only if
p = ± 1 mod 5. In particular © S GL(2, p) when p = 11,19, 29, 59.
In each of these cases (p2 — l)/(p — 1) = p + 1 divides | © |.

Now let ξ> = PSL(2, 7), a simple group of order 168. Then ξ>
has a faithful complex character χ of degree 3 such that Q(χ) = Q(V 7 ) .
Now 5 X I © I and obviously i / T e (λF(52) so © s G£(3, 52). Let (E be
the central subgroup of order 3 of this general linear group and set
© = $(£. Since © s GL(3, 52) we have © e GL(6, 5). Also

Thus Theorem 2.1 is best possible.

3* Solvable groups* If a is a prime power we let ^~(n, a)
denote the group of semilinear transformations of GF(an) over GF(a).
That is, ^~(n, a) consists of all functions on GF(an) of the form
x —•> δαf where 6 e GF(anf and σ is a field automorphism of GF(an)
over GF(a). Thus ^~(w, α) is a metacyclic group of order n(an — 1).
It is transitive on GF(an)*.

THEOREM 3.1. Let p be a prime and a — pk. Suppose © is a
solvable subgroup of GL(n, a) with (an — l)/(αm — 1) 11 © | for some
divisor m Φ n of n. Then either © <Ξ *^~(n, a) or (n, a) = (2, 3),
(2, 5), (2, 7), (2,11), (2, 23), (2, 47), (4, 3), (6, 2).

Proof. We proceed in a series of steps.

Step 1. Suppose we can find a prime q with g | α% — 1 but
g I αy - 1 for all j < w. Then © is irreducible and hence Op(@) = <1>.
If further we have one of the following, then © gΞ ^~(n, α).

( i ) og(@) Φ <1>
(ii) ^ > ^ + l
(iii) # = w + 1 and g2

(iv) q = n + I and O2

( v ) g' = n + 1 and q is not a Fermat prime.
Since (an - l)/(αm - 1) 11 © | we have q \ | © |. Let Q be a subgroup

of © of order g in the center of a Sylow g-subgroup. Since q\ a3' — 1
for j < n,£ι is irreducible. By Schur's lemma, C©(O) is cyclic. If
D Δ ®, then by [8] (Hilfssatz 2) © g ^"(w, α). If Off(@) ^ <1>, then
clearly ?Q S Og(©) and since the latter group is cyclic, O Δ © and (i)
follows.

We show now that assumptions (ii)-(v) imply that Oq(®) Φ <1>.
Suppose by way of contradiction that Oq(®) = <1)>. By Fitting's
theorem there exists a prime r such that Q does not centralize 9ΐ =
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Or(©). By the above r Φ p so 3ΐQ is a p'-group. Hence the repre-
sentation of this group is realizeable over the complex numbers.
Certainly £} is not normal in 9t£l. Hence by Ito's theorem ([10]) we
cannot have q > n + 1. Let q = n + 1. Again by Ito's theorem,
we must have q a Fermat prime and | 9ΪQ | even so r = 2. Thus
(ii), (iv) or (v) implies (i).

Now assume q — n + 1 and ?211 © |. Let G* be a cyclic subgroup
of order q2 containing £}. Let 3ΐ be as above and consider the group
3ΐO*. The argument of Case 2 of the proof of Theorem 2.1 shows
that d A 9ΐG*, a contradiction, and we have proved this result.

Step 2. We show now that if n ^ 3, then © £ j/~(w, α) unless
K α) = (4, 3) or (6, 2).

By Theorem 1.1 we have either (ii) or (iii) of Step 1 in the non-
exceptional cases. Thus we need only consider the eight exceptions
of that theorem. We apply Corollary 1.2. If (n, a) = (6, 3) or (6, 5),
then © satisfies (v) of Step 1. If (n, α) = (4, 2), (10, 2), (12, 2) or
(18, 2), then, since a = p = 2, © satisfies (iv) of Step 1. This leaves
only (n, a) = (6, 2) or (4, 3).

Step 3. We show now that if n ^ 2, then © g J7~(n, a) unless
(n, α) = (2, 3), (2, 5), (2, 7), (2, 11), (2, 23), (2, 47).

The result is clear for n — 1 so we assume w = 2. We have
α + 111 © |. If prime q > 3 divides α + 1 then © g ^ ( n , a) by (ii)
of Step 1. If 321 a + 1, then © g ^{n, α) by (iii) of Step 1. Thus
we can assume that either α + l = 2' or α + 1 = 3 2*.

Now a — pk. We show first that ά = 1 so a is a prime. If
a + 1 = 2\ the result follows from Lemma 4 of [9]. Let pk + 1 =
α + 1 = 3-2*. If p — 2, then clearly £ = 0 and a = 2. Suppose now
that p ^ 2 . If k is even, then pk ~ 1 (mod 4) and hence 3-2* = 2 (mod 4).
This yields t = 1 and pk = 5. If Λ is odd, then

3-2* = (p + IXP*-1 - Pk~2 + + 1) .

The second factor on the right is a sum of an odd number of odd
terms and is therefore odd. Thus (pk + l)/(p + 1) = 1 or 3. This
has no solution for k > 1 and p Φ 2 so k — 1 and a is a prime.

If a = 2, then © S GL(2, 2) - jr~(2, 2). The cases α = 3, 5, 7 are
allowable exceptions so we assume a > 7. We show now that p | | © |.
Now © g GL(2, p) and hence if © has two distinct subgroups of order
p then © 5 SL(2, p). Since p *> 5, SL(2, p) is nonsolvable, a contradic-
tion. Thus if p | | © | , then the Sylow p-subgroup of © is normal.
In GL(2, p) the normalizer of a Sylow p-subgroup has order (p — If p.
Since p + 111 © | this yields (p + 1) | (p — l)2p, a contradiction for
p> 3. Thus p | | © | .



p-SOLVABLE DOUBLY TRANSITIVE PERMUTATION GROUPS 565

If © is reducible, then | © | | ( p - l ) 2 , a contradiction. If © is
imprimitive, then \®\\2(p — I)2, a contradiction for p> 7. Thus ©
is an irreducible, primitive linear group. We can clearly assume that
© is nonabelian. This implies easily that Z(@) consists of scalar
matrices and | Z(@) 11 (p — 1). Also every normal abelian subgroup
of © is cyclic. Now the representation of © is realizeable over the
complex numbers and hence the results of [11] (Chapter X) apply.
Since © is solvable, we cannot have ®/Z(©) ~ Ab. If ®/Z(@) is cyclic,
then © is abelian, a contradiction. If ®/Z(@) has a cyclic subgroup
of index 2, then © has a; normal abelian subgroup 21 of index 2. Then
21 is cyclic and since © is primitive, 2ί is irreducible. Thus by
Hilfssatz 2 of [8], © S JΓ(2, p).

There remains only | ®/Z(@) | = 12 or 24 and hence | © 112A(p — 1)
so (p + 1) I 24(p — 1). This yields p + 11 48 and since p > 7 we have
p = 11, 23 or 47. Note that if we assume in addition that 2(p + 1) 11 © |
then p = 47 does not occur. This completes the proof of this theorem.

EXAMPLES. Let © act faithfully on vector space 93 of order pn.
If © is transitive on 33*, then certainly (pn — 1) 1|©|. Thus we can
find examples for the exceptional cases (n, a) = (2, 3), (2, 5), (2, 7),
(2,11), (2, 23) and (4, 3) in [8]. The remaining two exceptions are
(n, a) = (6, 2) and (2, 47). Clearly jT~(3, 2) x JT~(3, 2) a GL(6, 2) and
I ̂ " ( 3 , 2) x ^ " ( 3 , 2) I = 32 72 •= 7(2β - 1). This group is not a subgroup
of J Π 6 , 2) since 72 \ | _^~(6, 2) |. Now consider (n, a) = (2, 47). It is
easy to see that GL(2, 47) contains an isomorphic copy of SL(2, 3).
Let 3) be the Sylow 2-subgroup of the latter group so that 2) is qua-
ternion of order 8. It is easy to see that in GL(2, 47), C(S)) consists
of scalar matrices. Now iV(®) picks up a group of order 3 from
SL(2, 3) and a factor of 2 from some Sylow 2-subgroup containing S .
Thus 8 2 3 - 48 11 JV(Φ) |. Since | iV(®)/®C(®) | ^ 6 we see that © = JV(Φ)
is a solvable subgroup of GL(2, 47) with 4 8 | | @ | and © a SL(2, 3).
Since the Sylow 3-subgroup of ^ " ( 2 , 47) is normal, we cannot have
© a ^ " ( 2 , 47). Thus Theorem 3.1 is best possible.

It is convenient here to consider some of the above exceptions.

LEMMA 3.2. Let % be a solvable subgroup of GL(n, a). If
(n,α) = (2,47) and 2(α + l ) | | © | or if (n, a) - (6, 2), (an - 1) 11 ©

and © is irreducible and primitive, then © a

Proof. The result on (w, α) = (2, 47) follows from the last sentence
of the proof of Theorem 3.1. Now let (n, a) = (6, 2) so 63 = 26 - 1
divides | © | . Since © is irreducible by assumption O2(@) = <T>. Now
© S GL(6, 2) so I © 11 215.34 5.72.31. We show first that O7(@) Φ <1>.
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If not, then since 7 11 © | there would exist a subgroup Q of order 7
which does not centralize some subgroup 31 = Or(@). Since r Φ 2
and 7 does not divide 5 — 1, 31 — 1 or 3y — 1 with j ^ 4, we have a
contradiction. Thus ® = O7(@) ^ <1)>. Clearly the representation re-
stricted to 3) breaks up into two 3-dimensional irreducible constituents.
If these are inequivalent then © is imprimitive, a contradiction. Thus
the irreducible constituents of $ are equivalent and hence ϋ is cyclic
and I © I = 7.

If 5) is the Fitting subgroup of ©, then ©/£) is conta ned in Aut
?? and I ©I I 7-6, a contradiction. Thus there exists a normal abelian
r-subgroup 91 Φ <1> of © for some prime r Φ2,7. Set 5t = 5RS) so
that 31 is a normal abelian subgroup of ©. By Clifford's theorem,
the irreducible constituents of the representation of © restricted to
31 all have equal degree d with d | 6. Since 3t 2 ® we have d ^ 3 so
either d = 3 or 6. Now cί = 3 leads to a contradiction since 5) is self
centralizing in each of its 3-dimensional representations and 9ί =£ <(1)>.
Thus d = 6, 31 is irreducible and © fi ^~(n, a) by Hilfssatz 2 of [8].

We will need the following result in a later paper. We include
it here because its proof follows quickly from the results of § 1.

PROPOSITION 3.3. Let © be a subgroup of ^~(n, a) and suppose
that © acts 1/2-transitively but not semiregularly on GF(pnf. Let
© denote the subgroup of © consisting of linear transformations (that
is, functions of the form x —> bx) and let | ©,, | = k for x Φ 0. Then

( i ) For all x Φ 0, ©,. is cyclic and k | n.
(ii) If σ is a field automorphism of order k, then

© 3 {¥-σx I b e GF(pnf} .

(iii) With the exception of pn = 32 and | © | = 8 we have © =
©').
(iv) © is characteristic in ©.

Proof. X = J7^(n, p) is transitive on S31 = GF(pnf and hence
the groups Zυ are all conjugate in Z. Let τ be a field automor-
phism of order n. Then £x = <V> is cyclic of order n and hence
all %υ are cyclic of order n.

Now %v a ©v so ©„ must be the unique subgroup of order k of
£„. Thus (i) follows. It is easy to see that

and hence if σ is a field automorphism of order fc, then ©„ = {v1"^**}.
Thus for all 6 e GF{pn)\ © contains the elements xa~ι and fr-'x* and
hence their product ¥~σx is in ©. This yields (ii).
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Certainly ©' s © and © C C®(©'). N o w if p is a field automor-
phism then (dxp, ex) = c 1 -^. This shows that ©' 3 {b{ί~a)2x \ b e GF{pn)*}
and if dxp centralizes ©', then for all b e M = GF(pnf we have
j(i_σ>ί(i-,) = i^ si n Ce <χ ̂  1, Corollary 1.3 and Lemma 1.4 show that
p = 1 unless p* = 26 or pw - 32. Suppose pn = 26. If 2 | | © | , then
since p = 2 some element of © of order 2 has a fixed point so we
can assume σ has order 2. If 2 | | © | then both σ and p have odd
order. From (1 - σ)2(l - p) = 0, Lemma 1.4 and σ ^ 1 we obtain
p = 1. Suppose pw = 32. Now | ^ " ( 2 , 3) | = 16 and ^ " ( 2 , 3) is semi-
dihedral. Thus (iii) clearly follows.

Certainly (iv) follows from (iii) in all cases except for pn = 32,

I © I = 8. Here since © acts 1/2-transitively but not semiregularly we

have © dihedral. Since © is cyclic and [©: ©] = 2, (iv) follows.

4* Transitive linear groups*

THEOREM 4.1. Let p be a prime and a = pk. Suppose © is a
p-solvable subgroup of GL(n, a) which transitively permutes the d-
dimensional GF(a)-subspaces of the underlying vector space for some
d with 1 ^ d ^ n — 1. Then we have one of the following.

( i ) @ ^ J ^ > , α )
(ii) © is solvable and (n, a) - (2, 3), (2, 5), (2, 7), (2, 11), (2, 23)

or (4, 3)
(iii) © is nonsolvable and (n, a) = (2, 11), (2,19), (2, 29) or (2, 59).

Furthermore with the exception of (n, a) = (5, 2) we have d = 1 or
n — 1.

Proof. Let A(n, d) denote the number of d-dimensional subspaces
of an ^-dimensional vector space over GF(a). Then

\ ~ (α* - l)(α» - o) • - (an - α^1)

= (an - l){an~ι - ! ) • • • (an~d+1 -

(ad - l)(αd~1 - 1) . . . (a - 1)

= (a% ~~ X ) A(n - 1, d - 1) .
( * l )

Thus since g.c.d {an ~ 1, ad — 1} = am — 1 where m = g.c.d. {n, d} we
have

(an - l)/(αm - 1) I A(n, d) .

If © acts transitively on these d-dimensional subspaces, then
A(n, d) 11 © I so (an - l)/(αm - 1) 11 © |.
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Let © act on vector space33 and let S30, %$ί; •.? -,(83, be subspaces
with ^ =.33O 4- SSX +"• v .-fc.33,; Suppose that 3 3 ^ <0>, S3 and that if
# e ® , then 33^ = 33*, where, ΐ—»ί' is a permutation of {1,2, ••-,£}.
If dim??! = w ^> d, then the images under © of a fixed d-dimensional
subspace of S^ are each contained in some .93*.: Thus clearly © is not
transitive on all d-dimensional subspaces of 23. On the other hand if

id^w, then the images of a fixed cί-dimensional subspaee of S3 con-
taining SSi each contain some S3; with i Φ 0. Since we can easily
construct a linear functional λ of 33 whose kernel does not contain
any 33;(ί ^ 0), it is clear that there is a d-dimensional subspace of S3
which does not contain any SS î Φ 0). Thus again © is not transitive,
a contradiction. This shows that © is irreducible on S3 and primitive.
Hence Op(@) =

Case 1. We assume now that © is solvable.
Since (an — l)/(am — 1) 11 ©|, Theorem 3.1 applies. Suppose first

that © g J?~(n, a) so that we have (i). We show here that d = 1 or
n -r 1 except if (n, a) = (5, 2). If n = 2 or 3, then certainly d = 1
or % - 1. So we can assume w >̂ 4. Since © is transitive on these
subspaces, so is J7~(n, a). From

A(n, d)/A(n, d - 1) = (an~d+1 -

we see easily that if 2 <; d ^ n — 2, then ^.(^, d) ^ A(w, 2). Further,
the cyclic subgroup of J7~(nf a) of order a — 1 consisting of scalar
matrices fixes all subspaces so

n(an - 1) = I ^~(n, α) | ^ (α

^ (α - l)Λ(wf 2) =

Hence n ^ (α71"1 — l)/(α2 — 1) > αw~3. Since n ^ 4, we see easily that
only (n, a) = (4, 3), (4, 2), (5, 2) can occur. Now with (n, a) = (4, 3),
(4, 2) we do not have A(n9 d) \ n(an — 1) so that the only exception
here is (n, a) = (5, 2).

We consider the remaining possibilities in the conclusion of Theorem
3.1. Note that if n = 2, then d = 1. If (n, α) = (2, 3), (2, 5), (2, 7),
(2,11), (2, 23) or (4, 3), then we have (ii). It remains to show the
following three facts: (1) if (n, a) = (2, 47), then © g ^~(n, α), (2)
if (π, a) = (4, 3) then d = 1 or 3, (3) if (n, a) = (6, 2) then © g ^~(n, a).

Let (w, α) = (2, 47) and let Q denote the group of scalar matrices
in GL(n, a). By replacing © by ©3 if necessary, we can assume
that © 3 Q. Then clearly © is transitive on the nonzero vectors and
so (472 - 1) 11 © |. By Lemma 3.2, © g ^~(n, a).

Now let (n, a) = (4, 3) and assume that d Φ 1, n — 1. Then d = 2
and A(4, 2) = 130 divides | © | . Let Q be a Sylow 13-subgroup of ©.
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Since 132 Jf | GL(4, 3) |, we have | £> | = 13. If Q Δ ©, then since ©
is irreducible all constituents of the representation restricted to Q
have the same degree by Clifford's theorem. Since the nonprincipal
irreducible representations of O over GF(3) have degree 3, this is a
contradiction. Thus £1 is not normal and by Fitting's theorem, there
exists 91= Or(@) which is not centralized by G. Since Op(®) = '<Γ>,
r Φ p and we can view 9ΪG as a complex linear group of degree 4.
By [10], Q Δ 3ΐO and Q centralizes 91, a contradiction.

Finally let (n, a) = (6, 2). If d Φ 1 or 5 then 311 A(n, d). The
same argument as above, with 31 the prime of interest, yields a con-
tradiction. Thus d = 1 or 5 and 63 11® |. Since © is primitive, the
result follows from Lemma 3.2.

Case 2. We assume now that © is nonsolvable.
Since (an - l)/(am - 1) 11@|, Theorem 2.1 applies. If (n,a) =

(2,11), (2,19), (2, 29) or (2, 59) then we have (iii) and also d = 1. We
need only show that (n, a) = (6, 5) with m = 3 does not occur here.
Assume we have this possibility. Since m = g.c.d. {n, d} we must
have d = 3. Then since 711 A(6, 3) we have 7111 © |. Let Q be a
Sylow 71-subgroup of ©. Since 712 Jf \ GL(6, 5) | we have | O | = 71.
If Q Δ ©, then since © is irreducible, all constituents of this repre-
sentation restricted to Q have the same degree by Clifford's theorem.
Since the nonprincipal representations of Q over GF(5) have degree
5, this is a contradiction. Thus O is not normal in ©.

Let $K = Op,(®) and consider 9tG as a complex linear group of
degree 6. Since 71 > (2-6) + 1, O Δ 3ΐQ by [7]. If ΣX S 3ΐ, then
since Q is characteristic in 9ϊ we have O Δ ©, a contradiction. If
£} g 3ΐ, then O centralizes 3ΐ and this contradicts the fact that ©
is p-solvable, 02)(®) = <1)> and 9ΐ — Op,(©). This completes the proof
of the theorem.

EXAMPLE. Consider © = ^"(5,2) so that | ® | = 5-31. Now the
subgroup of © of order 31 acts irreducibly and each subgroup of order
5 centralizes a 1-dimensional space and acts irreducibly on a 4-dimen-
sional complement. Thus if d = 2 or 3, then © acts semiregularly on
the d-dimensional subspaces. Since A(5, 2) = A(5, 3) = 5 31 = [ © |,
we see that © is infact transitive. Thus the result on d above is
best possible.

We use the notation of [12] and [13] now. Our study of solvable
1/2-transitive linear groups was split into two parts according to
whether the linear groups were primitive or imprimitive. We show
now that we can drop the solvability assumption in the latter case.

THEOREM 4.2. Let © act faithfully on vector space S3 over GF(p)



570 D. S. PASSMAN

and let © act 1/2-transitively but not semίregularly on S3*. // © is
imprίmitive as a linear group, then © satisfies one of the following.

( i ) © = ^~Q(pn) with p Φ 2 and n an integer
(ii) I S31 = 34 and © is isomorphic to a central product of the

dihedral and quaternion groups of order 8.
(iii) I S3 I = 26 and © is isomorphic to the dihedral group of order

18 with cyclic Sylow S-subgroup.

Proof. By Theorem 1 of [9], © acts irreducibly on 33 and by
assumption © acts imprimitively. If we show that © is solvable,
then the result follows from Proposition 1.3 of [13]. We proceed to
do this now. By Proposition 1.1 of [13] we can assume that the re-
presentation of © is induced from that of a subgroup ξ> with [©: ξ>] = 2
and hence ξ> Δ ©. Moreover if S3 = S31 + S32 as ^-modules, then SSj.
and 332 are conjugate under ©. Let B{ be the kernel of the action of
φ on 33iβ Then ^/Bt acts transitively on 93? and | Λ< | ^ 2. Moreover
for all x e 33*, ©* is a 2-group.

Case 1. p — 2.

Let @ be a Sylow 2-subgroup of ©. Since p — 2 we see that ©
must fix a point x e 33*. Thus since ©̂  is a 2-group, we have ©* = @.
Hence since © acts 1/2-transitively on 33*, we see that for all x e 33*, ©,.
is a Sylow 2-subgroup of ©. This clearly implies that for all x,
[(&x: φ j = 2. On the other hand if x e 33?, then clearly ®x Q & so
©s = φ x. This is a contradiction and thus p Φ 2.

Case 2. p Φ 2.
If p 11 © I, then a Sylow p-subgroup of © would have a fixed

point in 33* and this contradicts the fact that ®x is a 2-group for all
xe%$\ Thus p X | © | . Since φ/β< transitively permutes the 1-dimen-
sional subspaces of 33̂  we see by Theorem 4.1 that either φ/$f is
solvable or | $< | = II2,192, 292 or 592. We assume now that © is not
solvable. Then φ/φ is not solvable and if ξ> = φ/φ, then | § | = 60 α
with α I p - 1 and [ξ>: &J = p2 - 1. If | § β | = 6, then (p2 - 1)6 = 60α.
Using the fact that a \ p — 1 and 6 is a power of 2 we have

p = 11 α = 2 6 - 1

p = 19 α = 6 6 = 1

p - 2 9 α = 14 6 - 1

α - 2 8 6 - 2

p = 59 α - 5 8 6 = 1.

Case 3. 6 = 1.
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Since © is not semiregular, b = 1 yields | Stt | = | $21 = 2 and
acts regularly on 33*. Further, the third subgroup of order 2 of
<$!, ίϊ2> is clearly a central subgroup of © of order 2. The arguments
of the second and third paragraphs of the proof of Proposition 1.3
of [13] show that ξ> is solvable, a contradiction.

Case 4. b = 2.
We must have p = 29, α = 28 here. Suppose first that | Λ< | = 2.

Then for all x e 33*, | ©* | = 4 and hence | φ x | = 2 or 4. Thus every
element of 93* is fixed by some involution of ξ>. Let $ denote the
set of these involutions. If g e $, then g cannot fix all of ^ unless
g e Λf. But $f acts without fixed points on 332. Thus no involution of
ξ> can fix more than a 2-dimensional subspace of S3. This yields easily

and p2 + 1 ^ 131. We have | φ | = 4(p2 - 1) and § = 2B8 where 8
is a central subgroup of order 7, since 8 is central in each
and I 2S | = 4(p2 - l)/7. Certainly 3 S 2B so

a contradiction. Thus we cannot have 1 ^ 1 = 2 .
Now let I Λ< I = 1 so that for all x e 33*, | ©, | = 2. Now 21 α so

that 2 | |Z(ξ)) | . Also Z(ξ>) is cyclic, since φ acts faithfully and irre-
ducibly on S5ίβ Thus © has a normal and hence central subgroup of
order 2. By Lemma 6 of [9], |3f| = p2 + 1 where $ denotes the set
of noncentral involutions of ©. Now | § | = 2(p2 - 1) and ξ> = 2BS
where 8 is central of order 7 and 13B | = 2(p2 - l)/7 = 240. By
Lemma 6 of [9] applied to ξ> on SS,. we see that ξ> has p + 1 non-
central involutions. Thus 13 - (3f Π©) I = P2 - p.

Let ^ S - ( 3 n Φ ) . Then kge$ with A eξ) if and only if
k9 — fc"1. Thus # sends precisely p2 — p elements of φ to their in-
verses by conjugation. Since p2 — p > | 2δ | = 240 we see that # must
act in a dihedral manner on 8. Then # sends precisely (p2 — p)/7 =
116 elements of SB to their inverses. Now | Z(2δ) | = 4 and 2B/Z(2S) - A5

so g acts on A> in such a way that at least 116/4 = 29 elements map
to their inverses. Since the automorphism group of Aδ is Sδ we see
easily that no such automorphism of Aδ of order 1 or 2 exists with
this property. This completes the proof.

We suspect that a result similar to Theorem 4.1 holds for p-
solvable 1/2-transitive linear groups. A partial result in this direc-
tion is

THEOREM 4.3. Let © be a p-solvable group acting faithfully on
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vector spaceS3 of order pn. Suppose ©acts l/2-transitively but not
semiregularϊy on S3*. -//. all the subgroups ®x are conjugate in ©>
then © satisfies one of the following.

( i ) © § ^~(pn)
(ii) © is solvable and pn = 32, 52, 72, 1Γ or 34

(iii) © is nonsolvable and pn — II 2 , 192 or 292.

We need first the following lemma.

LEMMA 4.4. Let % be a p-solvable group of automorphisms of
elementary abelian p-group S3. Let B be a p-complement in ©. //
© acts 1/2'transitively on 53s, then so does i£. Moreover if all the
groups ®x are conjugate in ©, then all the groups Bx are conjugate
in St.

Proof. Let 3β be a Sylow p-subgroup of ©. Since 93 is a p-group,
there exists x e S3* with ^ g ® , . Since © acts 1/2-transitively we see
that for all x e S3, ©* contains a Sylow p-subgroup of ©.

Let #eS3* and consider ft* = ft ΓΊ ®*. By the above ©̂  contains
some Sylow p-subgroups *β of ©. Since © = φS we have © = ©,$ and
hence

I Λ , I = I Λ n ®. ί = j ®. 11 ft i/i © i

is the same for all x e S3*. Thus $ acts 1/2-transitively on 53*.
Suppose now that the groups ©x are all conjugate in ©. Let

x, y e S3* and let φ be a Sylow p-subgroup of ©, so that <$® = ©. If
©J = ©̂  and h = αfe with αG$,ί;GS, then clearly ©£ = ©y. Since
Λβ = ®e n ft, ft, = ®v ΓΊ ft we have ftj = ft, and the result follows.

Proof of Theorem 4.3. We consider a series of cases.

Case 1. © solvable.
Let 9ΐ be the Fitting subgroup of © so that 31Δ © and

31 Φ <1>. If a:, y e S3*, then 3lx = 31 n ©., SΠί, - 91 Π ©, so 31, and
3ly- are conjugate in ©. Hence 31 acts 1/2-transitively and
Theorem II of [12] applies. The type (ii) groups, ^Ό(p) of that
theorem do not satisfy our conjugacy assumption since the elements

| 0 1 a n ^ 1 0 I a r e n o t c o n J u ^ a t e i n ® Thus we have (i) and
(ii) above.

Case 2. © nonsolvable.
Since | S31 = pn we have © s GL(n, p) and © is p-solvable. For

each xe*& we let S3,. == C$(®x), We see clearly that these groups
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form a partition of 93 , that is 93* = U S3* is a disjoint union. Now
the groups ©, are all conjugate in © so that all the subgroups 93,.
have the same order pm and there are precisely [©: JV©((S,)] of them.
Counting elements in the disjoint union then yields

Since pm — l\pn — 1 we have m | n. Furthermore @ does not act
semiregularly so m Φ n. Since (pn — l)/(pm — 1) 11 © | and © is non-
solvable, Theorem 2.1 yields pn = II 2,19 2, 292, 592 or pn = 56 with m = 3.

Case 3. pw = 592.

By Lemma 4.4 we can assume © is a p'-group. Since ®/Z(©) ~ A5

and (p — l)/2 is a prime not equal to 2, 3 or 5 we see that © = ©S

where 8 is central of order 1 or (p — l)/2 and | © | = 60 or 120.

Since 8 acts semiregularly we see that ®, — ®, and these groups

are all conjugate in ©. Clearly m = 1 so [©: -#©(©*)] = p + 1 = 60

and thus | N®(®x) \ = 2. This is a contradiction since a subgroup of

order 2 has a properly larger normalizer in some Sylow 2-subgroup of

©. Thus if n = 2 then only pn = II 2 , 192 and 292 can occur with ©

not semiregular.

Case 4. pn = 56 with m = 3.
Here we have (56 - l)/(53 - 1) = 2 32.7 dividing | © | . If also

3111 © I, then (56 - l)/(52 - 1) = 3.7-31 divides | © | and © is solvable,
a contradiction. Hence 3 1 1 | © | . By the previous lemma we can
assume that 5 \ \ © |.

Suppose x, y e 93* with ©^ Φ ®y and g e ®x Π ®y. Then g centralizes
93, and 93,. Now | 93, | - | 93, | = 53 and 93, n 93, = <0> so 93 - 93, + 93
Hence g centralizes 93 and g = 1. Thus ©, n ©„ = <1>. Since 5 \ \ ©;

©, acts on a 3-dimensional complement of 93, and in fact ©, acts
semiregularly on this subspace since ©, Π ®y = <(Γ>. Hence | ©, 11 (53 — 1).
Now 53 — 1 = 4-31 and 31 \ | © | so ©, is cyclic of order 2 or 4.
From the fact that © acts 1/2-transitively on 93* we have [®: ®,] | (5 6 - l )
so [®: ®,] I 23 32 7. This and the above yields | ® | = 2r 32 7 with r ^ 5.

Set ® = ®/(O2(®)). We show that for all primes q, Oς(®) = <1>.

This is clearly true for q = 2 and q = 7, the latter by Burnside's two

prime theorem. From the fact that ©, is a 2-group we see that the

Sylow 3-subgroups of © are cyclic. If O3(@) Φ <1>, then © has a

normal subgroup 8 of order 3. By Burnside's transfer theorem

C@(S) has a normal 3-complement and hence C©(8) is solvable.

Since [©: C©(8)] <; 2, © is solvable, a contradiction. This implies

that © has no nonidentity solvable normal subgroup.

y
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Let 2B be a minimal normal subgroup of @ so that 2B is a direct

product of isomorphic simple groups. By the above 2B must be nonabelian.

Since the order of a nonabelian simple group must have at least three

distinct prime factors and 7 2 1 | ©|, we see that 2B is a nonabelian

simple group. Now C®(Sδ) Δ © and C©(SS) Π SB = <1>. Thus 711 C©(SB) |

and so C©(2B) is solvable. This yields C5(2B) = <1>.

Let @ be a Sylow 2-subgroup of © and let 8 be the subgroup
of order 2 of ©*. Since ®x is a T.I. set, JV®(@X) = N®(&) and
[©: iV®(8)] = 2 32 7. In particular 8 cannot be in the center of
any Sylow 2-subgroup. This implies that the elements of order 2 in
Z(@) act without fixed points on 33. This shows that Z(@) is cyclic
and the subgroup of Z(@) of order 2 is central in ©. Thus | O2(@) | ^ 2.

We have | 2B| = 2β 3 ί 7 with s = 2, 3, 4 and ί - 1 or 2. Suppose
first that ί = 1. By [2], SB ~ PSL(2,7) and by Satz 1 of [14],
I Aut 2B I = 2-168. Since © £ Aut SB and 9 11 © |, this is a contradiction.
Now let ί = 2 so that | SB | =252, 504 or 1008. There is certainly no
simple group of order 252, since by Sylow's theorem the Sylow 7-
subgroup is either normal or in the center of its normalizer. By
Theorem 10.7.5 of [15], there is no simple group of order 1008. This
leaves only \B\ = 504. By [3] (§III), © ~ SL(2, 8).

We will derive a final contradiction by studying a Sylow 2-sub-
group @ of ©. We have already seen that @ is nonabelian with
Z(@) cyclic. Note that the Sylow 2-subgroup of 2B is elementary
abelian of order 8. The latter is normalized by a group of order 7
which permutes its involutions transitively. Suppose that | O2(©) | >̂ 4.
Then I O2(©) | = 4 and SB = ©. The group 2B acts on O2(©) and thus
2S centralizes O2(©). Hence O2(©) is central in © and cyclic. Since
the nonidentity elements of @/O2(@) are permuted transitively by a
group of order 7, it follows that Z(@) = O2(@). Then @ is a class 2
group with a cyclic center and [@: Z(@)] = 23. This is a contradiction
since @/Z(@) has a nondegenerate symplectic geometry.

Now let | O , ( © ) | = 2 and let @0 = @ Π 2δ where SB = 3B/O2(@).
From the nature of @0/O2(©) and the fact that this group admits an
automorphism of order 7, we see that @0 is elementary abelian of
order 16. Since [@: @0] = 1 or 2 we see that Z(@) contains a subgroup
of type (2,2), a contradiction. This completes the proof of the
theorem.

5* Permutation groups* The results of the previous section
translate naturally to theorems about permutation groups with regular
normal subgroups. Again we use the notation of [13]. Thus we have
groups S^(pn) and £% (pn) which are solvable and respectively 2- and
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3/2-transitive permutation groups.
The following result at once combines the result of Huppert ([8])

on solvable 2-transitive groups and the result of Zassenhaus ([17]) on
sharply 2-transitive groups.

THEOREM 5.1. Let © be a doubly transitive permutation group.
Suppose that © is psolvable and Op(®) Φ ζϊ}. Then deg © = pn for
some integer n and we have one of the following.

( i ) ®Q^(pn)
(ii) © is solvable and pn = 32, 52, 72, II 2 , 232 or 34

(iii) © is nonsolvable and pn = I P , 192, 292 or 592.

Proof. Let 33 be a characteristic abelian subgroup of Op(©).
Then S3 Φ <(Γ> and S3 Δ ©. Since © is doubly transitive, S3 is transi-
tive and hence regular. If ξ> = ©α, then © = 33ξ> and ξ> acts transi-
tively on 93*. Also deg © = 1931 = pn and S3 is a p-solvable subgroup
of GL{n, p). The result now follows by Theorem 4.1, since if
φ s ^(n, p) = J Π r ) , then © £

EXAMPLES. Nonsolvable sharply 2-transitive groups exist with
pn = II 2 , 292 or 592 by [17]. Let pn = 192. Then GL(2,19) contains
φ — ξ>8 where £ is a cyclic central subgroup of order 9 and
ξ> ~ SL(2, 5). Moreover the elements of 8* and ξ>* all act fixed point
free on S3, a 2-dimensional space over Gi*χi9). Let α;eS3*. From the
nature of § we see easily that | &,, | <£ 3 and hence the orbit of x
contains at least | ξ> |/3 = 9-120/3 = 192 - 1 elements. Thus £> is trans-
itive on S3* and ©, the semidirect product of S3 by ξ), is a 19-solvable
2-transitive group of degree 192.

THEOREM 5.2. Let © be a 3/2-transitive permutation group which
is not a Frobenius group. Let S3 Φ <(Γ> be a normal abelian subgroup
of ©. Then 33 is an elementary p-group and S3 is a regular normal
subgroup of ©. Suppose that as a linear group on S3, ξ> = ©α is
imprimitive. Then © satisfies one of the following.

( i ) © = S^(pn) with p Φ 2 and n an integer
( ϋ ) I S3 I = 34, ξ) ΐs isomorphic to a central product of the dihedral

and quaternion groups of order 8, and |@| = 25 34.
(iii) I S3 I = 26, φ is isomorphic to the dihedral group of order

18, and |@| = 27 32.

Proof. Since © is not a Frobenius group, it is primitive by
Theorem 10.4 of [16]. This yields all the remarks concerning S3. Now
ξ> is a group of automorphisms of S3 which acts 1/2-transitively but
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not semiregularly on 33*. Thus Theorem 4.2 applies to ξ> and the re-
sult follows.

THEOREM 5.3. Let ®be a 3/2-transitive permutation group which
is not a Frobenius group. Suppose ® is p-solvable with Op(®) Φ ζϊ).
// all the subgroups ®ab are conjugate in @, then deg© = pn for
some integer n and ® satisfies one of the following.

( i ) © E ^ ( j > n )
(ii) © is solvable and pn = 32, 52, 72, 1Γ or 34

(iii) © is nonsolvable and pn = II 2,19 2 or 292.

Proof. Let 93 be a characteristic elementary abelian subgroup of
Op(®) with S3 Φ <1>. Then 93 Δ ©. By Theorem 10.4 of [16], © is
primitive and hence 93 is transitive. Thus 93 is a regular normal
subgroup of ©. If § = ®α, then © = 93ξ> and ξ> acts 1/2-transitively
but not semiregularly on 93.

Let b and c be points distinct from a. We show that ®ab and
®ac are conjugate in ξ>. Since these groups are conjugate in © by
assumption and © = ξ>93 we have ©αc = ©ί? with h e ξ>, v e 93. Now
93 Δ © so (v, ®h

ab) S £ ΓΊ 93 = <1> and hence v centralizes ®h

ab. Thus
©αc = ©J6. If χ9 ye%$*, then the above implies that φ x and %>y are
conjugate in φ. Hence Theorem 4.3 applies to ξ) and the result
follows.

The author would like to thank Professor Walter Feit for sug-
gesting the problem studied here and for suggesting the general
approach to its solution.
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