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POWER SERIES RINGS OVER A KRULL DOMAIN

ROBERT GILMER

Let D be a Krull domain and let {X)\}a.s be a set of in-
determinates over D, This paper shows that each of three
‘“rings of formal power series in {X,} over D’ are also Krull
domains ; also, some relations between the structure of the
set of minimal prime ideals of D and the set of minimal
prime ideals of these rings of formal power series are esta-
blished.

In considering formal power series in the X,’s over D, there are
three rings which arise in the literature and which are of importance.
We denote these here by D[[{z.}]],, D[[{X}]]., and D[[{X;}]l.. D[H{X:}IL
arises in a way analogous to that of D[{X,}]—namely, D[[{X}]] is
defined to be Uyp..D[[F']], where & 1is the family of all finite
nonempty subsets of 4. D[[{X;}]]. is defined to be

{i filfie DUX}, f: =0 or a form of degree z} ,

where equality, addition, and multiplication are defined on D[[{x,]]. in
the obvious ways. D[[{X,}]]. arises as the completion of D[{X,}] under
the ({X,})-adic topology; the topology on D[[{X;]]. is induced by the
decreasing sequence {A;}; of ideals, where A; consists of those formal
power series of order = i—that is, those of the form >3, f;. If 4
is infinite, A, properly contains the ideal of D[[{X,}]]. generated by
{X,}. Finally, D[[{X,}]]; is the full ring of formal power series over
D, and is defined as follows (cf. [1, p. 66]): Let N be the set
of nonnegative integers, considered as an additive abelian semi-
group, and let S be the weak direct sum of N with itself | 4| times.
S is an additive abelian semigroup with the property that for any
se S, there are only finitely many pairs (¢, ) of elements of S whose
sum is s. D[[{X,}]]; is defined to be the set of all functions f:S—
D, where (f + g)(s) = f(s) + g(s) and where (f9)(s) = 3.+u. S(t)g(u)
for any se S, the notation >),.,-, indicating that the sum is taken
over all ordered pairs (¢, u) of elements of S with sum s. To within
isomorphism we have D[[{X}]], & D[[{X.:}]]. < D[[{X.}]}s, and each of
these containments is proper if and only if A is infinite. Qur method
of attack in showing that D[[{Xi}]];, ¢+ =1, 2, 3, is a Krull domain if
D is consists in showing that D[[{X,}]]; is a Krull domain and that
DI{X}: N K; = D[[{X,}]]; for ¢« = 1,2, where K, denotes the quotient
field of D[[{X}]..

1. The proof that D[[{X;}]]; is a Krull domain. Using the
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notation of the previous section, we introduce some terminology which
will be helpful in showing that D[[{X}]]; is a Krull domain. We think
of the elements of S as |4 |-tuples {n;};., which are finitely nonzero.
For s = {n;} €S, we define 7(s) to be >.;.,m; and we denote by S; the
set of elements s of S such that z(s) = ¢; clearly 7 is a homomorphism
from S onto N. Given a well-ordering on the set 4, we well-order
the set S as follows: if s = {m,} and ¢ = {n;} are distinct elements of
S, then s <t if w(s) < n(t) or if w(s) = n(t) and m, < n, for the first
X in 4 such that m, and n, are unequal. It is clear that this order-
ing on S is compatible with the semigroup operation—that is, s, < s,
implies that s, +¢ < s, + ¢ for any ¢ in S. Also, S is cancellative
and s, + ¢t < s, + t implies that s, <s,.

If fe D[[{X:}]]: — {0}, we say that f is a form of degree i, where
i€ N, provided f vanishes on S — S;; the order of f, denoted by
Z(f), is defined to be the smallest nonnegative integer ¢ such that
f does not vanish on S,. If &°(f) =k, then the initial form of f
is defined to be that element f, of D|[[{X;}]]l; which agrees with f on
S, and which vanishes on S — S,.

Lemma 1.1. If f, g€ DI[{X:}]]: — {0}, then

(1) If f+9+#0, Z(f + 9 =z min{Z(f), 79}

(2) o(f9) =) + Z(9).

(38) If f and g are forms of degree m and m, respectively, then
fg s a form of degree m + mn.

(4) The initial form of fg is the product of the initial forms
of f and of g¢.

Proof. In a less general context, Lemma 1.1 is a well known
result; we prove only (2) and (3) here.

(2): We let s be the smallest element of S on which f does not
vanish and we let ¢ be the corresponding element for g. By definition of &
and &, 7(s) = &(f) = 7 and w(t) = <(9) = 7. To show that &(fg) =
1 -+ j, we prove that (fg)(s + t) = 0 and that (fg)(u) = 0 for u < s + ¢.
The second statement is clear, for if s’ 4 ¢’ == u, then either s’ <s
or ¥’ < t so that f(s’) = 0 or g(¢') = 0 and f(s')g(t') = 0 in either case.
By similar reasoning, we see that (fg)(s + t) = f(s)g(t) # 0. Hence
a(f9) =1+7.

(38): By (), &(fg) = m +n. To see that fg is a form, we
need only observe that fg vanishes on S, for any & > m + n. Thus
if weS,, then (fo)(w) = Xur=0f @)g(v) and for each such pair (u, v)
either w(u) > m or w(w) >n so that f(u) =0 or g(v) =0 so that
(f9)(w) = Xuio=uf (@)g(v) = 0.

LEmMmA 1.2, Let K be a field and let {D,} be a family of sub-
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domains of K such that each D, is a Krull domain. Let D = (), D,
and suppose that each monzero element of D 1is a monunit in only
finitely many D,s. Then D is a Krull domain.

Proof. For each a we consider a defining family {V}¥} of rank
one discrete valuation rings for D,. If L is the quotient field of D
and & = {V}® N L}, &7 is a family of discrete valuation rings of
rank < 1, and the intersection of the members of the collections .&*
is D. If d is a nonzero element of D, then d is a nonunit in only
finitely many D.s, say D,, -++, D,,. Because D,, is a Krull domain
and {V{*"} is a defining family for D,,, d is a nonunit in only finitely
many of the Vi*'’s, Therefore D is a Krull domain and the family
of essential valuations for D is a subfamily of {V{® n L}, [6, p. 116].

We now give an outline of our proof that D[[{X;}]], is a Krull
domain when D is a Krull domain. Let K be the quotient field of
D and let {V,} be the family of essential valuation rings for D [7,
p. 82]. By a result due to Cashwell and Everett [3] (see also [4]),
J[[{X}]]: is a unique factorization domain (UFD), where J is an in-
tegral domain with identity, if and only if J[[Y,, ---, Y,]] is a UFD
for any positive integer n. If J is a principal ideal domain, then
JIY, ---,Y,]] is a UFD for any = [2, pp. 42, 100]; in particular,
K[[{X}]]s and V. [[{x:}]]: are then UFD’s for each a. Consequently,
(VoIl{Xi]k)y, is 2 UFD for any multiplicative system N, in V [[{X}]]..
To show that D[[{X;}]]; is a Krull domain, it will be sufficient, in
view of Lemma 1.2, to show that by appropriate choices of the
multiplicative systems N,, we can express D[[{X,}]]; as

K[[{XZ}]]S N (no: (Va[[{XZ}]]S)Na)y

where each nonzero element of D[[{X;}]]; is a nonunit in only finitely
many (V. [[{X:}])y,'s. We define N, as follows:

N, ={f e VI{Xi}] — {0} | (f) = © and there exists s S; such that
f(s) is a unit of V,}, and we prove

ProposITION 1.3. N, is a multiplicative system in V. [[{X}H]s.

(VI[{ X )y, N KX = VI{XHs
so that

DX} = KIHX:HL N (N (VA [{XGH])w,) -

Each nonzero element of D[[{X:}]]: ts in all but a finite number of
the N.'s.
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Before giving the proof of Proposition 1.2, we recall a result
concerning the content of the product of two polynomials. Let J be an
integral domain with identity having quotient field F' and for fe F[{X}}],
let A, denote the fractional ideal of J generated by the set of coefficients
of f. In order that A,, = A;A4, for each pair f,g of elements of
F[{X}}], it is necessary and sufficient that J be a Priifer domain’
[5, Th. 1]. In particular A,, = A;A, for each f,ge F[{X,}] if J is
a valuation ring.

Proof of Proposition 1.8. To show that N, is a multiplicative
system, let f, ge N,. Then the initial forms f;, g; of f and g are in
N,. fig; is the initial form of fg and < (fg) =1 + 3 = 2(f) + 2(9).
Therefore we need only show that (fg)(s) is a unit of V, for some
s€ S;y;. The smallest element % of S for which f(u) is a unit in V,
is an element of S; and the smallest element v of S for which g(v)
is a unit of V, is an element of S;. w +veS;;; and (f9)(u + v) =
vt S @)9(@') is a unit of V,. For if ' + ¢ =u + v and if
{w', v'} # {u, v}, then either u’ < u or v' < v so that f(u’) or g(v’), and
hence f(u')g(v'), is a nonunit of V,. It follows that (fg)(w + ») is
the unit f(u)g(v) plus a nonunit of V,. Therefore (fg)(w 4+ v) is a
unit of V,, fge N,, and N, is a multiplicative system.

To prove that K[[{x;}]]: N (V. [l[{z:)re & V[{Xi}]]s, (the opposite
containment is clear), we must show that if fe K[[{X;}[]: — {0} and
if there is an element g of N, such that fge V, [[{Xi}]]s, then
f e VJI{X:]. By induction, it suffices to show that the initial form
fiof fisin V [[{X}]];. If g; is the initial form of g, then g;€ N,
and f;g;, the initial form of fg, is in V,[[{X,}]]. We can therefore
assume without loss of generality that f and g are forms of degree
7 and j, respectively. Let se€S;. We must show that f(s)e V,. Let
t be an element of S; such that ¢g(¢) is a unit of V,. If s = {m;} and
if ¢ = {n;} there are only finitely many elements z of 4 such that
m, # 0 or n, = 0; let A, \,, »++, N, be this finite set of elements of 4,
There are only finitely many elements {k;} of S; such that k, = 0 for
each z¢ [\, ---,\,}; let these elements be s,s,, ---,s,. Also, there
are only finitely many elements {k;} of S; such that %k, = 0 for each
2¢&{\, +--, N}, and we let these elements be ¢, ¢, «--,f,.. If f* is

@) (@) .
the polynomial EP', f(s.,)Xzfz e X jz, where s, = {n{} and if ¢* =
¢=1

r m () m{9) oy Le
> g(tq)Xhli . ¢ Aﬂ, where ¢, = {m{®}, then by definition of addition
¢=1

in S, it is true that (fg)({k:}) is equal to the coefficient of Xjfu « -+ X}
in f*g* for any {k;} in S,.; such that k£, =0 for e {\, ---,\,}.

1 A Priifer domain is an integral domain with identity in which each nonzero
finitely generated ideal is invertible.
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Therefore, f*g* € V.[X;, -+, X, ] since fge V. [[{X,}]l,. Further, A, =
V, since te{t, -+, t,} and since g(¢) is a unit of V,. Therefore
ApA,. =Ap=A4H. SV, But f(s)e Ay sincese{s, s, +++,s,}. Hence
f(s)e V, and our proof is complete.

Finally, if % is a nonzero element of D[[X;}]]; of order ¢, then
we choose seS; such that h(s) = 0. Since {V,} is the family of
essential valuation rings for the Krull domain D, h(s) is a unit in all
but a finite set {V,,:--, V., } of the Vis. Hence & is in each N,
save N,, +++, No,.

THEOREM 1.4. If D is a Krull domain, then D[[{X:}]]; is also a
Krull domain.

2. The proofs that D[[{X}]], and D[[{X;}]]. are Krull domains.
In view of Theorem 1.4, in order to show that D Krull implies that
D[[{X: i, ¢ = 1,2, is Krull, it is sufficient to show that for any in-
tegral domain J with identity, J[[{X}]}; N K; = J[[{X:}]];, where K,
denotes the quotient field of J[[{X;}]];. Thus we need to show that
if feJ[[{X}] — {0} and if ¢ is a nonzero element of J[[{X,}]]; — {0}
such that fgeJ[[{X;}]};, then feJ[[{X:}]i. We consider first the
case when ¢ = 2, By induction, it suffices to show that the initial
form of f is in J[[{X,}]]., and since the product of the initial form
of f and the initial form of ¢ is the initial form of f¢ and is in
J[[{X:}]]., we need consider only the case when f and g are forms of
degrees 7 and j, respectively. Since fg and g are in J[[{x;}]];, there
is a finite subset {»,, ---,N\,} of 4 such that g vanishes on each ele-
ment {n;} of S; for which n; s 0 for some N in 4 — {\;}; and such
that fg vanishes on each element {m;} of S;,; for which m; # 0 for
some N in 4 — {\,}’. We observe that this implies that f vanishes
on each element {p;} of S; such that p, = 0 for some N ¢ {\,, -+, \,},
for if this were not the case, then there would be a smallest element
» = {p} of S; with p, = 0 for some ¢ ¢ {\,, -+, \,} for which f(p) + 0.
Then if s = {s;} is the smallest element of S; for which g(s) = 0, we
observe that (fg)(» + s) = f(p)g(s) # 0 and that p + s = {p;, + s3},
where p, + s, = p. > 0, contrary to the hypothesis on fg. We see
that (fg)(» + s) = f(p)g(s) as follows: If ' + s’ = p + s where p' € S;
and s’€S;, then s’ <s implies that g(s’) = 0 so that f(p')g(s’) = 0.
On the other hand, if s’ > ¢, then p’ < p so that f(p’) = 0 if p’ = {p}}
and p; # 0, while g(s’) = 0 if p, = 0 since the p-th coordinate of &
is then nonzero. Consequently, (fg)(p + s) = f(p)f(s), and the con-
tradiction which this equality implies shows that it is indeed the case
that f({pi}) =0 for each {p;} in S; such that p,=# 0 for some
AE{\y, o, n,). Hence feJ[[{X,}]]. as we wished to show.

Our proof for J[[{X,}]], shows that if the set {n, ---,\,} does
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not depend on ¢, as is the case if ¢ and fg are in J[[{X}}]],, then
each form f; associated with f (that is, f-y;, where yx; is the charac-
teristic function of S;) will also have the property that it vanishes
on each element {s;} of S; such that s, = 0 for some Né&{\, +++, N\,
Consequently, f e J[[{X,}]].. We have proved

THEOREM 2.1. If D 4s o Krull domain, then D[[{X;}]]. and
DI[{X }]], are also Krull domains.

3. Minimal primes of D[[{X;}]l,, Our proofs of Lemma 1.2
and Proposition 1.3 show the following, in case D is a Krull domain
with quotient field K. If L is the quotient field of D[[{X;}]];, then
the set of essential valuation rings for DI[[{X,}]]: is a subset of
{W,nN Ly U{W;® N L}, where {W,} is the family of essential valuation
rings for K[[{X}]]: and where [ W;*} is the family of essential valu-
ation rings for (VL I[{X}l:)r; {V.} the family of essential valuation
rings for D. Let M, be the center of W, N L on D[[{X;}]l. and let
M be the center of Wi N L on D{[{X}]],. Since Kc W,, M,N K =
(0); in particular, M, N D = (0). Further, V, is clearly contained in
Wi N L so that W NL=V,or W/NL=K. In the first case

s*ND =P, where V,=D,, and in the second M{” N D = (0).
Since D[[{X;}]l; is a Krull domain, the set of minimal primes of
D[{X.}]]; is a subset of {M,} U{M{¥}. Hence we have proved

LemMmA 3.1. FEach minimal prime of D[[X,}]}; meets D either in
zero or in mintmal prime of D.

Our main purpose in this section is to prove:

THEOREM 3.2. If P, is a minimal prime of D, there is a unique
minimal prime of DI[{X}]], which meets D in P,.

Our proof of Theorem 3.2 proceeds as follows. Let v, be a valu-
ation associated with the valuation ring D,,. We observe that the
funetion v} defined on D[[{X}]]; by vi(f) = min {v,(f(s)) | s € S} induces
a valuation on L, the quotient field of D[[{X;}]].. To prove this, let
f,9e€D[[{X;}]]: and suppose that v.((f + 9)(t)) = vi(f + g). Since
v(f () + 9(t)) = min {v.(f(¢)), va(9(t))} = min {vi(f), vi(9)}, it follows
that vX(f + ¢g) = min {v}(f), v¥(9)}. Also, if s is the smallest element
of S such that v.(f(s)) = v*(f) and if u is the smallest element of S
such that v.(g(w)) = v¥(g), then it is straightforward to show that

V(S 9)(s + u)) = vf(8)) + vu(9(w)) = vi(f) + vi(9)
= min {v.((f9)(#) | t € S} = vi(f9) .
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We denote the extension of v} to L by v} also; it is clear that v,
and v} have the same value group so that v* is rank one discrete
and is an extension of v, to L. The center of v} on D[[{X,}]]; is the
prime ideal Q, = {f | f(s)e P, for each seS}; we next prove that
(DI[{X:}]s)e, is the valuation ring of v}. One containment is clear.
To prove the reverse containment, we show that if f, ge D[[{X:}]];
and if vX(f) = v¥(g9), then for some ¢ in K, f/g = &f/ég where
&fe D[[{X}): and é&ge D[[{X}]]: — Q.. This is immediate from the
approximation theorem for Krull domains [2, P. 12], which shows that
there is an element & of K such that v,(§) = — v¥(g) and such that
v5(&) = 0 for each essential valuation v, of D distinct from »,. Hence
(DI[{X:}1)e, is the valuation ring of vi. Before proving Theorem 3.2,
we need to make one final observation: If P, is finitely generated—
say P, = (p,, -+-, p,)—then Q, is the extension of P, to D[[{X:}]]..
For is fe@,, then f(s) can be written in the form >.%,a!”p; for
some a!¥, ---,al* e D. Hence if f; is the element of D[[{X;}]]: such
that fi(s) = a!® for each s in S, then f= X2, fin; and f is in the
extension of P to D[[{X}]]s.

Proof of Theorem 3.2. That @, is a minimal prime of D[[{X}]]:
lying over P, in D is clear. If M is any minimal prime of D[[{X,}]];
lying over P,, then our previous observations show that M must be
of the form M/~, since only the V{*’s meet K in V,. Hence
Vit 2 (Dp [{ X} v. and MV;®, the maximal ideal of V;*, contains
P(Dy [{X:}ls)y,. Now P,D,_ is principal so that Qu(D, [[{X:}]s)y, =
P(Dp [[{X:}]]s)y,. Consequently

Qu € Qu(Dp [{XoH])w, N DI{X}] & MVE® 0 DI{XG}]: = M .

But since M is a minimal prime of D[[{X}}]];, this implies that M =
Q. and our proof is complete.
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