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CONCERNING THE INFINITE DIFFERENTIABILITY
OF SEMIGROUP MOTIONS

J. W. SPELLMANN

Let S be a real Banach space. Let C denote the infini-
tesimal generator of a strongly continuous semigroup 7 of
bounded linear transformations on S. This paper presents a
construction which proves that for each b > 1 there is a dense
subset D(b) of S so that if p is in D(b), then

(A) p is in the domain of C” for all positive integers » and

B) lim,—o ||C*p || (n])~b = 0.

Condition (B) will be used in §3 to obtain series solutions to
the partial differential equations U;; = CU and U, = CU,

Suppose G is a strongly continuous one-parameter group of bounded
linear transformations on S which has the property that there is a
positive number K so that |G(z)| < K for all numbers . Let A
denote the infinitesimal generator of G. In 1939, Gelfand [1] presented
a construction which showed there is a dense subset R of S so that if
p is in R, then

(C) p is in the domain of A" for all positive integers # and

(D) lim, .. [ A"p|l (r!})~ = 0.

Hille and Phillips, in their work on Semigroups [2], used Gelfand’s
construction to prove there is a dense subset R of S which satisfies
condition (A) with respect to the operator C. Hille and Phillips, how-
ever, do not present estimates on the size of ||C"p||. Also, this author
has not been able to use their construction to obtain estimates on the
size of ||[C"p]|.

2. Infinite differentiability of semigroup motions. Let b > 1.
Let a be a number so that 1 < a < b. Let M be a positive number
so that | T(X)| < M for all nonnegative numbers x less than or equal
»_.n~? For each point p in the domain of C (denoted by D.) and
each positive integer =, let p(n + 1, n) = p. For each point » in D,
and each pair (k, n) of positive integers so that k < n, let
ok, m) = kgk duT@pk + 1, n) .

THEOREM 1. Suppose p is in D, and each of k and n is a positive
wnteger. Then

pk, e +n—1)|| < M| p]l.

Proof. Let w = [[7=(k + 7). For each nonnegative integer 7,
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let 7(5) = (k + 7)~°. Then
[|p(k, b+ n — 1)
=w “ S:(O)duoT(uo)S:mdulT(u,l) cen S:(n—l)dun_lT(un_l)p”

ST(O)du,oS”Udul N Sr(n—l)dun_lT(uo o 4o+ un_l)pH <M|»l| .

0 0 0

x

THEOREM 2. Suppose p is in D, and k ts a positive integer.

Then
l| ok, k) — pl| = M||Cp|| k.

Proof. Theorem 2 follows from the definition of p(k, k) and the
fact that T (x)p — p = g duT (u)Cp for all 2 > 0.

THEOREM 3. Suppose p is in D, and each of k and n is a positive

wnteger. Then
ok, b +n) —pk,k+n— 1| < M| Cpl|l(k+mn)".

Proof. Let w and r(j) be defined as in the proof of Theorem 1.
Then
[|pk, &+ n) — plk, & +n — 1)

7(0) r(n—1) r(n)
= e+ mpw ||t - @] | (T @ - w)] |

= (k + n)*w H ST(O)duO e ST(%l)dun_lT(uo oo U, )

[, auscrwin = w ||| < aiipii e + e

COROLLARY. Suppose p is in D, and k 1is a positive integer.
Then the sequence

S, k): p(k, k), p(k, k + 1), p(k, k + 2) ,
converges in S.

Proof. Theorem 3 and the fact that X.o.,(k + m)~* converges
imply S(p, k) is a cauchy sequence in S. Since S is complete, S(p, k)

will converge.
For each point » in D, and each positive integer k%, let the

sequential limit point of S(p, k) be denoted by »,. Let
D®): {p,|p is in D, and k is a positive integer} .

THEOREM 4. Suppose p, is in D). Then p, < M|/ p||.
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Proof. Theorem 4 follows from Theorem 1 and the fact that p,
is the sequential limit point of S(p, k).

THEOREM 5. D(b) is a dense subset of S.

Proof. Suppose ¢ is in S and ¢ is not in D(b). Let & > 0. Since
D, is a dense subset of S, there is a point p in D, so that

(1) [lp—qll <¢f.
Theorem 2 implies there is a positive integer & so that

(2) |ipk, k) — pll <e¢/3 and

(3) (M+ 1¢|[Cpll X7= (k + n)~* < ¢&/3.
Theorem 2, Theorem 3 and statement (3) imply there is a p, in D(b)
so that

(4) [lpe — p(k, k) || < /3.
Statements (1), (2) and (4) imply |[p, — q|| < e. Thus, D(b) is a dense
subset of S.

THEOREM 6. Suppose p, is in D(b). Then

k—a
p= k| T, .

Proof. Let ¢ > 0. Then there is a positive integer n so that
(1) ok, k+ n) — |l <e/2 and
(2) Hp(k + lvk + n) - pk+1|| < 6/2M
Statement (2) implies -
(3) “p(k, k4 m) — kago duT(u)pkHH <2,
Theorem 6 now follows from statements (1) and (38).

THEOREM 7. The elements of D(b) satisfy conditions (A) and (B).

Proof. Suppose p, is an element of D(b). Theorem 6 implies p,
is in the domain of C™ for all positive integers » and that

(1) Cmp. = 1Ii% (B + ) 5= [T/ (E + 5)*) — I]Dexn.
Thus, the elements of D(b) satisfy condition (A). Statement (1) and
Theorem 2 imply

(2) J1Cpi |l = [1I5=5 (B + ) WM + D)™ [ p .
Statement (2) implies p, satisfies condition (B). The proof of Theorem 7
is now complete.

3. Partial differential equations in a banach space. The
results of §2 will be used in this section to obtain series solutions to
the partial differential equations U,, = CU and U, = CU. Solutions
to these equations may be easily obtained if C is a bounded linear
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transformation. The transformation C, however, may be unbounded;
that is, C may be discontinuous at each point where it is defined.

For each subset D of S, let P(D) denote the set of all functions
g for which there is a nonnegative integer n and a sequence p,, ,, * -,
p, each term of which is in D so that

g9(x) = go xip;

if x=0. If D is a dense subset of S, it may be shown that P(D)
is a dense subset of the set of continuous functions from [0, d](d > 0)
to S.

THEOREM 8. Let d > 0. Let b be a number so that 1 <b < 2.
Suppose each of g and h 1s a function in P(D(D)) so that g(0) = h(0).
Then there is a function U from [0,d] x [0,d] to S so that

( i) Us(z, y) = CU(z, y) for all (z,y) in [0! d] X [Or d]y

(ii) Uz, 0) = g(x) for all = in [0, d] and

(iii) U(0,y) = h(y) for all y in [0, d].

Proof. Suppose 7 is a nonnegative integer and p,, p,, -+, », is a
sequence each term of which is in D(b) so that

g(w) = go rp;

if x> 0. Suppose m is a nonnegative integer and ¢, q, *+-, ¢, 1S a
sequence each term of which is in D(b) so that

h(y) = Z,, Y'q;

if y = 0. Let U be the function from [0, d] x [0, d] to S so that if
(z,y) is in [0, d] x [0, d], then
(1) Ux,y) = >m o' + 20 v¥'es

+ S e (ey) et Crpy [(BD)(3 + 1) -+ (2 + k)

+ 3o e (@) yiCre /(R (T + 1) -+ - (¢ + k).
Theorem 7 implies U is well defined on [0, d] x [0, d]. Theorem 7 and
the fact that C is a closed transformation imply U,(x,y) = CU(x, y)
for all (z,v) in [0,d] x [0,d]. Statement (1) implies U(x, 0) = g(x)
and U(0, ) = h(y) for all (x, %) in [0, d] x [0, d].

THEOREM 9. Let d > 0. Let b be a number so that 1 <b <2,
Suppose each of g and h is a function in P(D(b)). Then there is a
Sunction U from [0,d] x [0,d] to S so that

(1) Uu(x,y) = CU(w,y) for all (%,y) in [0,d] x [0,d],

(ii) U, y) = g(y) if y s wn [0, d] and
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(i) U0, ) = k(y) ¢f v is in [0, d].

Proof. Let each of g and & be defined as in the proof of Theorem
8. Then let U be the function from [0, d] x [0,d] to S so that for
each (x, ) in [0, d] x [0, d],
(1) U, y) = o ¥'ps + 2 20 ¥'
+ Do e Y Crp/(2R))(E + 1) -+ (2 + k)
+ 3, Den ¥y Cre /(2 + D)@ + 1) -+ (3 + K).
An argument analogous to that used in Theorem 8 may be used to
show U is well defined on [0, d] x [0, d] and that U satisfies conditions
(i), (ii) and (iii) in the hypothesis of this theorem.

REMARKS. (1) The solution U to the Theorem 8 has the proper-
ty that for each (x, y) in [0, d] x [0, d], is in the domain of C™ for
all positive integers n. The same remark is true for the solution to
the equation in Theorem 9.

(2) Theorem 5 implies there are solutions to U, = CU and U, =
CU for a set of boundary functions which is dense in the set of
continuous functions from [0, d] to S.

(8) Theorem 9 and Theorem 5 imply there are solutions to the
ordinary differential equation y”” = Cy for a dense set of initial values
for ¢(0) and %'(0).
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