A COUNTER-EXAMPLE TO A FIXED POINT CONJECTURE

EARL J. TAFT

Let A be a finite-dimentional commutative Jordan algebra over a field F of characteristic zero. Then we may write A = S + N, S a semisimple subalgebra (Wedderburn factor), N the radical of A, [5], [6]. If G is a completely reducible group of automorphisms of A, then we may choose S to be invariant under G, [4]. If G is finite, then we showed in [10] that any two such G-invariant S were conjugate via an automorphism σ of A which centralizes G and which is a product of exponentials of nilpotent inner derivations of A of the form $\sum [R_{a_i}, R_{x_i}], x_i$ in N, a_i in A, where R_a is multiplication by a in A. It was conjectured in [10] that the various elements x_i and a_i which occur in the formulation of σ could be chosen as fixed points of G. This conjecture was based on analogous fixed point results proved for associative and Lie algebras, [7]. [8], [9]. However, this conjecture is false, and we present in this note a simple counter-example.

We consider three-by-three matrices over F. Denoting by e_{ij} the usual matrix units, set $e = e_{11} + e_{22}$, $f = e_{33}$ and $x = e_{31}$. Consider the Jordan algebra A with basis e, f, x and multiplication table

	e	f	x	
e	2e	0	x	
f	0	2f	x	
\overline{x}	x	x	0	

Clearly A has a one-dimensional radical N=Fx, and S(0)=Fe+Ff is a Wedderburn factor of A. By [2], all Wedderburn factors are isomorphic, so are spanned by two orthogonal idempotents. The only idempotents (nonzero) of A are $(e/2) + \alpha x$, $(f/2) + \beta x$, α , β in F. The only pairs of orthogonal idempotents are $(e/2) + \alpha x$, $(f/2) - \alpha x$, α in F. Hence the Wedderburn factors of A are of the form $S(\alpha) = F(e + \alpha x) + F(f - \alpha x)$, and clearly $\alpha \to S(\alpha)$ is one-to-one.

A has two types of automorphisms, as can be seen by a direct check. The first type $A(\delta, \pi)$, δ , π in F, $\pi \neq 0$, is given by:

E. J. TAFT

406

$$A(\delta, \pi) egin{cases} e o f + \delta x \ f o e - \delta x \ x o \pi x \end{cases}$$

The second type $B(\delta, \pi)$, δ , π in F, $\pi \neq 0$, is given by:

$$B(\delta, \pi) egin{cases} e o e + \delta x \\ f o f - \delta x \\ x o \pi x \end{cases}$$

A calculation shows that $S(\alpha)$ $B(\delta, \pi) = S(\alpha \pi + \delta)$, so that if $\pi \neq 1$, $S((1-\pi)^{-1}\delta)$ is the only $B(\delta, \pi)$ -invariant Wedderburn factor of A. If $\delta \neq 0$, then $B(\delta, 1)$ fixes no Wedderburn factor, and B(0, 1) = I, the identity mapping of A.

Turning to $A(\delta, \pi)$, we have that $S(\alpha)A(\delta, \pi) = S(-\alpha\pi - \delta)$. Hence if $\pi \neq -1$, $S(-\delta(1+\pi)^{-1})$ is the only $A(\delta, \pi)$ -invariant Wedderburn factor of A. If $\delta \neq 0$, then $A(\delta, -1)$ fixes no Wedderburn factor, but A(0, -1) fixes all Wedderburn factors $S(\alpha)$. Let G be the group of order two generated by A(0, -1):

$$A(0, -1)$$

$$\begin{cases} e \longrightarrow f \\ f \longrightarrow e \\ x \longrightarrow -x \end{cases}$$
.

Note that e-f and x are eigenvectors for the eigenvalue -1 of A(0, -1), so that F(e+f) is the fixed point space of G. $R_{e+f}=2I$, and N has no nonzero fixed points under G, which disproves the conjecture.

In checking the result of [10] in this example, let $D = [R_{e-f}, R_x] = R_{e-f}R_x - R_xR_{e-f}$. Then one can check that

$$\sigma = \exp\left(\left(\frac{\beta - \alpha}{2}\right)D\right) = I + \frac{\beta - \alpha}{2}D$$

will map $S(\alpha)$ onto $S(\beta)$ for any α , β in F. Since e-f and x are in the -1 - eigenspace of A(0,-1), the rule $g^{-1}R_ag=R_{ag}$ for α in A, g an automorphism of A, shows that D commutes with A(0,-1), so that σ centralizes G. This leads to the more complicated conjecture that one can formulate σ in terms of inner derivations $[R_a, R_x]$, α in A, x in N, such that for any g in G, α and x are eigenvectors of g corresponding to eigenvalues $\alpha(g)$ and $\beta(g)$ respectively, such that $\alpha(g)\beta(g)=1$. Such a σ will centralize G. We also note that this conjecture and the fixed point conjecture are still open for alternative algebras (see [10] for a precise formulation), although the fixed point conjecture now seems unlikely for alternative algebras, in view of the

above counter-example for Jordan algebras, due to the close relation between alternative and Jordan algebras, [3]. We also remark that for completely reducible G, the existence of a σ centralizing G is still an open question. If $N^2=0$, this is trivial (see [10], § 5), and the difficulty lies in the case $N^2\neq 0$. We also note that if F is any field of characteristic not two, then our example has A/N separable and $N^2=0$, in which case the Wedderburn-Malcev properties hold, [1], [2], [6], and any finite group G of order not divisible by the characteristic of F will fix a Wedderburn factor, [6]. So our example also shows that the fixed point conjecture is false for the case $N^2=0$, R/N separable.

We conclude with an example of an infinite group G which illustrates the conjecture for completely reducible G that σ can be chosen to centralize G, in a case where $N^z \neq 0$. Again considering three-by-three matrices over F, let $e = e_{11} + e_{33}$, $x = e_{12}$, $y = e_{23}$, $z = e_{13}$. Let A be the Jordan algebra with basis e, x, y, z and multiplication table

	e	x	y	z .
e	2e	x	y	2z
\overline{x}	x	0	z	0
y	y	z	0	0
\overline{z}	2z	0	0	0

Clearly the radical N of A is N = Fx + Fy + Fz, $N^2 = Kz$ and $N^3 = 0$. Clearly S(0, 0) = Ke is a Wedderburn factor, and if we calculate the elements f for which $f^2 = 2f$, we find

$$f = e + \alpha x + \beta y - \alpha \beta z, \alpha, \beta \in F$$
.

Since all Wedderburn factors are isomorphic (we are assuming characteristic zero), the Wedderburn factors are of the form

$$S(\alpha, \beta) = F(e + \alpha x + \beta y - \alpha \beta z)$$
,

and the correspondence $(\alpha, \beta) \rightarrow S(\alpha, \beta)$ is one-to-one on $F \times F$.

Let $\delta \in F$, $\phi \in F$, $\phi \neq 0$, 1. Let $A(\delta, \phi)$ be the automorphism of A given by:

$$A(\delta, \phi) \begin{cases} e \to e + \delta y \\ x \to x - \delta z \\ y \to \phi y \\ z \to \phi z \end{cases}$$

408 E. J. TAFT

 $A(\delta, \phi)$ is completely reducible, since A has a basis of eigenvectors $y, z, (1 - \phi)e + \delta y, (1 - \phi)x - \delta z$, the latter two being fixed points of $A(\delta, \phi)$. One can check that $S(\alpha, \beta)A(\delta, \phi) = S(\alpha, \delta + \beta \phi)$, so that $S(\alpha, \delta(1 - \phi)^{-1})$ is fixed by G, the group generated by $A(\delta, \phi)$, for any α in F. For α, α' in F, set

$$D = (\alpha' - \alpha)(1 - \phi)^{-2}[R_{(1-\phi)e^{+\delta y}}, R_{(1-\phi)x-\delta z}]$$

Then one can calculate that $\sigma = \exp D = I + D + (D^2/2)$ carries $S(\alpha, \delta(1-\phi)^{-1})$ onto $S(\alpha', \delta(1-\phi)^{-1})$, and centralizes G since the elements $(1-\phi)e + \delta y$, $(1-\phi)x - \delta z$ are fixed points of $A(\delta, \phi)$. Note that if ϕ is not a root of unity, then G is an infinite group.

Another automorphism $B(\delta, \tau)$ of A, for δ, τ in $F, \tau \neq 0$, is given by:

$$B(\delta,\, au) egin{cases} e
ightarrow e - \delta au x + \delta y + \delta^2 au z \ x
ightarrow au^{-1} y + \delta z \ y
ightarrow au x - \delta au z \ z
ightarrow z \end{cases}$$

 $B(\hat{\delta}, \tau)$ has a three-dimensional fixed point space spanned by $e + \delta y$, z and $\tau x + y$, and an eigenvector $\tau x - y - \delta \tau z$ for the eigenvalue -1, so that $B(\delta, \tau)$ is completely reducible. Actually $B(\delta, \tau)^2 = I$, so G here is a group of order two. One calculates that $S(\alpha, \beta)B(\delta, \tau) = S(-\delta \tau + \beta \tau, \delta + \alpha \tau^{-1})$. Hence $S(\alpha, \delta + \alpha \tau^{-1})$ is G-invariant for any $\alpha \in F$. Set $D' = \tau^{-1}(\alpha' - \alpha)[R_{e+\delta y}, R_{\tau x+y}]$ for $\alpha, \alpha' \in F$. Then

$$\sigma=\exp D'=I+D'+rac{(D')^2}{2}$$

carries $S(\alpha, \delta + \alpha \tau^{-1})$ onto $S(\alpha', \delta + \alpha' \tau^{-1})$, and centralizes G since $e + \delta y$ and $\tau x + y$ are fixed points of $B(\delta, \tau)$. Hence, in this case, the fixed point property holds, although, as we have seen in our first example, it does not hold for every finite group G.

REFERENCES

- 1. B. Harris, Derivations of Jordan algebras, Pacific. J. Math. 9 (1959), 495-512.
- 2. N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. **70** (1951), 509-530.
- 3. ———, Structure of alternative and Jordan bimodules, Osaka Math. J. 6 (1954), 1-71.
- 4. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.
- 5. A. J. Penico, The Wedderburn principal theorem for Jordan algebras, Trans. Amer. Math. Soc. **70** (1951), 404-421.
- 6. E. J. Taft, Invariant Wedderburn factors, Illinois J. Math. 1 (1957), 565-573.
- 7. ——, Uniqueness of invariant Wedderburn factors, Illinois, J. Math. 6 (1962),

353-356.

- 8. ———, Invariant Levi factors, Michigan Math. J. 9 (1962), 65-68.
 9. ———, Orthogonal conjugacies in associative and Lie algebras, Trans. Amer. Math. Soc. 113 (1964), 18-29.
- 10. ——, Invariant splitting in Jordan and alternative algebras, Pacific J. Math. **15** (1965), 1421-1427.

Received August 2, 1967. Research supported by National Science Foundation Grant GP-7162.

RUTGERS, THE STATE UNIVERSITY