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MUTOMORPHIC ^-GROUPS AND
HOMOGENEOUS ALGEBRAS

LARRY DORNHOFF

A p-group was called p-automorphic by Boen, if its auto-
morphism group is transitive on elements of order p. Boen
conjectured that if p is odd, then such a p-group is abelian.
Let P be a nonabelian p-automorphic p-group, p odd, generated
by n elements. Boen proved that n > 3, and in joint work
with Rothaus and Thompson proved that n > 5. Kostrikin
then showed that n > p + 6, as a corollary of results on
homogeneous algebras. In this paper it is shown that
n > 2p + 3, using Kostrikin's methods, and his proof is some-
what simplified by eliminating special case considerations for
small values of p.

The above results and the following terminology may be found
in [1], [2], and [4]. Let A be a finite-dimensional algebra over the
field K, where if x, ye A and XεK, we assume bilinearity and the law
(λx)oy = χ(χoy) = χo(\y)y but associativity is not assumed. Follow-
ing [4], A is said to be homogeneous if the automorphism group Γ
of A i s t r a n s i t i v e o n A* = A — {0}, anticommutatίve iΐχoy-\-yoχ = o,

and nil if all endomorphisms Ka: x-+χoa are nilpotent.
For a fixed odd prime p, suppose that P is a nonabelian p-auto-

morphic p-group with minimal number n of generators. It is shown
in [1] that P has a p-automorphic quotient group P with the same
number of generators, where the Frattini subgroup Φ{P) is central
and is the direct product of n cyclic groups of equal order pm. If
we consider A = P/Φ(P) as a vector space over GF(p), we define a
multiplication in A as follows: for x = aΦ(P), y = bΦ(P) in A, a coset
z = cΦ(P) is uniquely determined, such that [α, 6] = cpm. Define
x o y = z. Then it is clear that A becomes an anticommutative homo-
geneous algebra, and Theorem 1 of [2] asserts that A is nil.

It is proved in [4] that if A is a finite-dimensional homogeneous
algebra with nontrivial multiplication over a field K of characteristic
not 2, then A is an anticommutative nil algebra and K is a finite
field of q elements, where q < dim A — 6. In this paper we shall
prove:

THEOREM. Let A be a homogeneous anticommutative nil algebra
with nontrivial multiplication of dimension n over the field K of q
elements, q odd. Then n > 2q + 3.

This result immediately implies the corresponding result for p-
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automorphic p-groups.

2. In proving the theorem, we use the following notation. A
is a homogeneous anticommutative nil algebra of dimension n over
the field K of q elements, q odd, and Γ its automorphism group. We
choose integers m and r such that

dim ARX = m, Rr

x = 0, Rr~γ Φ 0, all x Φ 0 in A .

Of course r ^ m + 1. Since Γ is transitive on A — {0}, gw — 1 divides
the order of Γ. Let s be a prime dividing g* — 1, but not dividing
q* — 1 for any ί < n; the existence of s is proved in [3]. (We may
assume n > 2; for the case n = 2, the theorem follows from the re-
lation r > q, soon to be proved.) Let σ e Γ have order s; then σ is
irreducible on the vector space A. Fix a nonzero element eeA.
Then A is spanned by e,eσ, , eσn~ι; let

βcr1 = ]£ ajeσn-j, dj e K ,
i=i

where σ satisfies the irreducible polynomial P(X) = Xn — Σ?=i UjXn~j*
Consider the vectors eσ^e.O^i^n — 1. We see that

= Σ ^-(βσ71-5' o eσ*-*) = Σ aAe(ji~j

- Σ a&σ5-1 o e)σn~j = Σ a>i-k(eσk ° e)^71-^

- Σ αi+^(eσ4 ° β)σ"-'-* .

fc = l

Transferring all terms to the right-hand side, we have a relation

AReB = 0 ,

where B = (&^)o^i,^w-i, as a matrix over ίΓ = K(σ), say, with row
index j and column index i, is given as follows: Define α0 = — 1, ak = 0
if fe < 0 or A > n. Then

We look at this matrix B quite closely. If n is even, let 5X be
the lower right-hand (n/2) x (w/2) minor. Bι is a triangular matrix
with

so rank B ^ n/2. If n is odd, let Bλ be the lower right-hand



p-AUTOMORPHIC p-GROUPS AND HOMOGENEOUS ALGEBRAS 449

(n + l)/2 x (n + l)/2 minor. Bx is no longer triangular, but we easily
compute

Det B, = (_i)(-3)/v+ 2 +-+ { ( w-3 )/2 }(σ% + α%_1σ
(w+1)/2 + α^σ*—1*'2 - α ) .

If this is 0 and n > 3, we see that P(X) reduces to P(X) = Xn - 1,
so σ2w = 1, a contradiction to the fact s = l(modw) (see [3]). If
w = 3, then P(X) = X 3 - aX2 + αX - 1 and P(X) is reducible. Hence
rank B ^ (w + l)/2. We conclude that in any case

rank Re = dim A# e = m ^ — .

The next step in the proof is to show that r > q + 1; this is
done in [4], but we repeat it here, as the final case simplifies.

First suppose r ^ q. Then we can linearize the identity

(Rx + aRzy = Rr

£+az = 0 ,

all a e iΓ, obtaining

Σ RiRzRΓ1-' = 0 .

Applying to | / G A and using anticommutativity,

i/ Σ RiRzRΓ1-' = - Σ zRynΛRl-1'1 = 0 ,
<=0 *=0

and hence

Σ RyRviRT1'1 = 0 .
i

The equation e = α o β is not possible, since otherwise eRk

a =
( —l)fcβ =7̂  0, and i2α is not nilpotent. Hence a$ARe. We choose a
basis {βx, , en; βri+1, , β r i + r 2; e j , e = βw, such that the nilpotent
transformation i?e is in Jordan canonical form. Thus we have

r = n ^ r 2 ^ e{Ren = eί+1 if

n + + rk^ + 1 <: i < n + + n , some A:; βri+...+rfei2eίi = 0.
Setting y = eu x = en in the last identity, we have

Hence AReγ S Ai2e?ι; but dim ARβr = dim Ai2e%, so Aβ, r = ARe%. Thus
er = ejir

e~
l e ARβn = AReγ, a contradiction. We conclude r > q.

Now suppose r = q + 1. The identity Rr

x = 0 cannot be linearized,
but the linearization process does enable us to prove
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RyRl~ιRz + RM~ιRy + /(#*, Ry, R*)R* + R*g(R*, Ry, R*) = 0 ,

where / and g are homogeneous polynomials, linear in Ry and Rz.
(Expand (Rx + aRy + βRz)

g+1 = 0, use a = aq, β = βq to combine two
terms, and then use van der Monde determinants as in the usual
linearization to show all terms are 0. The coefficient of aβ is the
left side of the desired equation.) Applying this to x and using anti-
commutativity,

0 = zRyRι — zRq

xRy — zf(Rx, Ry)Rx1 some /,

showing that

RyRl - RlRy - f(Rz, Ry)Rx = 0 .

We choose a canonical basis for Re% as before and set x = en9y =
in the last identity, obtaining

For i £ {1, rx + 1, rx + r2 + 1, •}, we see

ejt.r = eJ(R.n, Rei)Ren e ARen .

Also,

exRer = erRei + eJ(Ren, Reχ)Re% ,

so since the characteristic is odd, eJt9rGAR9n. If r2 < r19 then
βiRln = 0 for i*tr, and we conclude that AReγ = A#β π, which we
know to be impossible. Hence r2 — τγ — r. Then n ^ 2r + 1 = 2q + 3.
If we have equality, then the canonical form shows m = dim ARe% =
2r — 2 = 2q > (w/2), a contradiction. Hence n > 2g + 3, and we are
done in this case.

Thus we now may assume r ^ g + 2, r < ^ m + l , m ^ w/2. If ^
is even, we have g + 2 ^ r ^ m + l fS (n/2) + 1, or n ^ 2g + 2, so
we may assume n = 2q + 2; then equality holds everywhere, and
r — q + 2, m = q + 1. If n is odd, we have

g + 2 ^ r ^ m + l ^ ^LH_ί + i f O r n ^ 2g + 3 ,

so we may assume n = 2g + 3; then equality holds everywhere, and
r = g + 2, m = q + 1. In either case, we note n ^ 2m + 1.

Since q is odd and qn — 1 divides the order of Γ, we can choose
an element r e Γ of order 2. Define

β = {α e AI τ(a) = α}, C = {a e A \ τ(a) = —a} .

Then A is a direct sum A = J5 0 C of its subspaces J5 and C. Certainly
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C Φ 0. If B = 0, choose CuC2eC with CXOC2ΦO. Then ^ 0 ^ =
( — ci)o(~c2) = τ(c^°τ(c2) = rfooCg) = — Ci°c2, a contradiction. Define
d i m £ = fe > 0, dimC = n - k. It is clear that BoB Q B, C<>C ^ B,
δ o C g C . Hence if beB, then BRb S # , CΉ6 S C; of course the
nilpotency index r of Jf26 is the maximum of its nilpotency indexes on
the subspaces B and C.

Suppose first # ° C = 0. Then for any b e B*, ARb = BRb has
dimension m; 6 ί Bi26, so dim B ^ m + 1, proving dim C ^ m. For
any ceC*,coc = 0, so since ARC = Ci2c, we have

dim ARC = dim CRC < dim C ̂  m ,

a contradiction.
We have thus proved B o C Φ 0. Pick 6 e B with Ci26 ^ 0; CRb S C,

so AR6 = BJSδ φ Ci?δ, and dim BRb ^ m — 1. We look at the canonical
form of Rb on B and on C, and use the fact

r = m + 1; dim BRh ^ m — 1

implies (J?61 B)m = 0, so (J£6 | C)m Φ 0, and dim CJ?6 ^ m. Hence
dim CRb = m, dimC ^ m + 1, dimB ^ m. This means that for cmT/
5' e ΰ*, dim ##£ < m, so CJS'6 =7̂  0; the same argument then applies for
bf as for b. We conclude that BoB = 0.

Let c be any element of C*. Since R? Φ 0 and dim Ai?c = m, we
have dim AR\ = m - 1. Since J5i2c g C and CRC S JB, we have

dim ^4i?c = m = dim J?i?c + dim

Also,

ARl =

Let β{ = dim £i2j, 7< = dim Ci2j, i = 1, 2. We see that ft + 7i = m,
A + 72 = m - 1, β2 ^ 7i, 72 ^ A, and of course β2 £ βu y2 ^ yλ. Since
m = g + 1 is even, let m = 21; the only solutions for the β{ and 7»
have & = 7i = i. So dim BJ2C = I, for any c e C*.

We now consider separately the cases ^ = 2q + 2 and ̂  = 2q + 3.
Let S denote the set of all ordered pairs <(δ, cy,beB, ce C, with
boc = 0. In each case we compute the order \S\ in two different
ways to obtain a contradiction.

When n = 2# + 2 = 2m = 4Ϊ, we know that for any

b e B*, dim CRb = m ,

so

d i m { c e C \ b o c = 0} = (n — k) — m = m — k ,

and for any
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c e C*, dim BRC = I, so dim {b e B \ b o c = 0} = ft - Z .

Hence

I S I = (qk - l)qm-k + gr—*

and

\S\ = ( g - * - 1 ) ? * - ' + ?* .

Therefore

We know dim C = % — ft^m + 1, so ft < m. Equating highest terms,
the equation must imply ft = I. But now the left side is divisible by
q and the right is not, a contradiction.

When n = 2<? + 3 = 2m + 1 = 41 + 1, then for any

6 G Z?#, dim {ceC|&oc = 0} = (tt — ft) — m = m — fc + 1 ,

and for any

ceC\dim{beB\boC = 0} = k -I .

Hence

I S I - (qk - l ) ? " - ^ 1 4- ? - *

and

| S | = ( ? * " * - I ) ? * - 1 + «*,

showing t h a t

qm+l _ qm + l-lc + ^n-Λ = g n~I _ gk-l + gk ^

The largest terms on the two sides are necessarily equal, so n — ft =
n — I, k = I. But then the left side is divisible by q and the right
is not, the final contradiction.

REMARK. Following [5], one can also consider semi-p-automorphic
p-groups, in which the automorphism group is transitive on subgroups
of order p, and the corresponding notion of spa-algebras, in which the
automorphism group is transitive on one-dimensional subspaces. The
arguments above then show n > 2p + 1. To prove n > 2p + 3, we
require the involution τ in the automorphism group Γ; τ does exist,
since otherwise Γ would be of odd order and hence solvable, and the
case of a solvable Γ is treated in [5].

Added in proof. Ernest Schult has announced a complete solution
of Boen's problem in Bull. Amer. Math. Soc. 74 (1968), 268-270.



p-AUTOMORPHIC p-GROUPS AND HOMOGENEOUS ALGEBRAS 453

REFERENCES

1. J. R. Boen, On p-automorphic p-groups, Pacific J. Math. 12 (1962), 813-815.
2. J. R. Boen, 0. Rothaus, and J. Thompson, Further results on p-automorphic p-
groups, Pacific J. Math. 12 (1962), 817-821.
3. L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly 12 (1905), 86-89.
4. A. I. Kostrikin, On homogeneous algebras, Izvestia Acad. Nauk SSSR 29 (1965),
471-483.
5. E. Schult, On semi-p-automorphic groups I (to appear)

Received August 28, 1967. This research partially supported by Army Contract
SAR/Da-31-124-ARO-D-336.

YALE UNIVERSITY






