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A LOCALLY CONVEX TOPOLOGY ON A
PREORDERED SPACE

MARVIN D. GREEN

The purpose of this paper is to introduce a locally convex
topology ^ 7 on a preordered topological space (X, J^~) in such
a way that, if ^ Γ is weaker than Ĵ ~", then it is the l.u.b.
of all locally convex topologies weaker than ^~. Some of
the consequences of having such a topology defined are ex-
amined, and the concepts of c-continuity and c-limit of a func-
tion are introduced. As an application of the machinery
developed, a theorem concerning the unique extendability of
functions from dense subsets of preordered spaces into re-
gularly preordered spaces is established.

The terminology, with respect to convexity and order, is primarily
that of [2]. For example, i(A)(d(A)) is the smallest increasing (de-
creasing) subset which contains the subset A. By definition, x e i(A)
means that there is an ae A with a < x, where < is the given
preorder (called a quasi-order in [4]). Known results concerning
general topological structures and filters are contained in [1], Also,
consistent with [1], the Hausdorff Separation Axiom is implied by
regularity.

2* Convexity and c-continuity* Let (X, ̂ Γ) be a preordered
topological space with topology J7~, and let ^c be the class of all
subsets of X of the form i(Ό) or d(U), where U is a ^"-open subset
of X. Then ^ c generates (i.e., is a subbase for) a convex topology

on X. We call ^fc the associated convex topology on X.

LEMMA 1. The following three conditions are equivalent in a
preordered space (X, ^ ~ ) :

( * ) For every increasing (decreasing) subset A of X, the
interior, A°, of A is increasing (decreasing).

(**) For every decreasing (increasing) subset A of X, the
closure, A~, of A is decreasing (increasing).

(***) FΌr every open set U, both i(U) and d(U) are open.

Proof. (*) is clearly equivalent to (**). If (*) holds and U is
open, then i(U) increasing implies [i(U)]° increasing. It follows that
[i(U)]° = i(U), so that (***) holds. On the other hand, if (***) holds
and A is any increasing subset of X, then i(A°) = A° and, therefore,
(*) follows. The decreasing case is similarly established.
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A preordered space (X, ^~) in which condition (*) holds will be
called a *-space.

THEOREM 1. Let (X, ^~) be a preordered space. Then ^~c is
weaker than ^~ (written ^Γ

c <Ξ ̂ ~) if and only if (X, ^7~) is a *-
space. In this case, (X, S",) is also a "-space. If (X, ^~) is a
locally convex space, then άΓ <Ξ jfc% In any case, with respect to
the preorder on X, if j ^ ~ is any locally convex topology on X weaker
than ^~, then

Proof. It follows from (***) that (X,^~) is a *-space if and
only if every set of &c is ^"-open. Hence we get the first state-
ment. The second statement is simply a consequence of ^Γ

c ^ _^~
and the definition of J7~c. If ^~ is a locally convex topology and U
is any convex ^"-neighborhood of a point xeX, then i(U°)Γ\d(U°)
is a convex ^-neighborhood of x contained in U. Hence J7~ <̂  J7~e.
Finally, if U is a convex ^neighborhood of xeX, then there is a
^""-open neighborhood V of x contained in U. Hence i( V) Π d{ V) c U
implies that U is a ^-neighborhood of x. Hence J^ ^ ^~c.

Let (X, ^~) be a preordered space and AaX. A is called a
subspace of X when A is given both the preorder and the topology
<^~(A) induced from (X, ^~). A function / from (X, ^~) into a
preordered space (Y, ^ ) is said to be c-continuous if / is continuous
from (X, ^~e) into (Y,^). Thus, if yeX and z e Γ , then z is a c-
ϊimiί 0/ / if the image, /( %(y)), of the filter of all ^^-neighborhoods
of y ^7-converges to z. In this case we write z = c-\imx_yf(x). Con-
sistent with this, if y eA~, then » = c-lim^ (A)f(x) means that the
filter base /( 3^(2/) ΓΊ A) ^-converges to ^ , where ^c(y)f]A is the

on A of 3^(2/).
As a result of the above, we have:

LEMMA 2. A function f from a preordered space (X, ^~) into
a preordered space (Y,^") is c-continuous at a point y e X if and
only if f(y) = c-\imx_>yf(x). If both J7~ and &~ cure locally convex
"-topologies, then c-continuity and continuity are equivalent.

3. Regularly preordered spaces* Let A be a subset of a pre-
ordered space (X, ά?~). By I(A) (D(A)) we mean the closed increasing
{decreasing) hull of A in X. [2].

LEMMA 3. The following two conditions on a preordered space
(X, ^7~) are equivalent'.

(MR) If F is a closed increasing (decreasing) subset of X and
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x $ F, then there exist disjoint open neighborhoods U of x and V of
F such that U is decreasing (increasing) and V is increasing (de-
creasing).

(MRJ If xe X and U is an open decreasing (increasing) neigh-
borhood of x, then there is an open decreasing (increasing) neigh-
borhood V of x such that D(V)aU (I(V)aU).

Proof. Suppose (MR) holds and let U be an open decreasing
neighborhood of x. Then we get disjoint open sets V and W such
that xe V, V is decreasing, X\UczW, and W is increasing (where
X\U is the complement of U in X). Hence V<zD(V)cX\Wc: U, as
required for (MRj). Conversely, if (MRJ holds and F is a closed in-
creasing set with xίF, then there is an open decreasing neighborbood
V of x with D(V)dX\F. Hence V and X\D(V) are the neighbor-
hoods required for (MR).

In accordance with [3], condition (MR) is called monotone re-
gularity. A space (X, J7~) equipped with a closed (or equivalently,
continuous) preorder and satisfying (MR) is called a regularly pre-
ordered space.

If the order of X is discrete (i.e., x < y means x = y), then
(X, J7~) will be a regularly ordered space if and only if it is regular
(where it is shown in [2], that a space with a closed order is a
Hausdorff space).

LEMMA 4. If '(X, J7~) is a preordered *-space, then condition
(MRJ is equivelent to the following:

(MR2) For every xeX and any decreasing (increasing) neigh-
borhood V of x, there is an open decreasing (increasing) neighborhood
W of x such that D(W)(zV (I(W)aV).

COROLLARY. In a regularly preordered *-space (X, J7~), every

convex neighborhood of a point xeX contains a closed convex neigh-

borhood of x.

EXAMPLE 1. Let X be the set of real numbers with its usual
order. Define a topology J7~ on X by requiring that a subset V of
X be a neighborhood of a point x e X if and only if there is a real
ε > 0 such that V contains the open interval (x — ε, x + e) if x is
irrational, and V contains (x — ε, x + ε) Γ) P if x e P, where P is the
set of rationale. Then (X, J7~) is a regularly ordered *-space which
is not regular. Moreover ^~e(P), ^~(P), and J7r'{P)e are all equal.
On the other hand, if A is the unit interval [0,1], then ^~C(A) <
and
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EXAMPLE 2. Let N be the set of integers with its usual order
and J7~ the topology of finite complements on N. Then (N, J7~) is
an ordered *-space with ^{A)c = ^(A) and ^Z(A) < ^~{A)C for
every finite subset AaN containing more than one element.

THEOREM 2. If (X, _̂ ~) is a regularly ordered *-space, then
(X, J7~c) is regular. Consequently, JT~C is the strongest regular
locally convex topology on X weaker than

Proof. To see that ^Γ

c is a Hausdorff topology, let x and y be
distinct points of X. Since X is ordered, we can assume that x < y.
Now, F = d(y) is closed, decreasing, and x$F. Hence (MR) guarantees
the separation of x and y by ^-open neighborhoods U oί x and F
of y such that [/ is increasing and V is decreasing. It follows that
x and y are separated by ^^-neighborhoods. Suppose now that F is
a .^-closed set and a? g F. Then there exist J^-open neighborhoods
£/ and F of x with Z7 decreasing, V increasing, and UΠ F n ί 7 ^ ^.
Since ^ ^ :g ά7~, it follows from (MR2) that there is a ^"-open neigh-
borhood Woΐx such that D(W)ΓiI(W)c:Un V. Let J70 = i(FT)Πd(W),
and let Fo be the complement of the .^-closure of D(W) Π I(W).
Then Uo Π Fo = 0; so (X, ^~c) is regular.

4* c-continuous extensions* Let A be a subset of a preordered
space (X, J7~) and V an open subset of X such that U Π A Φ φ. Then
A is said to be scattered with respect to U if i(Uf]A)Π A = i(U)Π A
and d(UΓ) A)f] A = d(i7)n A. If A is scattered with respect to every
open set which it meets, then A is said to be scattered.

If A is dense and scattered, then ^~e(A) = ^"(A)β. If a scattered
subset A is not dense, then ^~C{A) = ^~(A)C whenever (X, ^~) is a
*-space. On the other hand, Example 2 yields instances of nonscat-
tered subsets.

THEOREM 3. Let (X, ^~) δe α preordered space, A a J^Γ-dense
subset of X, and f a c-continuous function from (A, J7~(A)) into a
regularly ordered *-space (Y,^). Then there exists a unique c-
continuous extension g of f to (X, ^) if and only if the c-Y\mx_y (A)f(x)
exists for every y e X. If A is scattered, then f order-preserving
implies g order-preserving.

Proof. We note that A ^"-dense implies A ^"c-dense. Now, if
the extension g exists, then its continuity from (X, J7~e) into (Y, ^c)
guarantees the existence of the c-\\mx_y (A)f(X) for every yeX. [1].
Suppose that the c-limit exists for every yeX and let aeA,^ the
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filter on Y generated by the class /( %(α) flA)U/( 5^(α)β), where
5^(α)c is the filter of all S~ (A)c-neighborhoods of a. By hypothesis,

z = c-lim(A)a._»α/(a?) for some 2G7; SO ̂  is stronger than 5^(2). By
the c-continuity of / on {A, ^(A)), <2S is stronger than 5^(/(α)). It
follows that 2 = f(a) since (F, ̂ 7) is a Hausdorff space. Hence / is
continuous from (A, ^~C{A)) into (Y,^) and, therefore, there is a
unique extension g of /which is continuous from (X, ^c) into (F, ^ )
[1], Hence g is the required extension of /.

Let A be scattered, / order-preserving, and x < y. It remains
to show that g(x) < g(y). Let & be the class of all sets of the form
[/Γl4, where U is a decreasing ^^-neighborhood of y. Then ^ is
filter base on X such that x is a ..^.-adherent point of ^ . Since #
is continuous, g(x) is an ^-adherent point of # ( ^ ) = f(&) Suppose
that g(x) < 0(2/). Then there exist ^-open neighborhoods C of #(#)
and D of 0(2/) such that C is increasing, 2) is decreasing, and Cf)D = φ.
Let F = g-'iD), so that d( V) Π A G ̂ . Since A is scattered, d( V) Π A =
d( V ΓΊ A) n A. If v e d( F Π A) n A, then there is a u e V Π A with
v < u. Hence g(v) = /(v) < /(u) = ^(u) e J5 implies g{v) e D and, there-
fore, veVnA. That is, d(F)nA = FnA. But f(Vf]A)f]CaDf]C = φ
contradicts the adherence of g{x) to / ( ^ ) . Consequently we must
have g(x) < g(y).

THEOREM 4. Let f be an order-preserving function from a sub-
space A of a preordered space (X, J7~) into a *-space (Y,^~). If f
has a continuous order-preserving extension g to X, then g is c-
continuous.

Proof. Let C be a convex ^-neighborhood of g(x) in Y. Then
^l ^ J^ and g continuous yield an open neighborhood V of x in X
with g(V)aC. Thus U = i(V) Π d(V) is a convex ^-neighborhood
of a; and, since g is increasing, g(U)aC. Hence g is continuous from
(X, ^~e) into (F, ̂ 7) and, therefore, βr is c-continuous on X.
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