PACIFIC JOURNAL OF MATHEMATICS
Vol. 26, No. 3, 1968

A GENERALIZED COROLLARY OF THE
BROWDER-KIRK FIXED
POINT THEOREM

By W. G. DotsoN, JR. AND W. ROBERT MANN

This paper generalizes a corollary, due to W. A, Kirk, of
the F. E. Browder-W, A, Kirk fixed point theorem for non-
expansive self-mappings of closed, bounded, convex sets in
uniformly convex Banach spaces.

F. E. Browder [1] and W. A. Kirk [4] have independently proved
that if F' is a closed, bounded, convex subset of a uniformly convex
Banach space, and if T is a nonexpansive mapping from F' into F', then
T has a fixed point in F. The following corollary was proved by Kirk [4]
and also by Browder and Petryshyn [2]: If E is a uniformly convex
Banach space, and T: ¥ — E is a nonexpansive mapping, and if for some
x, € E the sequence {T"z,} of Picard iterates of T is bounded, then T has
a fixed point in E. Browder and Petryshyn also observed that if the
nonexpansive mapping 7 has a fixed point in E, then for any z,e¢ E
the sequence {7"x,} will be bounded. Outlaw and Groetsch [6] have
recently announced the following extension of this corollary: If E is
a uniformly convex Banach space, and T: E— E is a nonexpansive
mapping, and S; = Al + (1 — A\)T for a given A, 0 <A <1, then T
has a fixed point in F if and only if the sequence {S?x,} of Picard
iterates of S; is bounded for each x, ¢ E. The purpose of this note
is to show that this corollary and its extension are both special cases
of a considerably more general corollary of the Browder-Kirk theorem.

W. R. Mann [5] introduced the following general iterative process:
Suppose A = [a,,] is an infinite real matrix satisfying (1) @,, = 0 for
all n,p, and a,,=0 for p>n; (2 Xr,a,, =1 for each n; (3)
lim, a,, = 0 for each p. If F is a closed convex subset of a Banach
space K, and T: F— F is a continuous mapping, and x, € F', then the
process M(x,, A, T') is defined by

n
Vp = Z @ppXpy  Lpt1 = T’Uny n = 1! 27 31 ttt .

=1

Various choices of the matrix A yield many interesting iterative
processes as special cases. With A the infinite identity matrix, one
gets the Picard iterates of T:v,,, = 2,., = Tv,, whence v,,, = T"™, =
T x,. With 0 <x <1 and A = [a,,] defined by a,, = A" if p =1,
@, =A"?(1—-Nifl<p=<n a,=0if p>nn=1,23,-.-., one
gets v,., = W, + 1 —N)Tw, = Sv,, whence v,,, = S, = Six,. If
T is linear then an appropriate choice of A yields

455



456 W. G. DOTSON, JR. AND W. ROBERT MANN

Vpir = (@, + T2, + =+« + T™x)/(n + 1),

thus providing a connection with mean ergodic theorems for linear
operators. Another choice of A yields an iterative process recently
investigated by Halpern [3], provided 2, = 0. Many other choices are
possible, of course. Our main theorem is as follows.

THEOREM 1. If E is a uniformly convex Banach space, and if
T: E— E is a nonexpansive mapping, and if there exist x,¢ E and
a process M(x,, A, T) such that either of the sequences {z,}, {v,} ts
bounded, then T has a fixed point in E.

To prove this, we will make use of the following lemma which
is a straightforward consequence of uniform convexity.

LEMMA 1. Suppose E is a uniformly convexr Banach space, and
suppose r > 0. For each ¢ >0 let p, =sup{s:s=|u— v| where
w,ve E, ||u|| =2r,2r <||v||Z2r+e and ||(1 — t)u + tv|| > 2r for
all te(0,1)}. Given any ¢ > 0, there exists € > 0 such that p. < c.

Proof of Theorem 1. We first observe that if either of the
sequences {x,}, {v,} in the process M(x,, A, T) is bounded, then the
other is also bounded. For if ||z, < b for all n, then

ol =

n n n
Zanpxp = Dl e, ébzaw:b
p=1 p=1 p=1

for all n; and if ||v,|| < b for all n, then
@wir = TOY | = | Tw,) — TO) || = [|v. — 0] = b

for all n. So, given z,¢ E and a process M(x,, A, T) in which both
of the sequences {x,}, {v,} are bounded, we wish to show that T has
a fixed point. This will be done by showing that T maps a certain
bounded, closed, convex set into itself. We use the notation D,.(p) =
{x:|lz — || <7}, r>0,peE. Let r >0 be such that z, e D,(0) and
v, € D,(0) for all n. For each ¢ =1,2,8, --., define sets C; and G; by

Ci = 6 DZr(xn)y Gz = ﬁ {DZr(mn) N DZr(vn)} .
For each 7, we have
D,(0) € G; C C; © Dy,(2:) © Dy, (0) .

Each C; and each G, is a nonempty bounded, closed, convex set, and
it is clear that C;c C;,, and G;cG;,;,. We now show T(G,)cC;.:
x ¢ @G; implies || — v, || < 27 for all » = 4, which gives || Tz — Tw, || =
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|l — v, ]| < 2r for all » = 4; but, since z,,, = Tv,, this can be written

| Tx — 2, ]| < 2r for all =14, so that TxeC,,,. Define sets C
and G by

Clearly, D,(0) c G = C c D, (0); and G, C are bounded, closed, convex
sets. Since T(G,)cC;., for each ¢, we have T(G)cC. Since T is
continuous, T(G)c T(G) = C. The proof will be completed by show-
ing Cc @G, so that T(G)cCcG (i.e., T maps the bounded, closed,
convex set G into itself). Since C = U7, C;, it suffices to show that
for each 4, C;cG. Suppose ¢ is a given positive integer, and x ¢ C;.
We wish to show that 2eG. The first step toward this end is set
off as the following lemma.

LEMMA 2. For each ¢ > 0 there exists a positive integer j. = 1
such that e N7=; {Dw(®,) N Dyys (v,)} = F .

Proof of Lemma 2. Since xe€C; we have ||z — x,|| < 2r for all
p=1. For all » =7 we have

n n n
H(X) - vn” = Zamﬂx - Zawmp = Za’np(x - 90,,)
p=1 p=1 p=1
so that
n i—1 3
o — v, égawllx—%ll = ga'ﬂp”x — || + pZanpllx—%H )
pas = =1

whence, for all n = 1,
=1
o = v, = (3 @) max 1o —a, | + 2r.
p=1 1Spsi—1

Since ¢ and « are fixed, and since lim, a,,=0 for each p=1,2, ---,7—1,
it is clear that for any ¢ > 0 there exists a positive integer j. = 4
such that ||x — v,|| £ 2r + ¢ for all » = j.. But n=j. =1 also im-
plies [|© — z,|| < 2r since x e C;. Hence n = j. implies

{AS DZT(CU”) N D2r+s(vn) ’
and so € N7-; {De(@,) N Dypr(v,)} = F .

Proof of Theorem 1 continued. We return now to the final
problem of showing € G (see immediately before Lemma 2). Given
any ¢ > 0, choose ¢ > 0 such that p. < ¢ (this can be done by Lemma
1, in which » > 0 is taken as the » we are using in this proof). For
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this ¢, there exists a positive integer j. =1 such that xeF); (by
Lemma 2). We will show G; N D,(x) # ¢. Since ¢ is arbitrary, this
will show ze€G = (U G)~. We suppose G; N D,(x) = ¢ and obtain
a contradiction. Since 0e D,(0) © Gy, 0¢ D,(x), and so 0 < ¢/[|2| < 1.
Lett,=1—(¢/[|z]). Then0 <t <land|tx—x|=1-¢t)x| =c
Since t,x e D.(x), we have t,2¢G;. Now xeF; c N5-; D.(x,) = C;,
and since C;_also contains 0 and is convex, ¢,z € C;, . Since t,x¢G; and
twe C; , we have t.@ € M;-;, Du(v,). Let n be a positive integer, n = j.,
such that ¢x¢ D,.(v,). Let

t,=sup{t:0<t <1 and txeD,(v,)}.

This set of t’s is nonempty since D,(0) < D,.(v,). Since D,.(v,) is
closed, we have 2 ¢ D,.(v,); and it is easily seen from the definition
of ¢, that we must have ||t — v,]|| = 2r. If t,>t, then, since 0
and t,x are in the convex set D,.(v,), we would have ¢,x¢e D,.(v,)
which is not true. Hence ¢, < t,. Similarly we have ||z — v, || > 27,
since 0 is in the convex set D,.(v,) and ¢z is not. Since xeF; and
since n = 7., x € D,,..(v,), so we have 2r < ||z — v,|| < 2r + ¢. Next
we observe that if te(0,1)

A =) —v,) + 8@ —v) || = [[[A =t + ¢-1]e — v, [[ > 2r

since ¢, < (1 — &)t, + t-1 < 1 so that [(1 — ¢t)t, + t-1]x ¢ D, (v,). With
u=tax—v, and v=2o — v, we now have ||u|| =2r 2r <|v| =
2r + ¢, and ||(1 — t)u + tv|| > 2r forall te(0,1). Hence ||u — v|| =
[t — || £ p. (see Lemma 1). But ¢ was chosen so that p, < e.
So we have

[t —xfl =1 - t)zll<p. sc.

This gives ¢, =1 — (¢/||«||) = t,, which is a contradiction.

For completeness, we include the following theorem which is some-
what stronger than the converse of Theorem 1.

THEOREM 2. If E is a mormed linear space, and if T:E—E
18 a nonexpansive mapping, and if T has a fived point pe E, then
for any x, ¢ B and any process M(x, A, T), the sequences {x,}, {v,}
are bounded.

Proof. For each n =1,2,3, -.-, we have

o0 =2l = | To. = Tp[i < 10, = pl = | S avite; - p)|

= Y alle; —pll £ max jjo; — pl| .
J=1 J=1,yn
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Thus ||, — p|| = ||, — ||, [|2s — pl| < max;_..[|®; — pll = [, — 2],
ete., so that we have ||z; — p|| < ||, — p]|| for all 7 =1,2,3,---;
and hence with b = [|2, — p|| + [|p]| we get [|z;|| = || (x; — p) + 2l =

llz; — pll + llp]| = b for all j =1,2,8, -... Finally,

n n n
vall = j;anjx:i éj%%jll%”éb'j;am:b

forall n =1,2,38, ...
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