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A GENERALIZED COROLLARY OF THE
BROWDER-KIRK FIXED

POINT THEOREM

By W. G. DOTSON, JR. AND W. ROBERT M A N N

This paper generalizes a corollary, due to W. A. Kirk, of
the F. E. Browder-W. A. Kirk fixed point theorem for non-
expansive self-mappings of closed, bounded, convex sets in
uniformly convex Banach spaces.

F. E. Browder [1] and W. A. Kirk [4] have independently proved
that if F is a closed, bounded, convex subset of a uniformly convex
Banach space, and if T is a nonexpansive mapping from F into F, then
T has a fixed point in F. The following corollary was proved by Kirk [4]
and also by Browder and Petryshyn [2]: If E is a uniformly convex
Banach space, and T: E—> E is a nonexpansive mapping, and if for some
xx e E the sequence {Tnx1} of Picard iterates of T is bounded, then T has
a fixed point in E. Browder and Petryshyn also observed that if the
nonexpansive mapping T has a fixed point in E, then for any xλeE
the sequence {Tnx^ will be bounded. Outlaw and Groetsch [6] have
recently announced the following extension of this corollary: If E is
a uniformly convex Banach space, and T:E—>E is a nonexpansive
mapping, and Sλ = XI + (1 - X)T for a given λ, 0 < λ < 1, then T
has a fixed point in E if and only if the sequence {Sj^i} of Picard
iterates of Sλ is bounded for each xλ e E. The purpose of this note
is to show that this corollary and its extension are both special cases
of a considerably more general corollary of the Browder-Kirk theorem.

W. R. Mann [5] introduced the following general iterative process:
Suppose A = [anp] is an infinite real matrix satisfying (1) anp >̂ 0 for
all n, p, and anp = 0 for p > n; (2) ΣJ=i anp — 1 for each n; (3)
limw anp — 0 for each p. If F is a closed convex subset of a Banach
space E, and T: F—>F is a continuous mapping, and ^ e F , then the
process M(xlf A, T) is defined by

vn = it UnpXp, Xn+i = Tvn, n = 1, 2, 3, .

Various choices of the matrix A yield many interesting iterative
processes as special cases. With A the infinite identity matrix, one
gets the Picard iterates of T: vn+1 = xn+1 = Tvn, whence vn+1 = Tnvλ =
Tnxx. With 0 < X < 1 and A = [anp] defined by anp = Xn~' if p = 1,
aHP = Xn~p(l - X) if 1 < p ^ n, anp = 0 if p > n, n = 1, 2, 3, , one
gets vn+ί = Xvn + (1 — X)Tvn = Sλvn, whence vn+1 = Slv1 = S^. If
T is linear then an appropriate choice of A yields
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vn+1 = (x, + Tx, + + rx)/(w + 1) ,

thus providing a connection with mean ergodic theorems for linear
operators. Another choice of A yields an iterative process recently
investigated by Halpern [3], provided x1 = 0. Many other choices are
possible, of course. Our main theorem is as follows.

THEOREM 1. If E is a uniformly convex Banach space, and if
T: E —»E is a nonexpansive mapping, and if there exist x^E and
a process M(xu A, T) such that either of the sequences {xn}, {vn} is
bounded, then T has a fixed point in E.

To prove this, we will make use of the following lemma which
is a straightforward consequence of uniform convexity.

LEMMA 1. Suppose E is a uniformly convex Banach space, and
suppose r > 0. For each e > 0 let p£ = sup {s: s = \\u — v\\ where
u,v eE,\\u\\ = 2r, 2r < \\v\\ ^ 2r + ε, and || (1 — t)u + tv || > 2r for
all t e (0, 1)}. Given any c > 0, there exists ε > 0 such that pε ^ c.

Proof of Theorem 1. We first observe that if either of the
sequences {xn}, {vn} in the process M(xu A, T) is bounded, then the
other is also bounded. For if | |a?n | | ^ b for all n, then

\\Vn\\ = Σ v J ^ i > n p | | f f j | ^.6 Σ α w p = 6
II P = I II j>=i ί>=i

for all n; and if | | ι ;w | | ^ b for all n, then

|| xn+1 - Γ(0) || = || T(vn) - Γ(0) || ^ II vn - 0 || ^ b

for all n. So, given xλeE and a process M(xl9 A, T) in which both
of the sequences {xn}, {vn} are bounded, we wish to show that T has
a fixed point. This will be done by showing that T maps a certain
bounded, closed, convex set into itself. We use the notation Dr(p) =
{x: || x - p || ^ r), r > 0, p e E. Let r > 0 be such that xn e Dr(0) and
vn e Dr(0) for all n. For each i = 1, 2, 3, , define sets C< and G* by

For each i, we have

Each Ci and each Ĝ  is a nonempty bounded, closed, convex set, and
it is clear that d c Ci+1 and G{ c Gi+1. We now show T(Gi) c C ί + 1:
α? G Gi implies || x — vn \\ ̂  2r for all n^i, which gives || Tx — Tvn \\ ^
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|| x — vn || <; 2r for all n ;> i; but, since xn+1 = Ϊ X , this can be written
II Tx - a?Λ+1|| ^ 2r for all w ^ i, so that TxeCi+1. Define sets C
and G by

C = U Ci9 G = U G* .

Clearly, Z)r(0) c G c C c Ar(0); and G,C are bounded, closed, convex
sets. Since T(G{) c C ί + 1 for each i, we have T(G) c C. Since T is
continuous, T(G)a T(G)czC. The proof will be completed by show-
ing C c G , so that T(G)dCaG (i.e., T maps the bounded, closed,
convex set G into itself). Since C = \J?=1 Ciy it suffices to show that
for each i, d c G. Suppose i is a given positive integer, and x e Ci#

We wish to show that α; e G. The first step toward this end is set
off as the following lemma.

LEMMA 2. For each ε > 0 there exists a positive integer j ε Ξ> i

such that x e ΠίW, {Dtr(Xn) Π Ar+.W} - ^ ε .

Proof of Lemma 2. Since # e C< we have \\x — xp\\ <L2r for all
p ^ i. For all n ^ ΐ we have

\\χ—.v II = Σ α x — y\a x = Σ α- (x —
|| p=ι np p=i np p\\ II p=1

 np

so that

n ί—l n

| | / v * _ / ϊ j | | < V / 7 11 /y /y. 11 _ V /7 Mr — ^ N -4- V /7 Mr — r 11

whence, for all n ^ i,

\\x - vA\ ^ ( y α , J max

Since i and cc are fixed, and since lim^ anp = 0 for each p = 1, 2, , i — 1,
it is clear that for any ε > 0 there exists a positive integer j ε ^ i
such that || x — vn \\ ̂  2r + ε for all w ^ i ε . But n^jε^i also im-
plies || x — α?Λ || ^ 2r since α; G C .̂ Hence n ^ i ε implies

x e D2r(xn) n D2r+ε(vn) ,

and s o a G n~=ye {Ar(»») Π D2r+e(vn)} = F, ε.

Proof of Theorem 1 continued. We return now to the final
problem of showing xeG (see immediately before Lemma 2). Given
any c > 0, choose ε > 0 such that pε ^ c (this can be done by Lemma
1, in which r > 0 is taken as the r we are using in this proof). For
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this ε, there exists a positive integer j ε ;> i such that x e Fjε (by
Lemma 2). We will show Gj& Π Dc(x) Φ φ. Since c is arbitrary, this
will show xeG = (UΓ=i G<)" * We suppose G, ε Π Dc(x) = ^ and obtain
a contradiction. Since 0 e Dr(0) c (?iβ, 0 g £>„(#), and so 0 < c/|| x \\ < 1.
Let ίx = 1 - (c/|| a? | |). Then 0 < t, < ί and || t,x - x || = (1 - ίJH a? || = c.
Since { ^ e f l ^ ) , we have t^xiG^. Now a e ^ c f l ί ^ A r W = Cjε>
and since C i s also contains 0 and is convex, tλx e Cjε. Since t& ί Giβ and
^ τ e Cjε, we have â? g Π ^ i . A Λ ) . Let n be a positive integer, w ^ j ε ,
such that ^ ί A r W Let

t2 = sup {ί: 0 < ί < 1 and tx e D2r(vn)} .

This set of ί's is nonempty since Dr(Q)(zD2r(vn). Since D2r{vn) is
closed, we have t2xeD2r(vn); and it is easily seen from the definition
of tz that we must have \\t2x — vn\\ = 2r. If ί2 :> ίx, then, since 0
and t2x are in the convex set D2r{vn), we would have tixeD2r(vn)
which is not true. Hence t2 < ί1# Similarly we have || x — vn \\ > 2r,
since 0 is in the convex set D2r(vn) and ^a; is not. Since x e Fjε and
since w ^ j 8 , x e D2r+ε(vn), so we have 2r < || x — vΛ || ^ 2r + e. Next
we observe that if t e (0,1)

|| (1 - t)(t2x - O + ί(α - vn) || = || [(1 - t)t2 + tΛ]x-vn\\> 2r

since t2 < (1 - 0*2 + M < 1 so that [(1 - t)t2 + t-l]xg D2r(vn). With
u = t2x — vn and v = x — vn we now have \\ u \\ — 2r, 2r < \\ v \\ ^
2r + ε, and || (1 - t)u + tv\\> 2r for all t e (0,1). Hence || u - v \\ =
|| t2x — x\\ ^ pε (see Lemma 1). But ε was chosen so that pε ίg c.
So we have

| | ί £ a;-a? | | = (1 - t2)j|a?|| g pε £ c .

This gives t2 ^ 1 - (c/||a?||) = ίx, which is a contradiction.

For completeness, we include the following theorem which is some-
what stronger than the converse of Theorem 1.

THEOREM 2. If E is a normed linear space, and if T: E—+E
is a nonexpansive mapping, and if T has a fixed point peE, then
for any xλeE and any process M(x19 A, Γ), the sequences {xn},{vn}
are bounded.

Proof. For each n = 1, 2, 3, , we have

| | a ? Λ + 1 - p | | - \ \ T v n - Tp\\ ^ \ \ v n - p \ \ = a>ns(xs ~ V)

^ Σ «nill xj - VII ^ m a x ί| Xj - p\\ .
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T h u s ||a?2 - 2>|| ^ I K - ί>ll, II &s - PII ̂  m a x i = l i 8 1 | x s - p\\ = \\Xt- p\\,
e t c . , so t h a t w e h a v e || xό — p || ^ || x ι — p || for all j = 1, 2, 3, •;
a n d h e n c e w i t h 6 = || xx — p \\ + || p \\ w e g e t || % || = || (x3- — p) + p || ^
II »y - 3> II + II 3> II ^ & for all i = 1, 2, 3, . F ina l ly ,

for all n = 1, 2, 3,
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