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p-SOLVABLE DOUBLY TRANSITIVE
PERMUTATION GROUPS

D. S. PAsSsMAN

In this paper doubly transitive and 3/2-transitive permuta-
tion groups are classified under hypotheses somewhat weaker
than solvability. We mention two examples.

Let .“(p™) denote the group of semilinear transformations
over GF(p"). The following combines a result of Huppert on
solvable 2-transitive groups and a result of Zassenhaus on
sharply 2-transitive groups.

Taeorem I, Let & be a p-solvable doubly transitive per-
mutation group with 0,(®) == (1>. Then deg & = p~ for some
n and we have one of the following: (i) ® . (p"), (ii) @ is
solvable and p» = 32, 52, 72, 112, 232 or 3¢, or (iii) & is nonsolv-
able and p* = 11?, 192, 29% or 592,

The second result reads better as a theorem on linear
groups,

TraeEOREM II. Let group & act faithfully on vector space
B over GF(p) and let & act 1/2-transitively but not semire-
gularly on B¢, If & is imprimitive as a linear group, then
& is solvable and we have one of the following: (i) |B| =
p*» for p + 2 and © is a specific group of order 4(p" — 1), (ii)
|B|=23*and |G| =32, or (iii) |BV|=2° and |G| = 18,

The approach here is first to prove that such groups are solvable,
modulo a few exceptions, and then to apply the known results on
solvable groups.

1. Number theoretic results.

THEOREM 1.1. Given integers a = 2 and n = 3 with
(n, a) # (4, 2), (6, 2), (10, 2), (12, 2), (18, 2), (4, 3), (6, 3), (6, 5) .

Then there exists a prime q satisfying
(i) qla—1but gta™ —1 for 1 < m < n,
(ii) either q=2n+ 1l or q=n + 1 and ¢*|a™ — 1.

Proof. For integer m, let s = s(n) denote the numbers of its
distinct prime factors, let p(n) denote its largest prime factor and
let g(r) =n + 1 or 1 according to whether »n + 1 is prime or not.
Let Q,(x) denote the cyclotomic polynomial of order » and degree
@(n), where ¢ is the Euler function.
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Step 1. We show first that if s = 2 and
20m=2"1 < p(n + 1)/2

then n = 6, 10, 12, 14, 18, 20, 24 or 30.

Clearly p(n) = n(1 —1/p,)(1 —1/p,) - -+ (L —1/p,) where p,, p,, - -+, D,
are the first s primes. Let s = 2. Then ¢(n) = n(l — 1/2)1 — 1/3) =
n/3 and hence

21 < p(n + 1)/2 .

This yields easily n < 33. Since s =2, an easy check shows that
only » = 6, 10, 12, 14, 18, 20 and 24 occur.

Now let s =3. Here o(n) = n(l — 1/2)(1 — 1/3)(1 — 1/5) = 4n/15
and hence

Qunle—2 < n(n + 1)/2 .

This yields easily » < 60 and since s = 3 we have n = 30 or 42. An
easy check shows that only # = 30 occurs.
Finally let s = 4. If n = q¥q% .- q%, then

p(myn™* = JI qi*"(¢; — 1)g:™"
= (p, — Dpr'™(p, — Dp;"'*(ps — V)ps*(p, — V)pi*"®

= 48.(210)—
and hence
P(n) = 48(n/210)" .
Clearly
s — 4 < log,, (n/(p:p.p:p,)) = log,, (n/210)
< log, (n/210) = (1/3) log, (n/210)
so that
22 < 4(n/210)
Thus

248(n/210)1/2—4(n/210)1/3 < 2¢(n)—23_2 < ,n(,n + 1)/2

and clearly n < 210. Since s = 4, this cannot ocecur. Hence this first
result is proved.

Step 2. We show now that if s = 2 and

200" < p(m)q(n)
then » = 6, 10, 12, 18 or 30.
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Since # = 2, n and n + 1 cannot both be prime. Thus p(n)q(n) <
n(n + 1)/2 and the above applies. A check of these few cases shows
that only n = 6, 10, 12, 18 and 30 occur.

Step 3. If Q.(a) < p(n)q(n), then (n,a) = (4,2), (6,2), (10,2),
(12, 2), (18, 2), (4,3), (6, 3), (6,4), (8, 5).
If s(r) =1, then from the known form of @,.(x) we have

2"+ 1<a+1<Qu(a).
Since p(n)q(n) < n(n + 1)/2 we have
2" + 1 < n(n + 1)/2

and hence n < 16. Since s =1 and # =3 we have n = 3,4,5,7,8,
9,11 or 13. Let m #+ 4 here so that ¢(n) = 1 and

2" 4+ 1< n.

Thus no values of n occur here. This leaves only % =4 so p(n)q(n)=10.
From a* + 1 < 10 we have (n, a) = (4, 2) or (4, 3).
Now let s = 2. By [4] (bottom of page 88)

2= < g . 277 < Q,(a)

so that Step 2 applies. Thus n = 6,10, 12,18 or 30. We obtain the
following chart quite easily.

" Q.(x) p(n)q(n) a
6 ?—xz+1 21 2,3,4,5
10 -+ aP—a+1 55 2
12 o —at+ 1 39 2
18 -+ 1 57 2
30 Bt —t -+ +1 155 none .

This completes the proof of this step.

Step 4. We now proceed to prove the theorem. We will follow
[4]. Let us suppose first that for all primes ¢ which divide a" — 1
that either g|a™ — 1 forsomel <m <morq=n+1and ¢*}a"” — 1.
Let q|@Q.(a) so that ¢|a" — 1. By [4] since n > 2 the first possibility
implies that ¢ = p(n) and ¢} Q,(a). This yields clearly Q.(a) <
p(n)qg(n) and hence by the above (n,a) = (4,2), (6,2), (10, 2), (12, 2),
(18, 2), (4, 3), (6, 3), (6,4) or (6,5). An easy check shows that (n, a) =
(6, 4) does not satisfy this assumption on the primes.

Hence if (n, @) is not one of these eight exceptions, then there
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exists a prime ¢ with ¢la" — 1 but ¢ fa™ —1 for 1 <m < n. Also
if g=n + 1, then ¢*|a” — 1. Now since 7 is the order of a modulo
g we have n|g —1 so ¢ = kn + 1 for some positive integer k. If
g < 2n + 1, then ¢ = n + 1 and the proof is complete.

As a corollary we obtain the result we generalized.

COROLLARY 1.2. Given integers a =2 and n =3 with (n, a) # (6, 2).
Then there exists a prime q satisfying qla™ — 1 but q f a™ — 1 for
1<m<m.

Proof. We need only consider the exceptions of Theorem 1.1.
In all these exceptions other than (6, 2) we see easily that ¢ = n + 1
has the required property.

A convenient restatement of the above is

COROLLARY 1.3. Let M denote the multiplicative group of
GF(p"). If o is a field automorphism, then o can be viewed as an
endomorphism of M. Let 0,0, ---,0, be field automorphisms. If
n=38 and (n,p) +# (6,2), then [T (1 —0,) = 0cEnd M implies that
some o; = 1.

Proof. M is cyclic of order p* — 1. If ¢ is a nonidentity field
automorphism, then ¢ is of the form 2z — 2™ with 1 <m <n. Say
o;: x—a*™, Then [T (1 — 0,) =0 as an endomorphism of I yields

(@ =D A —p™)

and this cannot occur by Corollary 1.2 if 1 < m; < n for all 7 unless
n =2 or (n,p) = (6, 2).

In the exceptional cases above we have with the notation of
Corollary 1.3.

LEMMA 14, Q) If n =2,p # 3 then [[I (A — 0,) = 0 vmplies that
some o; = 1.

@) If (n,p) = (6,2), then [[:(1 — 0;) =0 implies that either
some o; = 1 or at least two o0;’s have order 3 and that at least one o;
has order 2.

Proof. (1) If n =2 and all g, # 1, then all o; are equal to say
o and ¢ has order 2. This yields easily

Id—-0)=41-0)=0.

Thus every fourth power in I is in the fixed field of ¢ and
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@ —-DA=[Mi=p-1

a contradiction unless p =2 or 3. If p =2, then 4/ |M| so 0 = 1.
(ii) Here we consider the field automorphisms explicitly. If o(o)
denotes the order of ¢, we have

og) =2 ' =ua"
o) =3 2" =a"° or a7
o0) =6 2= or a*.

If all o, =1, then a suitable product of these exponents must be
divisible by 2° — 1 = 8-3.-7 so we must have at least two elements
of order 3 and at least one of order 2.

2. A solvability theorem.

THEOREM 2.1. Let p be a prime and a = p*. Suppose that &
18 a p-solvable subgroup of GL(n,a) with (a — 1)/(a™ — 1) || & for
some divisor m = n of m. Then either & 1is solvable or (n,a) =
(2,11), (2,19), (2,29), (2,59), (6,5). Moreover if (n,a) = (6,5), then
S s solvable unless m = 3.

Proof. Since & is p-solvable it has a p-complement 9. Now
(@ — 1)/(@™ — 1) divides |®| and this number is prime to p so
(@ — 1)/(a™ — 1)||D]|. If we show that 9 is solvable, then since &
is p-solvable it will be solvable. Thus it suffices to assume that
pt|®|. Since p t |®|, this representation of & is realizeable over
the complex numbers. Hence theorems on complex linear groups
apply here.

Case 1. We consider first the possibility » < 2. If » = 1, then
® is certainly ‘solvable. Let n = 2. If Z(®) acts irreducibly, then
@ is abelian by Schur’s lemma and the fact that finite division rings
are fields. Thus we can assume that | Z(®)| divides ¢ — 1. Now
®/Z(®) is a 2-dimensional collineation group and hence if ® is not
solvable, then &/Z(®) ~ A; by [11] (Chapter X). Thus |$||60(a — 1)
and by assumption (a + 1)||®|. Note that » } |®| so p#2,3,5
and also g.c.d. {a — 1,a + 1} = 2. This yields a + 1|120 and since
a is a prime power we get a=p =7, 11,19, 23, 29,59. Since
SSGL2,p) and 5||®| we have 5|p* — 1 so that p =+ 7,23. This
leaves a = p = 11, 19, 29, 59.

We assume now that » = 3. Suppose that (n,a) is not one of
the exceptions of Theorem 1.1. Then there exists a prime ¢ with
glam— 1 but g ya’ —1 for 1 <5 <mn. Thus by assumption ¢||S|.
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Let Q* be a subgroup of & of order ¢ in the center of a Sylow g¢-
subgroup Q of &. Since ¢ Ja’ — 1 for 1 <5 < n,Q* is irreducible.
By Schur’s lemma, C(Q*)2Q is cyclic. Since AutQ* is abelian, &
will be solvable if we show that Q* is normal in ®&. By Theorem
1.1, q satisfies one of the following two conditions. Either ¢*||®|
and g=n+1or ¢*})|®| and ¢ = 2n + 1. We consider these in the
following two cases.

Case 2. We assume that ¢*||®| and ¢ = n + 1. Let .2 be the
associated complex representation of &. Then there is a homomorphism,
F — A, yielding a representation of & of degree n over some finite
field § of characteristic q. Let & be the kernel of the representation
“#,. As is well known, & is a g-group. Since ¢ = n + 1, the Sylow
g-subgroup of GL(n,) has period q. Thus since L is cyclic and
|Q| = ¢* we see that & 2 Q*. Now & is cyclic so 2* A S and @ is
solvable.

Case 3. We assume now that ¢*/|®| and ¢=2n + 1. If
q > 2n + 1, then by Theorem 3 of [1], Q = Q* A &. Moreover if ¢ =
2n + 1 and the representation of & is not absolutely irreducible, then
we can again apply this result. Thus we need only consider the case
qg = 2n + 1 and ® absolutely irreducible. The latter imples that Z(®)
congists of scalar matrices so | Z(®)||a — 1. If Q is not normal,
then by Theorem 4 of [1] we have &/Z(®) =~ PSL(2,q). We show
now that this cannot occur.

Since | PSL(2, q)| = q(¢ — 1)(¢ + 1)/2 and q = 2n + 1 we obtain

(@ — 1)/(a™ — 1) | (e — 1)2n(2n + 1)(n + 1) .

Note that the order of PSL(2, q) is always divisible by 6 so »p = 2,3
and hence a = 5.

Let us assume first that # is odd. Since a is odd we see that
(@a” — 1)/(a™ — 1) is odd and hence

(a — /(@™ — 1) | (@ — 1)n2n + 1)(n + 1)/4 .
Thus since @ = 5 and m|n

(6" — D/(5"* — 1) < 4(a" — 1)/((@ — D(a"" — 1))
=nn+ 1)@n + 1)

and hence n < 9. Now 7 is odd and 2n + 1 is prime so we have
n =3 or 5, Note that m|n implies that m = 1.
If n =3, then

@+ a+1)[3:7(a — 1)/2
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and if » = 5, then
(@*+a*+a*+ a+ 1)[3-5-11(a — 1)/2.

An easy check shows that these have no solution with a = p* and
P+ 2,3.
Now let » be even. Again since a = 5 we have

(5" + 1)/4 < (@ — D/((@ — (@™ — 1)) < 2n(n + 1)2n + 1)

and hence n < 14. Now = is even and 2n + 1 is prime so we have
n = 6 or 8. In each case there are three choices for m and we ob-
tain the following six facts.

n=6 m=3: @ +1)|(a — 1)2%.3-7-13
m = 2: (@ + a*+ 1)|(a — 1)2%.3-7-13
m=1 (@+a'+a*+a*+a+1)(a — 1)2%.3.7-13
n=8 m=4: (@* + 1) | (@ — 1)2¢-32.17
m = 2: b < 2.3%.17
m = 1: a® < 24.32.17 .

An easy check shows that these have no solution for @ = 5. This
completes the study of this case.

We need only consider the exceptional cases of Theorem 1.1 now.
Since we do not claim that the subgroup & of GL(6, 5) is solvable if
m = 3, there remains only (n, a) = (4, 2), (6,2), (10, 2), (12, 2), (18, 2),
4, 3), (6,3) and (6,5) with m =+ 3. Hence a = p = 2,3 or 5.

Case 4. We now study these exceptions with p = 2 or 3. First
let a = p=2. Then @ is a subgroup of odd order of GL(%,2) with
n < 18, Here to avoid unpleasant computation we will just apply
the theorem of Feit and Thompson ([6]) which guarantees that & is
solvable.

Now let a =p=38 so that n =4 or 6. If w = 4, then since
& < GLM4,3) and 3/ |®| we have |®||2°-5-13. Since 13 > 2n + 1
we see by Theorem 3 of [1] that & has a normal Sylow 13-subgroup.
By Burnside’s two prime theorem, & is solvable.

Now let n=6. Since G S GL(6,3) and 3} |®| we have
|S||2%.5-7-11%-13%, Also (3° —1)/(83 — 1)|| G| so 7||®|. We show
that if ® £ GL(6,3), 3}/ |®| and 7||®|, then @& is solvable. By
way of contradiction, let & be a counterexample of minimal order.

Let ¢ = 11 or 13. If & has a normal subgroup of order ¢, then
by the minimal nature of & a g-complement is solvable. Hence ® is
solvable, a contradiction. If @ has a normal subgroup & of order g,
then since 7}/ q — 1 we see that 7||C(®)|. Since &/C(®) is abelian,
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we must have & = C(®). By Griin’s theorem, & has a normal sub-
group of index ¢, again a contradiction. Thus & has no normal sub-
group of order g or ¢* for ¢ =11 or 13. Now 11,13 >#%n + 1 and
hence by [5] we must have

|®| = 2°-5°.7-11° or 2°.5°-7.13

where ¢ = 0,1 6 =0,1 and s < 13.

If |®] is of the second type above, then since 13 = 2n + 1,
Theorem 4 of [1] implies that &/Z(®) =~ PSL(2,13). This is a con-
tradiction since 3t |®|. Thus |®| is of the first type.

We show now that 6 = 0. Since & & GL(6, 3) we see that & has
no elements of order 7.5 or 7-11. Thus if n, denotes the number of
Sylow 7-subgroups of &, then n, = 2'5°11¢ for some integer r. Now
5= —2mod7 and 11 = 2°mod 7 so 7, = (—)2°mod 7 for some integer
t. By Sylow’s theorem 7%, = 1 and thus 2 = (—)’mod 7. This equa-
tion has no solution if 6 = 1 and thus we must have ¢ = 0 and hence
|®| = 2:.7.11°, By Burnside’s two prime theorem and by the result
of [2] we see that @ is solvable, a contradiction.

Case 5. Finally let (n,a) = (6,5) with m = 3. Here
(6" =1)/6G" -1 ||B]

and m % 3 so 7||®| and 31||®|. By way of contradiction, let & be
a nonsolvable subgroup of GL(6,5) of minimal order with 5} |®|,
31||®| and 7||®|. Since 7|5°—1 but 7/5 —1 for 1 <75 <6 we
see that & is irreducible. By [7] since 31 > 2n + 1, ® has a normal
abelian Sylow 31-subgroup 2. Since 31|5°— 1 and 31|5°— 1 but
31457 — 1 for any other j with 1 < 57 < 6 we see by Clifford’s theorem
that the representation restricted to 2 breaks up into one or two
irreducible constituents. If U is irreducible, then ® is clearly solvable,
a contradiction, so there are two irreducible constituents. If these
constituents are inequivalent, then the representation is induced from
a subgroup © of index 2 which is necessarily normal. By the minimal
nature of &,  is solvable, a contradiction. Hence the two constitu-
ents are equivalent and 2 is cyclic. Since 7})31 — 1 we see that
7,31]|C) | and so & = C(A). By Lemma 1.1 of [12], & is contained
isomorphically in GL(2, 5°). Thus since & is not solvable, &/Z(®) ~ A,
by [11] (Chapter X) and 5||®|, a contradiction. This completes the
proof.

ExamMPLES. Let & = SL(2,5), a nonsolvable group of order 120.
Then ®& has a faithful character y of degree 2 with Q(x) = Q(v/5).
For p = 2, 3, 5 this representation is realizable over GF(p) if and only
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if V5 e GF(p). By quadratic reciprocity this is true if and only if
p=+1mod5. In particular & = GL(2, p) when p = 11,19, 29, 59.
In each of these cases (p* — 1)/(p — 1) = p + 1 divides | S |.

Now let $ = PSL(2,7), a simple group of order 168. Then 9
has a faithful complex character y of degree 3 such that Q(y) = Qv 7).
Now 5t|9| and obviously V7 e GF(5%) so S GL(3,5). Let € be
the central subgroup of order 3 of this general linear group and set
& = HC€. Since & = GL(3, 5*) we have & = GL(6,5). Also

G-/ -1][B].
Thus Theorem 2.1 is best possible.

3. Solvable groups. If a is a prime power we let 7 (n,a)
denote the group of semilinear transformations of GF(a") over GF(a).
That is, .7 (n, a) consists of all functions on GF(a") of the form
x — bx’ where be GF(a")f and o is a field automorphism of GF(a")
over GF(a). Thus .7 (n,a) is a metacyclic group of order n(a™ — 1).
It is transitive on GF(a™).

THEOREM 3.1. Let p be a prime and a = p*. Suppose & is a
solvable subgroup of GL(n,a) with (a* — 1)/(a™ — 1)||®]| for some
divisor m #n of m. Then either 8 S 9 (n,a) or (n,a)=(2,3),
2,5), 2,7), (2,11), (2,23), (2,47), (4,3), (6,2).

Proof. We proceed in a series of steps.

Step 1. Suppose we can find a prime ¢ with ¢|a” — 1 but
gta’ —1 forall j <nm. Then ® is irreducible and hence 0,(®) = <1).
If further we have one of the following, then @ & .77 (n, a).

(i) 0.0) =<1

(ii) ¢>n+1

(iii) ¢g=n+1 and ¢*||®|

(iv) ¢ =mn+1 and 0,8) = 1>

(v) g=n+1 and ¢ is not a Fermat prime.

Since (@ — 1)/(a™ — 1) || G| we have ¢||®|. Let Q be a subgroup
of & of order ¢ in the center of a Sylow ¢-subgroup. Since qta’ —1
for j < n,Q is irreducible. By Schur’s lemma, Cs(Q) is cyclic. If
Q A ®, then by [8] (Hilfssatz 2) & = .7 (n,a). If 0(®) = {1), then
clearly Q < 0,(®) and since the latter group is cyclic, O A & and (i)
follows.

We show now that assumptions (ii)-(v) imply that 0,(®) = <{1).
Suppose by way of contradiction that 0,®) =<1). By Fitting’s
theorem there exists a prime 7 such that & does not centralize R =
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0.(®). By the above r # p so RQ is a p’-group. Hence the repre-
sentation of this group is realizeable over the complex numbers.
Certainly Q is not normal in RQ. Hence by Ito’s theorem ([10]) we
cannot have ¢ >n + 1. Let q =%+ 1. Again by Ito’s theorem,
we must have ¢ a Fermat prime and |RQ| even so » = 2. Thus
(ii), (iv) or (v) implies (i).

Now assume ¢ = n + 1 and ¢*||®|. Let Q* be a cyclic subgroup
of order ¢* containing Q. Let R be as above and consider the group
RQ*., The argument of Case 2 of the proof of Theorem 2.1 shows
that Q A RQ*, a contradiction, and we have proved this result.

Step 2. We show now that if n =3, then & & .9 (n, a) unless
(n,a) = (4, 3) or (6, 2).

By Theorem 1.1 we have either (ii) or (iii) of Step 1 in the non-
exceptional cases. Thus we need only consider the eight exceptions
of that theorem. We apply Corollary 1.2. If (n,a) = (6,3) or (6, 5),
then & satisfies (v) of Step 1. If (n,a) = (4,2), (10,2), (12,2) or
(18, 2), then, since a = p = 2, ® satisfies (iv) of Step 1. This leaves
only (n,a) = (6,2) or (4, 3).

Step 3. We show now that if n <2, then & S .9 (n,a) unless
(m,a) = (2,3), 2,5), 2,7), (2,11), (2, 23), (2, 47).

The result is clear for n =1 so we assume n = 2. We have
a+1||®]|. If prime ¢ > 3 divides ¢ + 1 then & & .9 (n,a) by (ii)
of Step 1. If 3*|a + 1, then & & .9 (n, a) by (iii) of Step 1. Thus
we can assume that either a + 1 =2 or ¢ + 1 = 3-2¢,

Now a = p*. We show first that k¥ =1 so a is a prime. If
a + 1 = 2¢, the result follows from Lemma 4 of [9]. Let p*+ 1=
a+1=3.2", If p=2, then clearly t =0 and a = 2. Suppose now
that p = 2. If k is even, then p* = 1 (mod 4) and hence 3-2¢ = 2 (mod 4).
This yields ¢t =1 and p* = 5. If k is odd, then

328 =(p+ L)p —pF+ .- +1).

The second factor on the right is a sum of an odd number of odd
terms and is therefore odd. Thus (p* + 1)/(p +1) =1 or 3. This
has no solution for ¥ > 1 and p # 2 so k =1 and a is a prime.

If a =2, then ® S GL(2,2) = .7 (2,2). The cases a = 3,5,7 are
allowable exceptions so we assume a > 7. We show now that p } | |.
Now & & GL(2, p) and hence if & has two distinct subgroups of order
p then @ 2 SL(2, p). Since p = 5, SL(2, p) is nonsolvable, a contradic-
tion. Thus if p||®|, then the Sylow p-subgroup of ®& is normal.
In GL(2, p) the normalizer of a Sylow p-subgroup has order (» — 1)*p.
Since p + 1||®| this yields (p + 1)|(p — 1)*», a contradiction for
p>3. Thus p}|G]|.
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If @ is reducible, then |®||(p — 1), a contradiction. If @& is
imprimitive, then |®||2(» — 1)?, a contradiction’ for p > 7. Thus &
is an irreducible, primitive linear group. We can clearly: assume that
& is nonabelian. This implies easily that Z(®) consists of scalar
matrices and | Z(®)||(p.— 1). Also every normal abelian subgroup
of & is cyclic. Now the representation of & is realizeable over the
complex numbers and hence the results of [11] (Chapter X) -apply.
Since © is solvable, we cannot have G/Z(®) ~ A4,. If G/Z(®) is.cyclic,
then ® is abelian, a.contradiction. If &/Z(®) has a cycli¢ subgroup
of index 2, then ® has a:normal abelian subgroup 2 of index 2. Then
A is cyclic and since & is primitive, A is irreducible. Thus by
Hilfssatz 2 of [8], ® & .7 (2, ).

There remains only |®/Z(®)| = 12 or 24 and hence |®||24(p — 1)
80 (p + 1)|24(p — 1). This yields p + 1|48 and since p > 7 we have
p = 11, 23 or 47. Note that if we assume in addition that 2(p + 1) || @ |
then p = 47 does not occur. This completes the proof of this theorem.

ExamMPLES. Let ® act faithfully on vector space B of order p-.
If @ is transitive on B¢, then certainly (p” — 1)||®|. Thus we can
find examples for the exceptional cases (n,a) = (2,3), (2,5), (2,7),
(2,11), (2,23) and (4,3) in [8]. The remaining two exceptions are
(m, a) = (6,2) and (2,47). Clearly .77 (8,2) x .77(8,2) = GL(6,2) and
|.97(8,2) x 97°(8,2)| = 3.7 = T(2° — 1). This group is not a subgroup
of .77 (6, 2) since 7°}|.7 (6,2)|. Now consider (n,a) = (2,47). It is
easy to see that GL(2,47) contains an isomorphic copy of SL(2, 3).
Let © be the Sylow 2-subgroup of the latter group so that ® is qua-
ternion of order 8. It is easy to see that in GL(2, 47), C(D) consists
of scalar matrices. Now N(D) picks up a group of order 3 from
SL(2, 3) and a factor of 2 from some Sylow 2-subgroup containing 9.
Thus 8-2-3 =48 || N(D)|. Since | N(D)/DC(D) | < 6 we see that @ = N(D)
is a solvable subgroup of GL(2,47) with 48||®| and & 2 SL(2, 3).
Since the Sylow 3-subgroup of .7 (2, 47) is normal, we cannot have
& < .97(2,47). Thus Theorem 3.1 is best possible.

It is convenient here to consider some of the above exceptions.

LEMMA 3.2. Let ® be a solvable subgroup of GL(n,a). If
(n,a) = (2,47) and 2(a + 1) [|G]| or if (n,a)=(6,2), (@" —1)||S|
and & is irreducible and primitive, then & & 7 (n, a).

Proof. The result on (n, a) = (2, 47) follows from the last sentence
of the proof of Theorem 3.1. Now let (n,a) = (6,2) so 63 = 2° — 1
divides |®|. Since @ is irreducible by assumption 0,®) = <{1)>. Now
& = GL(6,2) so |G||2°-3*-5-7*-31. We show first that 0,(®) = {1).
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If not, then since 7||®| there would exist a subgroup Q of order 7
which does not centralize some subgroup R = 0,(®). Since r = 2
and 7 does not divide 5 — 1, 31 — 1 or 3/ — 1 with 5 < 4, we have a
contradiction. Thus ® = 0,(®) = <{1). Clearly the representation re-
stricted to D breaks up into two 3-dimensional irreducible constituents.
If these are inequivalent then & is imprimitive, a contradiction. Thus
the irreducible constituents of @ are equivalent and hence # is cyclic
and |D| =T.

If ® is the Fitting subgroup of @, then &/D is conta ned in Aut
¢ and |®]||7-6, a contradiction. Thus there exists a normal abelian
r-subgroup R +# (1> of @ for some prime r = 2,7. Set A = RD so
that 2 is a normal abelian subgroup of ®&. By Clifford’s theorem,
the irreducible constituents of the representation of & restricted to
2 all have equal degree d with d|6. Since A 2D we have d = 3 so
either d = 3 or 6. Now d = 3 leads to a contradiction since D is self
centralizing in each of its 3-dimensional representations and R == <{1).
Thus d = 6, A is irreducible and & = .9 (n,a) by Hilfssatz 2 of [8].

We will need the following result in a later paper. We include
it here because its proof follows quickly from the results of § 1.

ProposiTION 3.3. Let & be a subgroup of .7 (n,a) and suppose
that @ acts 1/2-transitively but not semiregularly on GF(p")*. Let
® denote the subgroup of ® consisting of linear transformations (that
is, functions of the form z — bx) and let |®,| = k for « = 0. Then

(i) PFor all x + 0,®, is cyclic and k| n.

(ii) If o is a field automorphism of order k, then

G 2 bz |be GF(p")Y .

(iiiy With the exception of p* = 8 and |®| =8 we have & =
Cs(®').
(iv) @ is characteristic in ®.

Proof. T = .9 (n,p) is transitive on LB = GF(p")* and hence
the groups %, are all conjugate in £. Let = be a field automor-
phism of order ». Then ¥, = {x*)> is cyclic of order n and hence
all €, are cyclic of order .

Now %, 2 @, so ®, must be the unique subgroup of order k of
¥,. Thus (i) follows. It is easy to see that

T, = i=1,2 -, m

and hence if ¢ is a field automorphism of order %, then ®, = {v'~""z°’}.
Thus for all beGF(p*)* & contains the elements x°~' and b'~°x’ and
hence their product bz is in &. This yields (ii).



p-SOLVABLE DOUBLY TRANSITIVE PERMUTATION GROUPS 567

Certainly & =< @ and G = Cs(®). Now if p is a field automor-
phism then (da*, cx) = ¢*~*x. This shows that & 2 {b"~""x |b e GF(p")%}
and if da® centralizes &', then for all beI = GF(p")} we have
p-o*u-» = 1, Since ¢ # 1, Corollary 1.3 and Lemma 1.4 show that
o =1 unless p* = 2° or p~ = 3. Suppose p" =2° If 2||S]|, then
since p = 2 some element of & of order 2 has a fixed point so we
can assume o has order 2. If 2} |®| then both ¢ and p have odd
order. From (1 — o)1 —p) =0, Lemma 1.4 and 0 #1 we obtain
o = 1. Suppose p" =3, Now |7 (2,3)| =16 and .7 (2, 3) is semi-
dihedral. Thus (iii) clearly follows.

Certainly (iv) follows from (iii) in all cases except for p" = 3%,
|®| = 8. Here since & acts 1/2-transitively but not semiregularly we

have & dihedral. Since @ is cyclic and [®: @] = 2, (iv) follows.

4. Transitive linear groups.

THEOREM 4.1. Let p be a prime and a = p*. Suppose & is a
p-solvable subgroup of GL(n,a) which transitively permutes the d-
dimensional GF(a)-subspaces of the underlying vector space for some
d with 1<d<mn—1. Then we have one of the following.

(i) 8.7 (na)

(ii) ©® 1is solvable and (n,a) = (2, 3), (2,5), (2,7), (2,11), (2, 23)
or (4,3)

(iii) & s nonmsolvable and (n,a) = (2, 11), (2,19), (2, 29) or (2, 59).
Furthermore with the exception of (m,a) = (5,2) we have d =1 or
n — 1.

Proof. Let A(n,d) denote the number of d-dimensional subspaces
of an n-dimensional vector space over GF(a). Then

(@ — 1)a" —a) -+ (a® — a*™)

(a* — 1)(a* — a) -« (a* — a*™)

(@ = D@~ = 1) .o (@ — 1)
(@ — I)a**t—1)--- (@ — 1)

_ (a"—=1) _ _
=T 1)A(n 1,d —1).

A(n, d) =

I

Thus since g.c.d {a" — 1,a* — 1} = a™ — 1 where m = g.c.d. {n, d} we
have

(@* — D/(a™ — 1) | A(n, d) .

If & acts transitively on these d-dimensional subspaces, then
A(n, d)[|®] so (a" — 1)/(a™ — 1) ||S].
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Let ® act on vector space L and let B, B, -:-, B, be subspaces
with & =B, + B, + -+ + B,. Suppose that BT, = (0>, B and that if
9g€®, then B9 =B, where ¢ —7' is a permutation of {1,2, ---, ¢}
If dim®B, = w = d, then the images under ® of a fixed d-dimensional
subspace of %L, are each contained in some B;. Thus clearly ® is not
transitive on all d-dimensional subspaces of 8. On the other hand if
‘d = w, then the images of a fixed d-dimensional subspace of B con-
taining B, each contain some B, with 7 = 0. - Since we can easily
construct a linear functional A of ‘B whose kernel does not contain
any B,(1 = 0), it is clear that there is a d-dimensional subspace of B
which does not contain any B,(7= = 0). Thus again & is not transitive,
a-contradiction. This shows that ® is irreducible on 8 and primitive.
Hence 0,(®) = <{1).

Case 1. We assume now that @& is solvable.

Since (a" — 1)/(a™ — 1)||® |, Theorem 3.1 applies. Suppose first
that & S .7 (n, a) so that we have (i). We show here that d =1 or
n — 1 except if (n,a) = (5,2). If n =2 or 3, then certainly d =1
or n — 1. So we can assume 7 = 4. Since @& is transitive on these
subspaces, so is . (n,a). From

A(n, d)/A(n,d — 1) = (a" " — 1)/(a” — 1)

we see easily that if 2 < d < n — 2, then A(n, d) = A(n,2). Further,
the cyclic subgroup of .7 (n,a) of order a — 1 consisting of scalar
matrices fixes all subspaces so

na* —1) =7 (n,a)| = (a — 1)A(n, d)
= (@ — DA, 2) = (@" — 1)(@"" — 1)/(a* — 1) .

Hence n = (a"* — 1)/(a* — 1) > a"*, Since n = 4, we see easily that
only (n, a) = (4, 3), (4,2), (5,2) can occur. Now with (n,a) = (4, 3),
(4, 2) we do not have A(n,d)|n(a® — 1) so that the only exception
here is (%, a) = (5, 2).

We consider the remaining possibilities in the conclusion of Theorem
3.1. Note that if » = 2, then d = 1. If (n,a) = (2,3), (2,5), (2,7),
(2, 11), (2,23) or (4, 3), then we have (ii). It remains to show the
following three facts: (1) if (n,a) = (2, 47), then & = .7 (n, a), (2)
if (n,a) = (4, 3) thend = 1 or 3, (3) if (n, a) = (6, 2) then & & .7 (n, a).

Let (n, a) = (2, 47) and let 8 denote the group of scalar matrices
in GL(n, a). By replacing & by &3 if necessary, we can assume
that ® 2 8. Then clearly & is transitive on the nonzero vectors and
so (47" —1)||®|. By Lemma 3.2, & & .7 (n, a).

Now let (n, @) = (4, 3) and assume that d = 1,n — 1. Then d = 2
and A(4, 2) = 130 divides |®|. Let Q be a Sylow 13-subgroup of .
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Since 13 } |GL(4,3)|, we have |Q|=13. If Q A ®, then since ®
is ‘irreducible all constituents of the representation restricted to. Q
have the same degree by Clifford’s theorem. Since the nonprincipal
irreducible- representations of Q over GF(3) have degree-3, this is a
contradiction. Thus Q is not normal and by Fitting’s theorem, there
exists R = 0,(®) which is not centralized by Q. Since 0,(®) = {1,
r #+ p and we can view RQ as a complex linear group of degree 4.
By [10], & A RQ and Q centralizes R, a contradiction.

Finally let (n,a) = (6,2)." If d # 1 or 5 then 31| A(n,d). The
same argument as above, with 31 the prime of interest, yields a con-
tradiction. Thus d =1 or 5 and 63||®|. Since ® is primitive, the
result follows from Lemma 3.2.

Case 2. We assume now that & is nonsolvable.

Since (a" — 1)/(a™ — 1)||®|, Theorem 2.1 applies. If (n,a)=
(2,11), (2,19), (2,29) or (2,59) then we have (iii) and also d =.1. We
need only show that (n, a) = (6,5) with m = 3 does not occur here.
Assume we have this possibility. Since m = g.c.d.{n,d} we must
have d = 3. Then since 71| A(6,3) we have 71||®|. Let Q be a
Sylow 7l-subgroup of &. Since 71* } |GL(6,5)] we have |Q| = T1.
If © A ®, then since & is irreducible, all constituents of this repre-
sentation restricted to Q have the same degree by Clifford’s theorem.
Since the nonprincipal representations of £ over GF'(5) have degree
5, this is a contradiction. Thus L is not normal in .

Let R =0,(®) and consider RO as a complex linear group of
degree 6. Since 71 > (2-6) + 1, Q A RQ by [7]. If QS R, then
since Q is characteristic in R we have Q A @, a contradiction. If
Q& R, then O centralizes R and this contradicts the fact that &
is p-solvable, 0,(®) = (1> and R = 0,.(®). This completes the proof
of the theorem.

ExampLE. Consider @ = .7 (5, 2) so that |&| = 5-31. Now the
subgroup of & of order 31 acts irreducibly and each subgroup of order
5 centralizes a 1-dimensional space and acts irreducibly on a 4-dimen-
sional complement. Thus if d = 2 or 3, then ® acts semiregularly on
the d-dimensional subspaces. Since A(5,2) = A(5,3) =5:31 =[S,
we see that @ is infact transitive. Thus the result on d above is
best possible.

We use the notation of [12] and [13] now. Our study of solvable
1/2-transitive linear groups was split into two parts according to
whether the linear groups were primitive or imprimitive. We show
now that we can drop the solvability assumption in the latter case.

THEOREM 4.2. Let & act faithfully on vector space B over GF(p)
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and let & act 1/2-transitively but not semiregularly on Bt. If & 1s
imprimitive as a linear group, then & satisfies one of the following.

(i) @ = 7(p") with p # 2 and n an integer

(ii) |B| = 3* and & s isomorphic to a central product of the
dihedral and quaternion groups of order 8.

(iii) [B] = 2% and & is isomorphic to the dihedral group of order
18 with cyclic Sylow 3-subgroup.

Proof. By Theorem 1 of [9], & acts irreducibly on ¥ and by
assumption & acts imprimitively. If we show that & is solvable,
then the result follows from Proposition 1.3 of [13]. We proceed to
do this now. By Proposition 1.1 of [13] we can assume that the re-
presentation of ® is induced from that of a subgroup  with [®: ] = 2
and hence $ A ®. Moreover if B =B, + B, as H-modules, then B,
and B, are conjugate under &. Let ®; be the kernel of the action of
H on B;,. Then H/R; acts transitively on Bf and | ;| < 2. Moreover
for all x e G, is a 2-group.

Case 1. p=2.

Let & be a Sylow 2-subgroup of &. Since p =2 we see that &
must fix a point x ¢ B*. Thus since &, is a 2-group, we have @, = &.
Hence since & acts 1/2-transitively on B¥, we see that for all x ¢ &, &,
is a Sylow 2-subgroup of &. This clearly implies that for all x,
[®,: 9.] =2. On the other hand if xcBf, then clearly G, & $ so
S, = O,. This is a contradiction and thus p = 2.

Case 2. p =+ 2.

If p||®|, then a Sylow p-subgroup of & would have a fixed
point in B! and this contradicts the fact that @, is a 2-group for all
xe®B'. Thus p t |®|. Since H/K; transitively permutes the 1-dimen-
sional subspaces of B, we see by Theorem 4.1 that either $/R; is
solvable or || = 11% 19, 29* or 59°. We assume now that & is not

solvable. Then $/R; is not solvable and if = /R, then |H| =60 a
with a|p — 1 and [9: D,] = p* — 1. If |D.| = b, then (p* — 1)b = 60a.
Using the fact that a|p — 1 and b is a power of 2 we have

p=11 a= 2 b=1

p=19 a= 6 b=1

p=29 a=14 b=1

a =28 b=2
p =59 a = 58 b=1.

Case 3. b=1.
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Since & is not semiregular, b = 1 yields |®,| = |®,| = 2 and H/K;
acts regularly on %!, Further, the third subgroup of order 2 of
(R, &) is clearly a central subgroup of ® of order 2. The arguments
of the second and third paragraphs of the proof of Proposition 1.3
of [13] show that © is solvable, a contradiction.

Case 4. b = 2.

We must have p = 29, @ = 28 here. Suppose first that |&;| = 2.
Then for all xe V¥ |®,| =4 and hence |H,| =2 or 4. Thus every
element of B is fixed by some involution of . Let { denote the
set of these involutions. If ge S, then ¢ cannot fix all of B, unless
gec R, But & acts without fixed points on B,. Thus no involution of
$ can fix more than a 2-dimensional subspace of L. This yields easily

(@ -1 =T =< |J|@ -1

and p* + 1< |J|. We have || =4(»*— 1) and = WL where L
is a central subgroup of order 7, since £ is central in each /&,
and | W| = 4(p* — 1)/7. Certainly F & B so

P+1=|3 =B =40 -D/7,

a contradiction. Thus we cannot have |&;| = 2.

Now let |®;| =1 so that for all ze®, |®,|=2. Now 2|a so
that 2|| Z(9)|. Also Z(9) is cyclic, since  acts faithfully and irre-
ducibly on %8;. Thus & has a normal and hence central subgroup of
order 2. By Lemma 6 of [9], || = »* + 1 where & denotes the set
of noncentral involutions of &. Now || =2(p*—1) and D = RE
where € is central of order 7 and |W| = 2(p* — 1)/7 = 240. By
Lemma 6 of [9] applied to  on B, we see that $ has p + 1 non-
central involutions. Thus | — (3N9)| = »* — ».

Let geX—(NY). Then kgeI with ke if and only if
k? = k. Thus ¢ sends precisely p* — p elements of  to their in-
verses by conjugation. Since p* — p > |W| = 240 we see that g must
act in a dihedral manner on &. Then g sends precisely (p* — p)/7 =
116 elements of W to their inverses. Now | Z(W) | = 4 and W/Z(W) ~ A,
so g acts on A4; in such a way that at least 116/4 = 29 elements map
to their inverses. Since the automorphism group of A; is S, we see
easily that no such automorphism of A4; of order 1 or 2 exists with
this property. This completes the proof.

We suspect that a result similar to Theorem 4.1 holds for »-
solvable 1/2-transitive linear groups. A partial result in this direc-
tion is

THEOREM 4.3. Let & be a p-solvable group acting faithfully on
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vector space B of order p*. Suppose & ‘acts 1/2-transitively but mot
semiregularly on . If all the subgroups ®, are conjugate in ®,
then & satisfies one of the following.

(1) &< 7 ("

(ii) & 4s solvable and p" = 3% 5% 7% 11% or 3*

(iii) & s monsolvable and p™ = 11% 19* or 29

We.need first the following lemma.

LEMMA 4.4. Let & be a p-solvable group of automorphisms of
elementary abelian p-group B. Let & be a p-complement in &. If
® acts 1/2-transitively on B, then so does & Moreover if all the
groups &, are conjugate in &, then all the groups K, are conjugate
n K.

Proof. Let P be a Sylow p-subgroup of ®. Since B is a p-group,
there exists x ¢ B* with B = @,. Since & acts 1/2-transitively we see
that for all x ¢ B, &, contains a Sylow p-subgroup of ©.

Let €% and consider &, = 8 N ®,. By the above &, contains
some Sylow p-subgroups B of &. Since & = PR we have & = G, & and
hence

|f ) =18N6,|=[6,[|R]/OS]

is the same for all x e B*., Thus & acts 1/2-transitively on T,
Suppose now ‘that the groups &, are all conjugate in &. Let
2, yc B and let P be a Sylow p-subgroup of &, so that LR = G. If
& =@®, and h = ak with aec®B, ke f, then clearly & = ®,. Since
K =06,NK, &, = G, N we have K = &, and the result follows.

Proof of Theorem 4.3. We consider a series of cases.

Case 1. & solvable.

Let N be the Fitting subgroup of & so that RA S and
N=A., If 2,yeBf, then N, =NNG, N, =NNG, so N, and
N, are conjugate in &. Hence N acts 1/2-transitively and
Theorem II of [12] applies. The type (ii) groups, .7 (p) of that
theorem do not satisfy our conjugacy assumption since the elements

[—3 (1)] and [(1) (1)] are not conjugate in &. Thus we have (i) and

(ii) above.

Case 2. & nonsolvable.
Since |B| = p" we have & & GL(n, p) and & is p-solvable, For
each z ¢ L* we let. B, = Cp(®,). We see clearly that these groups
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form a partition of B, that is B = U Bt is a disjoint union. Now
the groups &, are all conjugate in & so that all the subgroups B,
have the same order p™ and there are precisely [&: Ng(®,)] of them.
Counting elements in the disjoint union then yields

(" — 1) = [6: No(®.,)](p™ — 1) .

Since p™ — 1|p* — 1 we have m|n. Furthermore & does not act
semiregularly so m # n. Since (p" — 1)/(p™ — 1)||S| and & is non-
solvable, Theorem 2.1 yields p» = 112, 19%, 29%, 569* or p™ = 5°® with m = 3.

Case 3. p" = b%,

By Lemma 4.4 we can assume ® is a p’-group. Since &/Z(®) =~ A,
and (p — 1)/2 is a prime not equal to 2,3 or 5 we see that & = G2
where € is central of order 1 or (p —1)/2 and |G| =60 or 120.
Since 2 acts semiregularly we see that &, = @, and these groups
are all conjugate in &, Clearly m =1 so [&: N&(B,)] =p + 1 =60
and thus | N(®,)| = 2. This is a contradiction since a subgroup of
order 2 has a properly larger normalizer in some Sylow 2-subgroup of

®. Thus if » = 2 then only p* = 11%, 19* and 29* can occur with &
not semiregular.

Case 4. p" = 5° with m = 3.

Here we have (5°— 1)/(5° — 1) = 2.3%.7 dividing |®|. If also
31||®]|, then (5° — 1)/(5* — 1) = 3.7.31 divides |®| and & is solvable,
a contradiction. Hence 31 } |®|. By the previous lemma we can
assume that 5} |®&|.

Suppose x, y € B* with &, = @, and g€ @, N &,. Then g centralizes
L, and B,. Now |B,| =|F,| =5 and BL,LN B, =<0> so B =B, + B,.
Hence g centralizes L and g = 1. Thus 8, NS, = A>. Since 5} |G, |,
@, acts on a 3-dimensional complement of 8B, and in fact ®, acts
semiregularly on this subspace since &,N®, = <1>. Hence |G, ||(5°—1).
Now 5 —1=4:31 and 31} |®| so ®, is cyclic of order 2 or 4.
From the fact that ® acts 1/2-transitively on L* we have [®: ®,] | (5°—1)
so [®: ®,]]2°-3%-7. This and the above yields |®| = 27.3*-7 with » < 5.

Set @ = B/(0,(®)). We show that for all primes ¢, 0,(®) = {1>.
This is clearly true for ¢ = 2 and ¢ = 7, the latter by Burnside’s two
prime theorem. From the fact that ®, is a 2-group we see that the
Sylow 3-subgroups of & are cyclic. If 04(®) = (1), then G has a
normal subgroup € of order 3. By Burnside’s transfer theorem
C3(2) has a normal 3-complement and hence C&(®) is solvable.
Since [®: C3(®)] <2, ® is solvable, a contradiction. This implies
that @ has no nonidentity solvable normal subgroup. '
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Let % be a minimal normal subgroup of & so that % is a direct
product of isomorphic simple groups. By the above %8 must be nonabelian.
Since the order of a nonabelian simple group must have at least three
distinet prime factors and 7° ¥ | ®|, we see that T is a nonabelian
simple group. Now C(B) A & and C(TW) N W = <1>. Thus 74| CHW) |
and so C§(B) is solvable. This yields Ce(T) = (1.

Let & be a Sylow 2-subgroup of & and let & be the subgroup
of order 2 of ®,. Since &, is a T.I. set, Ng(®, = Ne(¥) and
[G: Ne(®)] = 2-3°.7. In particular & cannot be in the center of
any Sylow 2-subgroup. This implies that the elements of order 2 in
Z(®) act without fixed points on B, This shows that Z(&) is cyclic
and the subgroup of Z(®) of order 2 is central in ®. Thus |0,(®)| = 2.

We have || = 2°-3!.7 with s =2,3,4 and ¢t = 1 or 2. Suppose
first that ¢t =1. By [2], ® =~ PSL(2,7) and by Satz 1 of [14],
|Aut B| = 2-168. Since @ = Aut W and 9|| G|, this is a contradiction.
Now let t = 2 so that || = 252, 504 or 1008. There is certainly no
simple group of order 252, since by Sylow’s theorem the Sylow 7-
subgroup is either normal or in the center of its normalizer. By
Theorem 10.7.5 of [15], there is no simple group of order 1008. This
leaves only || = 504. By [3] RIII), W =~ SL(Z, 8).

We will derive a final contradiction by studying a Sylow 2-sub-
group & of ®. We have already seen that & is nonabelian with
Z(®) cyclic. Note that the Sylow 2-subgroup of % is elementary
abelian of order 8. The latter is normalized by a group of order 7
which permutes its involutions transitively. Suppose that | 0,(®) | = 4.
Then |0,(®)| = 4 and & = . The group W acts on 0,(®) and thus
I centralizes 0,(®). Hence 0,(®) is central in & and cyclic. Since
the nonidentity elements of &/0,(®) are permuted transitively by a
group of order 7, it follows that Z(&) = 0,(®). Then & is a class 2
group with a cyclic center and [&: Z(&)] = 2°. This is a contradiction
since &/Z(®) has a nondegenerate symplectic geometry.

Now let |0,(®)| =2 and let &, =S N W where T = W/0O,(B).
From the nature of &,/0,(®) and the fact that this group admits an
automorphism of order 7, we see that &, is elementary abelian of
order 16. Since [&: &] = 1 or 2 we see that Z(&) contains a subgroup
of type (2,2), a contradiction. This completes the proof of the
theorem.

5. Permutation groups. The results of the previous section
translate naturally to theorems about permutation groups with regular
normal subgroups. Again we use the notation of [13]. "Thus we have
groups .&“(p™) and .&;(p") which are solvable and respectively 2- and
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3/2-transitive permutation groups.

The following result at once combines the result of Huppert ([8])
on solvable 2-transitive groups and the result of Zassenhaus ([17]) on
sharply 2-transitive groups.

THEOREM 5.1. Let & be a doubly transitive permutation group.
Suppose that & is p-solvable and 0,(S) = (1)>. Then deg® = p™ for
some integer n and we have one of the following.

(i) G &)

(ii) @ 4s solvable and p™ = 3%, 5%, 7%, 112, 23% or 3*

(iii) & <s nonsolvable and p* = 11%, 19* 29* or 597,

Proof. Let ¥ be a characteristic abelian subgroup of 0,(®).
Then B + (1) and B A S. Since @ is doubly transitive, L is transi-
tive and hence regular. If $ = @,, then & = BH and H acts transi-
tively on Bf. Also deg® = [B| = p” and B is a p-solvable subgroup
of GL(n,p). The result now follows by Theorem 4.1, since if
S 9 (n,p) =7 (p7), then & = & (p").

ExAMPLES. Nonsolvable sharply 2-transitive groups exist with
pm = 112,29 or 59° by [17]. Let p = 19°. Then GL(2,19) contains
H =92 where 2 is a cyclic central subgroup of order 9 and
$ ~ SL(2,5). Moreover the elements of £ and £* all act fixed point
free on B, a 2-dimensional space over GF(19). Let xe®B'. From the
nature of  we see easily that |$,| <3 and hence the orbit of «
contains at least | 9|/3 = 9-120/3 = 19* — 1 elements. Thus 9 is trans-
itive on B* and ®, the semidirect product of L by 9, is a 19-solvable
2-transitive group of degree 19%

THEOREM 5.2. Let ® be a 3/2-transitive permutation group which
is not a Frobenius group. Let B + {1)> be a normal abelian subgroup
of ®. Then B is an elementary p-group and L is a regular normal
subgroup of ®. Suppose that as a linear group on B,H =G, is
imprimitive. Then & satisfies one of the following.

(i) @ = (") with p # 2 and n an integer

(il) |B| =3, H ts isomorphic to a central product of the dihedral
and quaternion groups of order 8, and |®| = 2°.3%,

(iil) |B| =25 9 s isomorphic to the dihedral group of order
18, and | Q| = 27-3%

Proof. Since & is not a Frobenius group, it is primitive by
Theorem 10.4 of [16]. This yields all the remarks concerning 8. Now
9 is a group of automorphisms of B which acts 1/2-transitively but
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not semiregularly on %¢, Thus Theorem 4.2 applies to 'O and the re-
sult follows.

THEOREM 5.3. Let & be a 3/2-transitive permutation group which
18 not a Frobenius group. Suppose & is p-solvable with 0,(®) = {1).
If all the subgroups ©,, are conjugate in ®&, then deg® = p" for
some integer n and & satisfies one of the following.

(i) G (")

(ii) © s solvable and p™ = 3% 5% 7% 11% or 3!

(iii) ® s nonsolvable and p = 11%, 19% or 29°

Proof. Let B be a characteristic elementary abelian subgroup of
0,(®) with 8+ <1). Then B A . By Theorem 10.4 of [16], & is
primitive and hence ¥ is transitive. Thus B is a regular normal
subgroup.of ®&. If =@, then & = BH and $ acts 1/2-transitively
but not semiregularly on %.

Let b and ¢ be points distinct from a. We show that @&, and
®,, are conjugate in . Since these groups are conjugate in & by
assumption and & = B we have ®,, = G with hcd,veB. Now
BAG so (v, ®:) S HNBV =<1> and hence v centralizes &*. Thus
S, = O, If z,yecL¥ then the above implies that $, and , are
conjugate in . Hence Theorem 4.3 applies to $ and the result
follows.

The author would like to thank Professor Walter Feit for sug-
gesting the problem studied here and for suggesting the general
approach to its solution.

REFERENCES

1. R. Brauer, On groups whose order contains a prime number to the first power 1I,
Amer. J. Math. 64 (1942), 421-440.

2. R. Brauer and H. F. Tuan, On simple groups of finite order I, Bull. Amer. Math.
Soc. 51 (1945), 756-766.

3. F. N. Cole, Simple groups as far as order 660, Amer. J. Math. 15 (1893), 303-315.
4. L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly 12 (1905), 86-89.
5. W. Feit, Groups which have a faithful representation of degree less than p-1,
Trans. Amer. Math. Soc. 112 (1964), 287-303.

6. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13
(1963), 775-1029.

7. , On groups which have a faithful representation of degree less than
(p-1)/2, Pacific J. Math. 4 (1961), 1257-1262.

8. B. Huppert, Zweifach tramsitive, auflosbare Permutationsgruppen, Math. 68
(1957), 126-150.

9. I. M..Isaacs and D. S. Passman, Half-transitive automorphism groups, Canad. J.
Math. 18 (1966), 1243-1250.

10. N. Ito, On a théorem of H. F. Blickfeldt, Nagoya Math. J. 5 (1953), 75-77.




p-SOLVABLE DOUBLY TRANSITIVE PERMUTATION GROUPS 577

11. G. A. Miller, H. F. Blickfeldt, and L. E. Dickson, Finite Groups, Dover Publica-
tions, New York, 1961.

12. D. S. Passman, Solvable half transitive automorphism groups, J. of Algebra 6
(1967), 285-304.

13. , Solvable 3/2 transitive permutation groups, J. of Algebra 7 (1967) 192-207
14. O. Schreier and B. L. van der Waerden, Die Automorphismen der projectiven
Gruppen, Abh. Math. Sem. Univ. Hamburg 6 (1928), 303-322.

15. W. R. Scott, Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
16. H. Wielandt, Finite Permutation Groups, Academic Press, New York, New York,
1964.

17. H. Zassenhaus, Uber endliche Fastkorper, Abh. Math. Sem. Univ. Hamburg 11
(1936), 187-220.

Received June 27, 1967.

YALE UNIVERSITY








