A GENERALIZED COROLLARY OF THE BROWDER-KIRK FIXED POINT THEOREM

By W. G. Dotson, Jr. and W. Robert Mann

Abstract

This paper generalizes a corollary, due to W. A. Kirk, of the F. E. Browder-W. A. Kirk fixed point theorem for nonexpansive self-mappings of closed, bounded, convex sets in uniformly convex Banach spaces.

F. E. Browder [1] and W. A. Kirk [4] have independently proved that if F is a closed, bounded, convex subset of a uniformly convex Banach space, and if T is a nonexpansive mapping from F into F, then T has a fixed point in F. The following corollary was proved by Kirk [4] and also by Browder and Petryshyn [2]: If E is a uniformly convex Banach space, and $T: E \rightarrow E$ is a nonexpansive mapping, and if for some $x_{1} \in E$ the sequence $\left\{T^{n} x_{1}\right\}$ of Picard iterates of T is bounded, then T has a fixed point in E. Browder and Petryshyn also observed that if the nonexpansive mapping T has a fixed point in E, then for any $x_{1} \in E$ the sequence $\left\{T^{n} x_{1}\right\}$ will be bounded. Outlaw and Groetsch [6] have recently announced the following extension of this corollary: If E is a uniformly convex Banach space, and $T: E \rightarrow E$ is a nonexpansive mapping, and $S_{\lambda}=\lambda I+(1-\lambda) T$ for a given $\lambda, 0<\lambda<1$, then T has a fixed point in E if and only if the sequence $\left\{S_{\lambda}^{n} x_{1}\right\}$ of Picard iterates of S_{λ} is bounded for each $x_{1} \in E$. The purpose of this note is to show that this corollary and its extension are both special cases of a considerably more general corollary of the Browder-Kirk theorem.
W. R. Mann [5] introduced the following general iterative process: Suppose $A=\left[a_{n p}\right]$ is an infinite real matrix satisfying (1) $a_{n p} \geqq 0$ for all n, p, and $a_{n p}=0$ for $p>n$; (2) $\sum_{p=1}^{n} a_{n p}=1$ for each n; (3) $\lim _{n} a_{n p}=0$ for each p. If F is a closed convex subset of a Banach space E, and $T: F \rightarrow F$ is a continuous mapping, and $x_{1} \in F$, then the process $M\left(x_{1}, A, T\right)$ is defined by

$$
v_{n}=\sum_{p=1}^{n} a_{n p} x_{p}, \quad x_{n+1}=T v_{n}, \quad n=1,2,3, \cdots
$$

Various choices of the matrix A yield many interesting iterative processes as special cases. With A the infinite identity matrix, one gets the Picard iterates of $T: v_{n+1}=x_{n+1}=T v_{n}$, whence $v_{n+1}=T^{n} v_{1}=$ $T^{n} x_{1}$. With $0<\lambda<1$ and $A=\left[a_{n p}\right]$ defined by $a_{n p}=\lambda^{n-1}$ if $p=1$, $a_{n p}=\lambda^{n-p}(1-\lambda)$ if $1<p \leqq n, a_{n p}=0$ if $p>n, n=1,2,3, \cdots$, one gets $v_{n+1}=\lambda v_{n}+(1-\lambda) T v_{n}=S_{\lambda} v_{n}$, whence $v_{n+1}=S_{\lambda}^{n} v_{1}=S_{\lambda}^{n} x_{1}$. If T is linear then an appropriate choice of A yields

$$
v_{n+1}=\left(x_{1}+T x_{1}+\cdots+T^{n} x_{1}\right) /(n+1),
$$

thus providing a connection with mean ergodic theorems for linear operators. Another choice of A yields an iterative process recently investigated by Halpern [3], provided $x_{1}=0$. Many other choices are possible, of course. Our main theorem is as follows.

Theorem 1. If E is a uniformly convex Banach space, and if $T: E \rightarrow E$ is a nonexpansive mapping, and if there exist $x_{1} \in E$ and a process $M\left(x_{1}, A, T\right)$ such that either of the sequences $\left\{x_{n}\right\},\left\{v_{n}\right\}$ is bounded, then T has a fixed point in E.

To prove this, we will make use of the following lemma which is a straightforward consequence of uniform convexity.

Lemma 1. Suppose E is a uniformly convex Banach space, and suppose $r>0$. For each $\varepsilon>0$ let $p_{\varepsilon}=\sup \{s: s=\|u-v\|$ where $u, v \in E,\|u\|=2 r, 2 r<\|v\| \leqq 2 r+\varepsilon$, and $\|(1-t) u+t v\|>2 r$ for all $t \in(0,1)\}$. Given any $c>0$, there exists $\varepsilon>0$ such that $p_{\varepsilon} \leqq c$.

Proof of Theorem 1. We first observe that if either of the sequences $\left\{x_{n}\right\},\left\{v_{n}\right\}$ in the process $M\left(x_{1}, A, T\right)$ is bounded, then the other is also bounded. For if $\left\|x_{n}\right\| \leqq b$ for all n, then

$$
\left\|v_{n}\right\|=\left\|\sum_{p=1}^{n} a_{n p} x_{p}\right\| \leqq \sum_{p=1}^{n} a_{n p}\left\|x_{p}\right\| \leqq b \sum_{p=1}^{n} a_{n p}=b
$$

for all n; and if $\left\|v_{n}\right\| \leqq b$ for all n, then

$$
\left\|x_{n+1}-T(0)\right\|=\left\|T\left(v_{n}\right)-T(0)\right\| \leqq\left\|v_{n}-0\right\| \leqq b
$$

for all n. So, given $x_{1} \in E$ and a process $M\left(x_{1}, A, T\right)$ in which both of the sequences $\left\{x_{n}\right\},\left\{v_{n}\right\}$ are bounded, we wish to show that T has a fixed point. This will be done by showing that T maps a certain bounded, closed, convex set into itself. We use the notation $D_{r}(p)=$ $\{x:\|x-p\| \leqq r\}, r>0, p \in E$. Let $r>0$ be such that $x_{n} \in D_{r}(0)$ and $v_{n} \in D_{r}(0)$ for all n. For each $i=1,2,3, \cdots$, define sets C_{i} and G_{i} by

$$
C_{i}=\bigcap_{n=i}^{\infty} D_{2 r}\left(x_{n}\right), \quad G_{i}=\bigcap_{n=i}^{\infty}\left\{D_{2 r}\left(x_{n}\right) \cap D_{2 r}\left(v_{n}\right)\right\}
$$

For each i, we have

$$
D_{r}(0) \subset G_{i} \subset C_{i} \subset D_{2 r}\left(x_{i}\right) \subset D_{3 r}(0)
$$

Each C_{i} and each G_{i} is a nonempty bounded, closed, convex set, and it is clear that $C_{i} \subset C_{i+1}$ and $G_{i} \subset G_{i+1}$. We now show $T\left(G_{i}\right) \subset C_{i+1}$: $x \in G_{i}$ implies $\left\|x-v_{n}\right\| \leqq 2 r$ for all $n \geqq i$, which gives $\left\|T x-T v_{n}\right\| \leqq$
$\left\|x-v_{n}\right\| \leqq 2 r$ for all $n \geqq i$; but, since $x_{n+1}=T v_{n}$, this can be written $\left\|T x-x_{n+1}\right\| \leqq 2 r$ for all $n \geqq i$, so that $T x \in C_{i+1}$. Define sets C and G by

$$
C=\bigcup_{i=1}^{\infty} C_{i}, G=\bigcup_{i=1}^{\infty} G_{i}
$$

Clearly, $D_{r}(0) \subset G \subset C \subset D_{3 r}(0)$; and \bar{G}, \bar{C} are bounded, closed, convex sets. Since $T\left(G_{i}\right) \subset C_{i+1}$ for each i, we have $T(G) \subset C$. Since T is continuous, $T(\bar{G}) \subset \overline{T(G)} \subset \bar{C}$. The proof will be completed by showing $C \subset \bar{G}$, so that $T(\bar{G}) \subset \bar{C} \subset \bar{G}$ (i.e., T maps the bounded, closed, convex set \bar{G} into itself). Since $C=\bigcup_{i=1}^{\infty} C_{i}$, it suffices to show that for each $i, C_{i} \subset \bar{G}$. Suppose i is a given positive integer, and $x \in C_{i}$. We wish to show that $x \in \bar{G}$. The first step toward this end is set off as the following lemma.

Lemma 2. For each $\varepsilon>0$ there exists a positive integer $j_{\varepsilon} \geqq i$ such that $x \in \bigcap_{n=j_{\varepsilon}}^{\infty}\left\{D_{2 r}\left(x_{n}\right) \cap D_{2 r+\varepsilon}\left(v_{n}\right)\right\}=F_{j_{\varepsilon}}$.

Proof of Lemma 2. Since $x \in C_{i}$ we have $\left\|x-x_{p}\right\| \leqq 2 r$ for all $p \geqq i$. For all $n \geqq i$ we have

$$
\left\|x-v_{n}\right\|=\left\|\sum_{p=1}^{n} a_{n p} x-\sum_{p=1}^{n} a_{n p} x_{p}\right\|=\left\|\sum_{p=1}^{n} a_{n p}\left(x-x_{p}\right)\right\|
$$

so that

$$
\left\|x-v_{n}\right\| \leqq \sum_{p=1}^{n} a_{n p}\left\|x-x_{p}\right\|=\sum_{p=1}^{i-1} a_{n p}\left\|x-x_{p}\right\|+\sum_{p=i}^{n} a_{n p}\left\|x-x_{p}\right\|
$$

whence, for all $n \geqq i$,

$$
\left\|x-v_{n}\right\| \leqq\left(\sum_{p=1}^{i-1} a_{n p}\right) \cdot \max _{1 \leqq p \leqq i-1}\left\|x-x_{p}\right\|+2 r
$$

Since i and x are fixed, and since $\lim _{n} a_{n p}=0$ for each $p=1,2, \cdots, i-1$, it is clear that for any $\varepsilon>0$ there exists a positive integer $j_{\varepsilon} \geqq i$ such that $\left\|x-v_{n}\right\| \leqq 2 r+\varepsilon$ for all $n \geqq j_{\varepsilon}$. But $n \geqq j_{\varepsilon} \geqq i$ also implies $\left\|x-x_{n}\right\| \leqq 2 r$ since $x \in C_{i}$. Hence $n \geqq j_{\varepsilon}$ implies

$$
x \in D_{2 r}\left(x_{n}\right) \cap D_{2 r+\varepsilon}\left(v_{n}\right),
$$

and so $x \in \bigcap_{n=j_{\varepsilon}}^{\infty}\left\{D_{2 r}\left(x_{n}\right) \cap D_{2 r+\varepsilon}\left(v_{n}\right)\right\}=F_{j_{\varepsilon}}$.
Proof of Theorem 1 continued. We return now to the final problem of showing $x \in \bar{G}$ (see immediately before Lemma 2). Given any $c>0$, choose $\varepsilon>0$ such that $p_{\varepsilon} \leqq c$ (this can be done by Lemma 1 , in which $r>0$ is taken as the r we are using in this proof). For
this ε, there exists a positive integer $j_{s} \geqq i$ such that $x \in F_{j_{\varepsilon}}$ (by Lemma 2). We will show $G_{j_{\varepsilon}} \cap D_{c}(x) \neq \phi$. Since c is arbitrary, this will show $x \in \bar{G}=\left(\bigcup_{i=1}^{\infty} G_{i}\right)^{-}$. We suppose $G_{j_{\varepsilon}} \cap D_{c}(x)=\phi$ and obtain a contradiction. Since $0 \in D_{r}(0) \subset G_{j_{\varepsilon}}, 0 \notin D_{\mathrm{c}}(x)$, and so $0<c /\|x\|<1$. Let $t_{1}=1-(c /\|x\|)$. Then $0<t_{1}<1$ and $\left\|t_{1} x-x\right\|=\left(1-t_{1}\right)\|x\|=c$. Since $t_{1} x \in D_{c}(x)$, we have $t_{1} x \notin G_{j_{\varepsilon}}$. Now $x \in F_{j_{\varepsilon}} \subset \bigcap_{n=j_{\varepsilon}}^{\infty} D_{2 r}\left(x_{n}\right)=C_{j_{\varepsilon}}$, and since $C_{j_{\varepsilon}}$ also contains 0 and is convex, $t_{1} x \in C_{j_{\varepsilon}}$. Since $t_{1} x \notin G_{j_{\varepsilon}}$ and $t_{1} x \in C_{j_{\varepsilon}}$, we have $t_{1} x \notin \bigcap_{n=j_{\varepsilon}}^{\infty} D_{2 r}\left(v_{n}\right)$. Let n be a positive integer, $n \geqq j_{s}$, such that $t_{1} x \notin D_{2 r}\left(v_{n}\right)$. Let

$$
t_{2}=\sup \left\{t: 0<t<1 \text { and } t x \in D_{2 r}\left(v_{n}\right)\right\}
$$

This set of t 's is nonempty since $D_{r}(0) \subset D_{2 r}\left(v_{n}\right)$. Since $D_{2 r}\left(v_{n}\right)$ is closed, we have $t_{2} x \in D_{2 r}\left(v_{n}\right)$; and it is easily seen from the definition of t_{2} that we must have $\left\|t_{2} x-v_{n}\right\|=2 r$. If $t_{2} \geqq t_{1}$, then, since 0 and $t_{2} x$ are in the convex set $D_{2 r}\left(v_{n}\right)$, we would have $t_{1} x \in D_{2 r}\left(v_{n}\right)$ which is not true. Hence $t_{2}<t_{1}$. Similarly we have $\left\|x-v_{n}\right\|>2 r$, since 0 is in the convex set $D_{2 r}\left(v_{n}\right)$ and $t_{1} x$ is not. Since $x \in F_{j_{\varepsilon}}$ and since $n \geqq j_{\varepsilon}, x \in D_{2 r+\varepsilon}\left(v_{n}\right)$, so we have $2 r<\left\|x-v_{n}\right\| \leqq 2 r+\varepsilon$. Next we observe that if $t \in(0,1)$

$$
\left\|(1-t)\left(t_{2} x-v_{n}\right)+t\left(x-v_{n}\right)\right\|=\left\|\left[(1-t) t_{2}+t \cdot 1\right] x-v_{n}\right\|>2 r
$$

since $t_{2}<(1-t) t_{2}+t \cdot 1<1$ so that $\left[(1-t) t_{2}+t \cdot 1\right] x \notin D_{2 r}\left(v_{n}\right)$. With $u=t_{2} x-v_{n}$ and $v=x-v_{n}$ we now have $\|u\|=2 r, 2 r<\|v\| \leqq$ $2 r+\varepsilon$, and $\|(1-t) u+t v\|>2 r$ for all $t \in(0,1)$. Hence $\|u-v\|=$ $\left\|t_{2} x-x\right\| \leqq p_{\varepsilon}$ (see Lemma 1). But ε was chosen so that $p_{\varepsilon} \leqq c$. So we have

$$
\left\|t_{2} x-x\right\|=\left(1-t_{2}\right)\|x\| \leqq p_{\varepsilon} \leqq c
$$

This gives $t_{2} \geqq 1-(c /\|x\|)=t_{1}$, which is a contradiction.
For completeness, we include the following theorem which is somewhat stronger than the converse of Theorem 1.

Theorem 2. If E is a normed linear space, and if $T: E \rightarrow E$ is a nonexpansive mapping, and if T has a fixed point $p \in E$, then for any $x_{1} \in E$ and any process $M\left(x_{1}, A, T\right)$, the sequences $\left\{x_{n}\right\},\left\{v_{n}\right\}$ are bounded.

Proof. For each $n=1,2,3, \cdots$, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|T v_{n}-T p\right\| \leqq\left\|v_{n}-p\right\|=\left\|\sum_{j=1}^{n} a_{n j}\left(x_{j}-p\right)\right\| \\
& \leqq \sum_{j=1}^{n} a_{n j}\left\|x_{j}-p\right\| \leqq \max _{j=1, \cdots, n}\left\|x_{j}-p\right\|
\end{aligned}
$$

Thus $\left\|x_{2}-p\right\| \leqq\left\|x_{1}-p\right\|,\left\|x_{3}-p\right\| \leqq \max _{j=1,2}\left\|x_{j}-p\right\|=\left\|x_{1}-p\right\|$, etc., so that we have $\left\|x_{j}-p\right\| \leqq\left\|x_{1}-p\right\|$ for all $j=1,2,3, \cdots$; and hence with $b=\left\|x_{1}-p\right\|+\|p\|$ we get $\left\|x_{j}\right\|=\left\|\left(x_{j}-p\right)+p\right\| \leqq$ $\left\|x_{j}-p\right\|+\|p\| \leqq b$ for all $j=1,2,3, \cdots$. Finally,

$$
\left\|v_{n}\right\|=\left\|\sum_{j=1}^{n} a_{n j} x_{j}\right\| \leqq \sum_{j=1}^{n} a_{n j}\left\|x_{j}\right\| \leqq b \cdot \sum_{j=1}^{n} a_{n j}=b
$$

for all $n=1,2,3, \cdots$.

Bibliography

1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
2. F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-575.
3. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
4. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
5. W. Robert Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
6. C. L. Outlaw and C. W. Groetsch, Averaging iteration in a Banach space, Notices Amer. Math. Soc. 15 (1968), 180.

Received March 12, 1968.
North Carolina State University and
University of North Carolina, Chapel Hill

