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UNIFORM APPROXIMATION BY POLYNOMIALS
WITH INTEGRAL COEFFICIENTS I

L E BARON 0 . FERGUSON

Throughout this paper A will denote a discrete subring
of the complex number plane C with rank 2. For example, A
could be the Gaussian integers Z -f iZ, where Z denotes the
rational integers, or the ring of integers of any imaginary
quadratic field. We are concerned with characterizing those
functions defined on a compact subset X of C which can be
uniformly approximated by polynomials with coefficients in A.
We say that such functions are A-approximable on X. We
also consider the real case where X is any compact subset of
the reals R and the coefficients of the approximating poly-
nomials lie in Z or any discrete subring of R. The real case
is completely solved in the sense that a necessary and sufficient
condition in order that a function can be so approximated is
found. The complex case is solved if, in addition to being
compact, X either has transfinite diameter at least unity or
void interior and connected complement.

The case where X has transfinite diameter less than unity and nonvoid
interior will be the subject of a later paper.

The complex case was solved by Fekete when the ring of coeffi-
cients A is the ring of integers of an imaginary quadratic field. His
results were announced in [4], but, as far as we know, proofs were
never published. In [4] is found the key notion of the "algebraic
kernel" of a compact subset of C with respect to an imaginary quadratic
field. This notion is extended here so as to be relevant to any ring
A defined above and a second characterization of the algebraic kernal
(herein denoted by J0(X, A)) is found. The set JC(X, A) seems to be
difficult to determine, in general. Its calculation will be the subject
of a future paper.

The real case was solved for intervals in Hewitt and Zuckerman
[7]. We use the results obtained here in the complex case to extend
their results to arbitrary compact subsets of R.

Throughout this paper we endeavor to follow the terminology
and notation in [2]. We use the symbol C(X) to denote the set of
all complex-valued continuous functions defined on X and Cr(X) to
denote the real valued members of C(X). If feC(X) and S c l w e
define 11/1\s = sup {| f(x) \:xeS}. We frequently write 11/11 for 11/1|x.

2* Discrete rings and imaginary quadratic fields* We mention
here the nonstandard results on these rings which will be needed
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repeatedly.
If F is a field extension of Q we denote the ring of algebraic

integers of F by IF. If L is an imaginary quadratic field it is easy
to see that IL is a discrete subring of C and has rank 2. On the
other hand every ring A with these properties is contained in IL for
some imaginary quadratic field L [11, p. 150, Nr. 203]. Since A has
rank 2, L is uniquely determined by the inclusion AcIL. Using the
well known explicit representations for the elements of IL [13, p. 234]
it is easy to see that there exists a positive integer m such that
mIL c A.

Using the fact that A has rank 2 and Theorem 1 of [3, p. 77]
it is not hard to see that there exists δ > 0, depending only on Af

such that if zeC, there exists aeA with | z — a| < 8.

3* Chebyshev polynomials and transίϊnite diameter* Let X
be a compact subset of C and n a positive integer. If X is infinite
the nth Chebyshev polynomial tn(z, X) for X is defined to be the unique
monic polynomial of degree n such that

\\tn{z,X)\\x = mϊ\\t\\x

where the inf is taken over all such polynomials. If X contains m
elements, where m is finite, then we define tn(z, X) as above for n ^ m
and set tn(z, X) = Πxex(z — x) for n > m.

The existence of tn{z, X) is a direct consequence of [1, p. 10].
The uniqueness follows from [12, p. 36, Th. 1].

We define the transfinite diameter d(X) of X by

= lim\\tn(z,X)\ ll/ίl

(See [8, p. 226, Th. 16.1.2].)
The importance for us of the concept of transfinite diameter is

contained in the following.

PROPOSITION 3.1. Let X be a compact subset of C with d(X) ̂  1.
Then a complex valued function / on X is A-approximable on X if
and only if it is already an element of A[z],

Proof. Suppose that / is A-approximable on X but fg A[z], Then
there exist px and p2 in A[z] such that pλ Φ p2 and 11 p{ — f \ \ < 1/2
for i = 1, 2. Thus H ^ - p2\\ < 1. Since A is discrete, the leading
coefficient of px — p2 has modulus at least one and dividing pt — p2

by this coefficient gives a monic polynomial p with \\p\\ < 1. From
the existence of such a p it is easy to see that d(X) < 1, a contradic-
tion.
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4* The algebraic kernel* In this section we define the algebraic
kernel of a compact subset X of C with respect to A. We then give
a necessary condition in order that a function be A-approximable.

DEFINITION 4.1. Let R be any subring of C and / a complex
valued function on a subset X of C. We say that / is R-matchable
on a subset S of X if there exists p e R[z] such that p(z) = f(z) for
all zeS.

DEFINITION 4.2. If R is any subring of C and X is a compact
subset of C we define

B(X,R) = {peR[z]:\\p\\x<l}.

Note that in 3.1 we have proved something stronger than the pro-
position. In fact we see that if R is a discrete subring of C and X
is a compact subset of C with d(X) I> 1, then R[z\ is a discrete and
therefore closed subring of C(X). Indeed, we can prove that
B(X, R) = {0} as follows. If g e B(X, R) and g is not identically zero
on X then we can divide by its leading coefficient to obtain a monic
polynominal p such that 0 < \\p\\x < 1 and derive a contradiction to
d(X) ^ 1 as in the proof of 3.1. Now, by [6, p. 35, (5.10)] since
R[z] is a discrete (additive) subgroup of C(X) it is closed in C(X).

DEFINITION 4.3. For any subring R of C and compact subset X
of C we define

J(X, R) = {ze X: p(z) = 0 for all p e B(X, R)} .

When no confusion is possible we write J(X) or simply J for J(X, R).
If A is a discrete subring of C with rank 2 then by §2 there

exists exactly one imaginary quadratic field L such that AaIL. With
this fact in mind we make the following definition.

DEFINITION 4.4. Let X be a compact subset of C and L the
imaginary quadratic field such that AczIL. We define J0(X, A) to be
the union of the complete sets of conjugates integral over IL which
are entirely contained in X.

We note that J0(X, IL) is what Fekete called the "algebraic kernel"
of X with respect to the field L [4, p. 1338].

PROPOSITION 4.5. If X is a compact subset of C, then

J0(X, A) c J(X, A) .
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Proof. Suppose A c IL. Let Θ be in J0(X, A) and q e A[z] with
\\q\\z < 1. We can write the conjugates of Θ over L as 0Ί(0), tf2(#),
• , ff*(0) where the σ/s are automorphisms of the splitting field F
of θ which leave L pointwise fixed. Since J0(X, A), hence X, contains
the conjugates we have

1 > Π Π = I N£(q(θ)) I

Because q{θ) is integral over IL we have N[(q(θ)) e IL. Since IL is
discrete and | N[{q{θ)) | < 1, N£(q{θ)) = 0. Thus q(θ) = 0.

PROPOSITION 4.6. If X is a compact subset of C, then in order
that a complex valued function / be A-approximable on X, it is neces-
sary that / be A-matchable on J(X, A).

Proof. Suppose that / is A-approximable on X. That is, there
is a sequence (pn) of polynomials in A[z] which tends uniformly to /
on X. Then there is an integer N such that m,n > N implies
\\pn — Pm II < 1. Then pn — pm is an element of B(X, A) and so
Pn — Vm = 0 on J(X, A). Thus m> N implies that pm matches / on
J(X, A).

5. The complex case* In this section we prove a necessary
and sufficient condition for approximability over a class of compact
subsets of C defined below.

DEFINITION 5.1. A compact subset X of C is said to be Lavrent'ev
if C[z] is uniformly dense in C(X).

This terminology stems from the fact that in 1934 Lavrent'ev
proved the following [9].

PROPOSITION 5.2. A compact subset X of C is Lavrent'ev if and
only if it has void interior and connected complement.

PROPOSITION 5.3. Let A contain the identity and let X be a
compact subset of C. If there exists a monic polynomial peC[z] with
|| p || < 1, then there exists a monic polynomial q e A[z] with \\q\\ < 1.

Proof. Let n be the degree of p. Then define a sequence
(starting with the integer n) of monic polynomials as follows. For
m ^ n, set m = kn + r where 0 ^ r < n and k ^ 1. Then let

(1) Vjz) = zrp(z)k .
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Note that pm has degree m. Also, if s = \\ p || < 1 set t = slln (t ^ 0)
so that s = tn; it is clear that 0 fj ί < 1. Next pick a real number
M such that

|| 2* || < sM for l ^ i ^ n ,

if s > 0, or set ikf = 0 if s = 0. Then writing m as above we have

|| pm || ^ || p \\k || zr || ^ s*sikf = r f t + ί l M ^ tnk+rM = £mΛf .

Now fix a positive integer j" ̂  % — 1 such that

δMtj+1/(l - ί ) < 1/3 ,

where δ > 1 satisfies the conditions in § 2. For each m > j we define
a polynomial gm as follows. Set

( 2 ) gw = aopm + α : ^ . . ! + + ^w-i_iP i +i

where the α's are defined as follows. Let a0 = 1. Let /3 be the
coefficient of zm~γ in aopm. By the definition of <?, there is a βf eA
such that I /S' — β \ < δ. Then if we set ax = β' — β, we have that
p' = aQpm + OCXPTH-X has leading coefficient ^0 = 1 since the degree of
ftiPm-i is less than that of pm. Also, the coefficient of zm~~ι in pf is
the element β + (β' — β) = βr of A. Continuing in this way, we
pick α's such that | aζ \ < d for l r ^ i r g m — j — 1 and the coefficients
of 2m, , 2;i+1 in qm are elements of A. We have

( i j+

= δMtj+1 Σ ** ^ δ ^ - ^ — < 1/3 .
i=0 1 — ^

Next, if m > j , we define the (j + l)-tuple

((αm0), •••, (αmi))

as follows. If ami is the coefficient of zι in qm (0 ^ i ^ i), then let
[αmί] be an element of A closest to ami and set (ami) = ami — [ami], so
that I (ami) I < δ. As m varies, these (j + l)-tuples remain in the
product space (δD)j+\ where D is the closed unit disk in C.

Now if

M' = max {|| 3*11:0 ^ i ^ j} ,

we choose s' > 0 such that

ε'(i + 1)ΛΓ' < 1/3 .

Γhen, since (δD)j+1 is compact in the topology given by the norm
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IIKzo, •• , z i ) | | | = m a x | * i | >

there exist distinct m,, and m2 such that

III ( ( α . ι 0 ) , , (o β l , ) ) - ((αOT20), , (amzi)) ||| < e' .

We then have

έl(α.ll)-(α-1<)lll«<ll

( 4 )

We now combine these estimates as follows. From (3) we infer
that

(5) ik.1-?^ιι^ik«1ιι + ik. ϊιι<2/3.

If q'm denotes qm with [am.] in place of am. for 0 £Ξ ί ^ j , then (4)
shows that

^ΣI(ow)-(α»2i)M|zΊI<i/3.
i=0

Combining (5) and (6) we obtain

Also q'mi — q'm2 is a monic polynomial because each qm is monic with
degree m and mγ Φ m2. Thus we can take q = q'mi — q'm2 in the pro-
position.

COROLLARY 5.4. // A contains the identity and X is a compact
subset of C with d(X) < 1, then there is a monic polynomial qeA[z]
with || q \\x < 1.

LEMMA 5.5. Let q be a monic polynomial in A[z] with || q \\x < 1
and b e C[z\. Then there exists [b] in A[z] and M not depending on
b such that

\\b - [b]\\x < M .

Proof. Since n = deg q is at least 1 we can write
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b = &o + biQ + + bkq
k

where each b{ e C[z] and deg b{ < deg q for 0 S i ^ k. For each i let
[bi] be the polynomial obtained from &,- by replacing each coefficient
by a nearest element of A. Then with δ as in § 2 we have

l | < [ « ] | | Σ H l l .
3=0

where the last equality serves to define Mo. We have

Σ(
* = o

i n &*-[&*] ii i i? ii4

i=0

LEMMA 5.6. Let X be a compact subset of C and suppose further
that

( i ) X is LavrenVev;
(ii) feC(X);
(iii) q is a monic polynomial in A[z] with \\q\\x < 1;
(iv) for any e > 0 there is an re A[z] such that \f(z) — r(z) | < ε

whenever q(z) — 0, z e X.
Then f is A-approximable on X.

Proof. Let Zq be the set of roots of q which lie in X. Let ε
be any positive number. By (iv) there is an reA[z] such that

|/(z) - r(z) |<ε/4 for zeZq.

Then by continuity, there is, for each a e Zq a closed disk Da with
center a and radius pa such that the family {Da}aez is pairwise
disjoint and

\f(z)-r(z)\<εl2 for zeDanX.

Plainly there is a continuous function u mapping X into [0,1] such
that u(z) — 1 for z in no Da and u(z) — 0 if for some ae Zg, z is in
the closed disk of radius pa/2 and centered at a. It is easy to see that

(1)

By 5.5 there is a positive integer N such that

(2)

for every beC[z]. Now consider u(f— r)/qN, which is defined to be
zero whenever q is zero. It is continuous by construction. Thus by
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(i), there is an element b e C[z] such that

n(f-r) <e/4.

\u(f-r)-bqN\\<\\q\\Ne!A<εli.

\\u(f-r)-[b]qN\\<εl2

\\(f-r)-[b]q»\\<ε

It follows that

Then by (2)

and by (1)

or

THEOREM 5.7. Let X be a LavrenVev subset of C with d(X) < 1.
If f is a complex valued function on X then the following are
equivalent.

( i ) f is A-approximable on X;
(ii) f is continuous and A-matchable on J0(X, A).

Proof. From 4.6 and 4.5 we see that (i) implies (ii). To prove
the converse first note that if / = p on J0(X, A) and peA[z], then
it suffices to approximate f — p which is zero on J0(X, A). Hence we
assume that / = 0 on J0(X, A). Let L be the imaginary quadratic
field such that AaIL. By § 2 there exists a positive integer m such
that mILczA. Thus if peIL[z] and \\flm — p\\<ε/m then | | / - m p | | < ε
and mpeA[z\. In view of this we assume that A = IL.

Then A, X, and / satisfy the hypotheses of 5.6 and it only remains
to show that 5.6 (iii) and (iv) hold. By 5.4 there exists a monic
qeA[z] with \\q\\x < 1, so that 5.6 (iii) is satisfied. Let Zq denote
the set of all zeroes of q which lie in X. Write J0(X, A) as the union
of the sets of zeroes of a set of monic irreducible polynomials,
{QU9",QS}, i n

 IL[Z] Denote the remaining elements of Zq by
au , ak so that

Zq = J0(X, A) I) • , « * } .

By the definition of JQ(X, A) the a/s form a set of algebraic numbers
which does not contain a complete set of conjugates over L. In view
of this 7.3 can be applied to give peA[z] such that
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< - f or 1 ̂  i ^ k .
\Qi Q*(<Xi)

Then

PQi Qs(z) - f(z) I < ε for zeZq

and pgx qse A[z] which shows that 5.6 (iv) is satisfied.

THEOREM 5.8. Let X be a Lavrent'ev subset of C with d(X) < 1.
Then a continuous complex valued function f on X is A-approximable
if and only if its Lagrange interpolating polynomial r on J0(X, A)
is an element of A[z],

Proof. By 5.7 the condition r e A[z] is sufficient for the A-appro-
ximability of / since r matches / on J0(X, A). Conversely, from 5.7
we know that if / is A-approximable then there is a p e A[z] which
matches / on J0(X, A). Let qu , qs be as in the proof of 5.7. Since
each q is irreducible it has only simple roots. Thus deg q± qs =
card J0(X, A) which we write as n. Since qx qs is a monic poly-
nomial in A[z] we can find w,te A[z] such that

p = w(q1 qs) + t , deg t < n

by the division algorithm. Thus t = p = / on J0(X, A) and then by
the uniqueness of Lagrange interpolating polynomials t — r and r — f
on JQ(X, A).

We see from 5.7 and 5.8 that, under the hypotheses of 5.7 the
question of approximability is effectively known once we know the
finite set J0(X, A). The following shows that under these hypotheses
the set J0(X, A) has another characterization.

THEOREM 5.9. Let X be a LavrenVev subset of C with d(X) < 1.
Then

J(X, A) = J0(X, A) .

Proof. By 4.5, Jo = J0(X, A) c J(X, A) = J, so we need only
prove the reverse inclusion. Let L be the imaginary quadratic field
such that AaIL. By § 2 there is a positive integer m such that
mIL c A. By 5.4 there is a monic q e IL[z] such that || q \\ < 1. Then
for a sufficiently large positive integer N, q0 = mqN is a nonzero
polynomial in A[z] with ||go | | < 1. This shows that J is finite. Let
aγ be any element of J. Then go(A) = 0 so q(a^ = 0 and aγ is integral
over IL. Let r e IL[z] be the minimal polynomial over L of ax. We
assume that ay$ Jo, that is that not all the zeroes of r lie in X and
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infer a contradiction from this. Denote the zeroes of r by {al9

where

a{eX f or 1 ^ i ^ k

and

at $ X for Jc < i <^n (fc < n)

By 7.1 there is a tfίe/zjs] such that

Then

( 1 )

if

<

e A[z] and

î(^<) — I/ 2 1

1
2m

<l/2

for

for

1 ^

1 ^

i ^

Now, since ateJ, if g2 is any element of A[z] with \\q2\\ < 1, then
Qti&d — 0. The minimal polynomial r of α2 then divides q2 and so
^(^i) = 0 for 1 tί i ^ n. Thus {^, , ak} is contained in J . We
write

where the yβy's are distinct and also distinct from the a/s. If I = 0
define #3 to be the polynomial 1. If Z > 0 define 3̂ to be the product
of the minimal polynomials over L of the /3/s. Each βd, being in J,
is a zero of q0 and therefore of q and so is integral over IL. Thus
#5 is an element of IL[z\. Furthermore, q3 = mikΓ̂ s e A[2;] and

( 2 ) gs(A ) = f o r l ^ i

Since no /Ŝ  is conjugate to an a{

( 3 ) g8(α<) ^ 0 for 1 ^ i ^ n .

By (1) and (3) there is a positive integer s such that if

then

Also, by (2), we have

0 < I quad I < 1

q,(βi) = 0

f or 1 ^ i ^ fc .

f or 1 ^ i ^ Z .

Now it is easy to construct a continuous function / with ||/|[ < 1
such that
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for 1 <̂  i < k

and

f(βύ = ?,(&) = 0 for 1 ^ i ^ I

This function / is matchable on Jo and by 5.8, it is A-approximable
on X. It is easy to see that we can choose qδ e A[z] with 11/ — qδ\\
small enough to force 11 qδ \ | < 1 and q^a^ | > 0 which is a contradic-
tion.

In § 4 we showed that if d(X) ^ 1 then A[z] is already uniformly
closed in C(X). The following is a partial converse to that result.

PROPOSITION 5.10. Let X be a Lavrent'ev subset of C with
d(X) < 1. Then A(z) is uniformly closed in C(X) if and only if

J(X, A) = X .

In particular, if X is infinite, then A[z] is not uniformly closed in
C(X).

Proof. Suppose that J = J(X, A) = X and that feC(X). By
5.7 and 5.9, if / is A-approximable on X, it is A-matchable on J = X
and so feA[z], which shows A[z] is uniformly closed in C(X).

On the other hand, if J Φ X, let zQ be a point in X but not in
J. For any y e R we can define a continuous function /0: J U {20} ~* C
by /o(e/) = {0} and fo(zo) = ?/. It is continuous where defined since
d(X) < 1 which implies that J is finite, as in the proof of 5.7, so
that the relative topology on J U {20} is discrete. By Tietze's extension
theorem there is a continuous extension / of f0 to all of X. But /
is obviously A-matchable on J and so is A-approximable on X by 5.7.
Since y is any real number this shows that there are uncountably
many A-approximable / i n C(X). On the other hand, A[z] is countable,
since A is, so A[z] Φ A[Z]~, where the bar denotes uniform closure in
C(X).

The last statement now follows from the fact that J(X, A) is
finite whenever d(X) < 1.

6* The real case* In this section we consider the problem
analogous to that of § 5 but where X is a compact subset of R. We
take as our ring of coefficients any nonzero subring R of Z. Such
rings comprise the discrete nonzero subrings of R. They are thus
discrete subrings of C but do not have rank 2. The results follow
readily from the corresponding results in the complex case.

To emphasize that XaR. We use the symbol x instead of z to
denote an arbitrary element of X.
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Note that in § 4 the ring of coefficients A was required to have
rank 2, hence the following definition is consistent with 4.4.

DEFINITION 6.1. For any compact subset X of R let J0(X, Z)
denote the union of the complete sets of conjugates integral over Z
and entirely contained in X.

That is, J0(X, Z) is the union of the complete sets of conjugate
algebraic integers contained in X.

We now proceed to show that this separate definition is, in a
sense, unnecessary.

PROPOSITION 6.2. Let X be a compact subset of R. Then for
any imaginary quadratic field L, we have

J(X, Z) = J(X, IL) .

Proof. Since B(X, Z) c B(X, IL) the inclusion J(X, IL) c J(X, Z)
is obvious. On the other hand, let x0 e J(X, Z) and let p e B(X, IL).
Then | | p | | < 1, so for some positive integer n,

\\pn\\ = | |p[ | < l / 2 .

Then we have

|| Re (p*) | | < 1/2 and | | I m ( ^ ) | | < 1/2 .

Furthermore, from § 2 we see that 2Re(pn) and (2/v/\ d\) Im (pn) are
in Z[x], where L = Q(V d) with d a square free integer and Re(pn)
(resp. Im (pn)) denotes the polynomial obtained by replacing the coeffi-
cients of pn by their real (resp. imaginary) parts. Also

and

and so by definition of J(X, Z)

2Re (pn)(x0) = 0

and

(2/τ/jTl) Im (p*)(x0) = 0 .

But pn(xQ) = (Re (pn))(xQ) + ί(Im (pn))(xQ) and so pn(x0) = 0, which implies
that p(x0) = 0. Hence x0 e J(X, IL) and J(X, Z) c J(X, IL).

Before proving the next proposition we note that if X is a compact
subset of R it is Lavrent'ev by 5.2 or by the Stone-Weierstrass theorem.
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PROPOSITION 6.3. Let X be a compact subset of R with d(X) < 1.
Then for any imaginary quadratic field L,

jo(X, z) = jo(xf iL).

Proof. If xoeJo(X,Z), then x0 is a root of a monic polynomial
p e Z[x] which has all of its roots in X. Thus z0 is integral over IL.
The minimal polynomial q of x0 over L is then an element of IL[z],
monic, irreducible, and divides p so that the roots of q all lie in X.
Thus xoe J0(X, IL).

For the reverse inclusion notice that J0(X, IL) = «/"(-3Γ, /L) = J(X, Z)
by 6.2 and 5.9. This shows, in particular, that J0(X, IL) is independent
of the choice of L. Suppose then, that L = Q(i) where i2 = — 1.
Then IL is the set of Gaussian integers. If x0 e J0(X, IL) then it is a
root of monic, irreducible p in IL[z] having all of its roots in X.
Then the coefficients of p, being simply the elementary symmetric
polynomials in the roots, are in IL Π R. But IL Π R — Z, so xQ e JQ(X, Z).
Since x0 is any element of JQ(X, /L), J0(X, IL) c J0(X, Z).

THEOREM 6.4. // X is any compact subset of the real line R
with d(X) < 1, then

J(X, Z) - J0(X, Z) .

Proof. This is immediate from 6.2, 6.3 and 5.9.
A natural question at this point is whether or not the hypothesis

d(X) < 1 can be dropped from 6.4 or 5.10. We see that it cannot be
dropped in either case by the following argument.

Let L be an imaginary quadratic field and X any uncountable
compact subset of C with d(X)^l. Then we know that B(X, JL) = {0}
by the comments following 4.2 and so B(X, Z) — {0}. This implies
that J(X, IL) = J(X, Z) = X by definition. On the other hand, every
element of J0(X, Z) (respectively MX, II)) is algebraic over Q and so
Mχ> Z) (respectively J0{x, IL)) is countable and so not equal to X =
J(X, Z) = J(X, IL).

Another question is whether or not it is necessary to consider
polynomials with complex coefficients when seeking the Chebyshev
polynomials tn = tn(x, X) for XaR. This is not necessary since the
Chebyshev polynomials have real coefficients in this case since

|| Re (U II ^ I K I I .

THEOREM 6.5. If X is a compact subset of R and R is a nonzero
subring of Z, then a function f in Cr(X) is R-approximable if and
only if f is R-matchable on J(X, Z).
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Proof. If / is iϋ-approximable then it is i?-matchable on J{X, Z)
by 4.6 and 6.2. Conversely, suppose that / is iϋ-matchable on J(X, Z).
If d(X) ^ 1 then B(X, Z) = {0} by the comments following 4.2 and
so J(X, Z) = X. Thus / is in fact, a member of R[x]. If d(X) < 1
assume that / is ϋ!-matchable on J(X,Z), say by peR[x]. Since R
is a nonzero subring of Z we have R = nZ for some positive integer
n. It suffices to approximate q = / — p. In fact it suffices to appro-
ximate qQ = g/w by an element of Z[x], since if

I q/n - p I < e/tt

then

I q - nq \ < e

and np e (nZ)[x] = #[#]. Let L be any imaginary quadratic field (the
Gaussian numbers, for example). Since q0 is zero on J(X, Z) = J(X, IL)
it is /L-matchable on J{X, IL). Thus, for any ε > 0, there exists a
p e IL[z] such that

(1) Hp-ffolU<e/2,

by 5.7 and 5.9. Then for any x e X

A > I Im (p(x) - f(x)),
Δ

Since p =

and by (1)

From

Re p + i Im p

we

the

II
have

II

above proof

=

=

v -

Re

we

Im (p(x))
(Im p)(x)

- Rep|| <

v - QΛ\X -

have the

e/2,

< ε .

following

COROLLARY 6.6. // d(X) *>l,f is R-approximable on X if and
only if f is already an element of R[x].

Since the transfinite diameter of an interval is one fourth its
length we have the following.

COROLLARY 6.7. If X — [α, b] and b — a ^ 4 then f is R-appro-
ximable on X if and only if f is already an element of R[x],
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Using essentially the same arguments as for their respective
counterparts 5.8 and 5.10, the following can be proved.

PROPOSITION 6.8. Let X be a compact subset of R with d(X) < 1
and R a nonzero subring of Z. Then an element / of Cr(X) is R-
approximable on X if and only if the Lagrange interpolating poly-
nomial for / on J(X, Z) is an element of R[x\.

PROPOSITION 6.9. Let X be a compact subset of R with d(X) < 1
and R a nonzero subring of Z. Then R[z] is uniformly closed in
Cr(X) if and only if

J(X, Z) = Xr

In particular, if X is infinite, then Z[x] is not uniformly closed in

The main result of this section is Theorem 6.5. It reduces the
problem to that of finding J(X, Z). For some nontrivial cases where
J(X,Z) has been determined see [7, §5].

7* Appendix* An approximation theorem* Throughout this
section let A be any discrete subring of C of rank 2 and containing
the identity. Let L be the unique imaginary quadratic field such that
A c IL.

THEOREM 7.1. Let aly , an be a complete set of conjugates over
L, ε any position number, and z2, , zn any complex numbers. Then
there is a polynomial q e A[z] such that

I q(ai) — z3-1 < ε for 2 ^ j ^ n .

Proof. This is a consequence of the "very strong approximation
theorem," c.f. [10, p. 77, 33:11].

THEOREM 7.2. Let

an, , alri

fY ΓV

be an array (not necessarily rectangular) with each row an incomplete
set of conjugates over L and where the minimal polynomials pu , ps

in L[z] satisfied by the respective rows are distinct. Then if the



68 LE BARON 0. FERGUSON

array

consists of any complex numbers and ε > 0, there exists a q e A[z]
such that

I q(atί) - ziS I < ε for 1 ^ j ^ riy 1 ^ i ^ s .

Proof. Let

tfί = (II PA: )/Pi for 1 ^ i ^ s .

Then q'i(akj) = 0 if and only if A: ̂  i by definition of the p's. Fur-
thermore, each g is a polynomial with coefficients in L. But L is
the field of quotients of A and we can suppose that each coefficient
of each q\ appears as a ratio of elements of A. If k{ is the product
of the denominators of the coefficients of q\ then the coefficients of
the polynomial k^ lie in A. For l<^ΐ<^s, by 7.1, there i s a g 'eA[2l
such that

= ^ = r* -

Thus

I («?*<«:•)(««) ~ «« l < e for 1 ^ i ^ r, .

If we set q = gί'&itfί + + q"ksq's, then g is in A[a;] and q(aiβ) —
(q'-kaΰidij) since q'k(ai:j) = 0 if fc Φ i. Thus

- zu I = I (q"ka'd(0Lij) - ziS I < ε

for all i,j.

We note that another way of looking at Theorem 7.2 is the follow-
ing.

COROLLARY 7.3. // {aί9 , ak) is any set of algebraic numbers
which does not contain a complete set of conjugates over L, then the
set of k-tuples

(«i), - -, P(ock)): p e A[z]}

is dense in Ck.
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I wish to thank Professor Edwin Hewitt for his help and encour-
agement as thesis advisor. The appendix and its application herein
arose out of conversations with Professor David Cantor.
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