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TWISTED COHOMOLOGY AND ENUMERATION
OF VECTOR BUNDLES

LAWRENCE L. LARMORE

In the present paper we give a technique for completely
enumerating real 4-plane bundles over a 4-dimensional space,
real 5-plane bundles over a 5-dimensional space, and real 6-
plane bundles over a 6-dimensional space. We give a complete
table of real and complex vector bundles over real projective
space P;, for £k < 5. Some interesting results are:

(0.1.1.) Over P;, there are four oriented 4-plane bundles
which could be the normal bundle to an immersion of P°® in
R, i.e., have stable class 2k + 2, where % is the canonical
line bundle, Of these, two have a unique complex structure.

(0.1.2,) Over P; there is an oriented 4-plane bundle which
we call C, which has stable class 67 — 2, which has two distinct
complex structures. D, the conjugate of C, i.e., reversed

orientation, has no complex structure.
(0.1.3) Over P;, there are no 4-plane bundles of stable

class 5 — 1 or Th — 3.

0.2. In reading the tables (4.5.2) and (4.6), remember that if &:
P, — BO(n) or &: P,— BU(n) is a locally oriented (i.e., oriented over
base-point) real or complex vector bundle, and if

a € H'(P,; m,(BO(n), §))

(local coefficients if & unoriented) or a € H(P,; 7, (BU(n)), then & + a
is a vector bundle obtained by cutting out a disk in the top cell of
P, and joining a sphere with some vector bundle on it.

0.3. Since some of the homotopy groups of BO(n) are acted upon
nontrivially by Z, = =, (BO(n)) for n even, we study cohomology with
local coefficients in § 3.

1.2. From here on, we assume that all spaces are connected
C. W.-complexes with base-point, all maps are b.p.p. (base-point-
preserving) and that all homotopies are b.p.p.

For any space Y, we choose a Postnikov system for Y, that is:
for each integer » = 0, a space (Y), and a map P,: Y — (Y), which
induces an isomorphism in homotopy through dimension n, where all
homotopy groups of (Y), are zero above n; for each n =1 a fibration
2,:(Y),—(Y),—, such that p,P, = P,_,. The fiber of each p, is then
an Eilenberg-MacLane space of type (7.(Y),n). If X is a space of
finite dimension m, then [X; Y], the set of homotopy classes of maps
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from X to Y, is in one-to-one correspondence with [X; (Y),].

DEFINITION (1.2.1). For any integer n = 1, let G,(Y) be the sheaf
over (Y), whose stalk over every y is defined to be x,(p~'y), which
is isomorphic to 7,(Y) (where p = p, -+ 9,: (Y),—(Y),) if n=2;
T.((Y),y) if n =1. If X is any space and f: X— (YY), is a map, let
7Y, f) be the sheaf f—G,(Y) over X. This sheaf depends only on
the homotopy class of f. If g: X— (Y), is a map for any integer
m=1, or if h: X— Y is a map, let 7,(Y, g) denote 7 (Y, 0, -+ 0.9)
and let 7,(Y,n) denote 7, (Y, Ph).

DEFINITION (1.2.2). If f and ¢ are maps from X to (Y), for any
n = 2, which agree on A4, and if F: X x I —(Y),_, is a homotopy of
p,f with p,g which holds A fixed, let 6*(f, g; F) e H*(X, A; 7, (Y, f)) be
the obstruction to lifting F' to a homotopy of f with g which holds
A fixed.

REMARK (1.2.3). If g: X—(Y), is another map which agrees with
f on A, and if G is a homotopy of p,g with p,2 which holds A
fixed, then o"(f, g; F') + 6*(g, h; G) = o™(f, h; F + G), where, for each
(x,t)e X x I,
F(z,2t) if 0<t<}

F+O@D =100 00 1) it 3<t<1.

DEFINITION (1.2.4). Let X be a space, let AC X be any subcomplex
(possible empty), let f: X — (Y), be a map for some integer n = 2, and
let a be an element of H (X, 4;7,(Y, f)). We define f+ a to be that
map from X to (Y),, unique up to fiber homotopy with A held fixed,
such that »,(f + a) = p,f and é"(f, f + a) = a, where C is the constant
homotopy.

REMARK (1.2.5). If b is any other element of H"(X, A; 7, (Y, f)),
then f+ (a + b) = (f + a) + b.

REMARK (1.2.6). If ¢g: (X', A)— (X, A) is a map, where (X'A4’)
is any other C. W. pair, then (f + a)g = gf + g™a.

MAIN THEOREM (1.2.7). For any ac HY(X, A;n, (Y, f)),f+ a s
homotophic to f,rel A, if and only if o~(f, f; F') = a for some homotopy
F of p,f with itself which holds A fixed.

Proof. Let C be the constant homotopy of p,f with itself. On
the one hand, if F is any homotopy of p,f with itself which holds
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A fixed, let a = 6*(f, f; F). Then 6(f + a,f; F)=06"(f+a, f;C) +
of, fiF)= —a+a=0. Thus F may be lifted to a homotopy of
f+ a with f. On the other hand, if G is a homotopy of f + a with
S, then 0*(f, f; 2.G) = 0"(f, f + ; C) + o"(f + a, f; p.G) = a + 0 = a.

DerFINITION (1.2.8). Let L; be the subgroup of H*(X, A; 7(Y, f))
consisting of all a such that f + a is homotopic to frel A. Then the
set of all homotopy (rel A) classes of liftings of »,f to (Y), which
agree with f on A is in a one-to-one correspondence with the quotient
group H*(X, A; n,(Y, f))/L;; each coset a + L, corresponds to f+ a.
If g: X— Y is a map such that p,g=f, let L? =L;,. If h: X—(Y)n
is a map such that p,.; -+ b = f, for m = n, let L} = L,.

REmARrk (1.2.9). If ae HY(X, A; 7, (Y, f)), then L, , = L,.

Proof. Let F be any homotopy of p,f = p.(f + a) with itself,
and let C be the constant homotopy. Then 6*(f + a,f + a; F) =
M+ a, [;C)+0Mf, i F)+0(f, f+a;C) = —a+0(f, [, F) +a=
or(f, f; F).

1.3. In order to calculate L, in specific cases, such as X a
projective space, A = base-point, and Y = BO(m) for some m, we
use a spectral sequence which has the following properties:

(1.3.1) ‘Eri=Ep'=H"(X,A;7(Y,f)if2<qg=<n,1<p=<q+1.

(1.3.2) E? = 0 for all other values of p and q.

1.3.3) d,: Er*— Eptmeir=t for all » = 2.

(1.34) Er"=H“X, A; (Y, f))/L;, which, by (1.2.7) and (1.2.8)
can be put into one-to-one correspondence with the set of rel A homotopy
classes of maps X — (YY), whose projection to (Y),_, is rel A homotopic
to p,f.

Basically, what is happening is as follows (where, for any space
Z and any map g: A— Z, the set of rel A homotopy classes of maps

X — Z which agree with g on A is denoted “[X; Z: g]”); consider the
function:

[X; (V). £ Al 225 (X (V) 1. f | A]

Now (p,); is just a function of sets, but (p,):'(p.f) is an Abelian group
with 0 the homotopy class of f itself. This group, EZ" of our spectral
sequence, depends on the choice of f.
We define our spectral sequence via an exact couple:
N S
kz\/]z
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where E?? is as defined in (1.3.1) and (1.3.2), where 14, j,, and k, have
bi-degrees (—1, —1), (2,1), and (0, 0) respectively; and where (for all
t < n, M, = space of maps from X to (Y), which agree with p?f on
A, compact-open topology):

(1.3.5) D' =m, (M, prf) if 0<¢g=<mn, and p < q.

1.83.6) Dr*=01if ¢q<p or ¢ <O0.

(1.8.7) Dpe = Dot if q¢ > m.
Note that D?? is only a group if ¢ = p + 1 and only a set if ¢ = p.
This will not affect our computation, however.

We proceed to define the homomorphisms 4,, j, and k,.

(1.3.8) If ¢ > n, let i, be the identity. If ¢ < n, let i, = (p,):.

1.3.9) If p<q and 0=<qg<n, any x€ Dy? represents a map
g: X x I''»—(Y),, where g(z, v) = prf(x) for all (x,v)e X x 0[*PUA x
I'-»,  Let jJ.(x) = (s ?)""v"**(g), where s ?: H**¥X, A; 7. (Y, f)) —
H*X x ["*, X x I**U A x I"?;7,, (Y, g)) is the (¢ — p)-fold sus-
pension and 7Y'**(g) is the obstruction to finding a lifting h: X x I*-? —
(Y),+. of g such that h(z, v) = py., f(z) for all (x, v) e X x dI""* UA x I"»,
(If p>qorq<0orq=mn,j,: Dy*— Eft>* is obviously the zero map,
since Ep»1+' = 0,) This obstruction is zero if and only if g can be
lifted; it follows immediately that: _

(1.3.10) The sequence Dr+ieti 2, Dpo 72, Froizeit ig exact.

Furthermore, since every homotopy, rel A, of p,f with itself
represents a loop in M,_,:

(1.3.11) L, is the image of j,: Dy >"'— E»". For any 2 < q < n,
1< p=<gq, and any ac EP?, let

b=s"7ac H(X x ", X x oI"*"UA x I"*; (Y, C)),

where C(x, v) = p;f(x) for every (x,v)e X x I"?, Let k,(a)e D}? be
that element represented by the map C + b (cf. 1.2.2). It follows from
(1.2.8) that k, is a homomorphism if p < q; if p = ¢ then D?* is only
a set anyway. (For other values of p and ¢, k, = 0.) Since p,(C+b) =
»,C, and C represents 0€ D2

(1.3.12) Imk, C Ker 1,.

If, on the other hand, a map g: X x I"»— (YY), such that g = C
on X x ol JA x I"? is a representative of a given a ¢ Ker1i,, then
p,9 is homotopic, rel X x oI * U A x I, to p,C via a homotopy F, then
a = ky((s*?)'0%C, g; F')). Thus:

(1.3.13) Keri,C Imk,.

Somewhat more difficult to show is:

(1.3.14) Kerk,=1Imy, if p <q.

Proof. Let 2<q¢=n,1<p=<gq. Let g(x,v) = pif(®)e(Y), for
all (x,v)e X x I""?; g represents 0 € D??, Let be E?*. Then b ¢ Kerk,
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if and only if s*?be L, (cf.1.2.7). If b= j,a, then a represents F, a
homotopy, rel X x oI*? U A x I'"* of p,q with itself, and s?b =
09, 9; F)e L,. If, on the other hand, s?b e L,, then s*~?b = d%(yg, g; F')
for some homotopy F,rel X x oI'"*> U A x I'"?, of p,g with itself; let
a = [F]e D', and j,a = b.

1.4. Since only finitely many of the £, terms are nonzero, we
obtain E. after a finite number of steps. We also have, by straight-
forward algebra, an exact sequence

ke oo

0 E. D., D., 0.

Consider now the commutative diagram with exact columns:

D;L~2'n~l = 7r1(M —1 pnf) [F]
epi ljz I
Er»  —Ep* = HYX, Ay (Y, ) oS, f; F)
monolkm 1]‘:2 v
Dz = Dy =[X;(Y).: 4] I
epil’im liz f+eao.
Dzt — Dy = [X (Y )i paf | 4]

A typical element of Dy~*"' is a rel X x 6I U A x I homotopy class
of homotopies of p,f with itself; if F is such a homotopy, 7,[F] =
o*(f, i F), by 1.3.9). If ve H*X, A; 7 (Y, f)), kx = f + «, by (1.3.11).
Thus Imj, = L,;, and E»" = H*X, A; 7,(Y, f))/L,, the set of rel A
homotopy classes of liftings of p,f.

1.5. If ¢g: (X', A)— (X, A) is a map, g induces a map of spectral
sequences.

(1.5.1) g*:’E»*—79E? for all p,q,r. If h: Y—Z is a map,
where Z is any other space, h determines a map 4,:(Y), — (Z), for
each m = 0 [1]. Then h,: nw(Y, y,) — n(Z, z,) induces a sheaf homo-
morphism from G,(Y) to (h,)"'G.(Z) which in turn induces a homo-
morphism.

(1.5.2) h,: HY X, A; 7, (Y, f)— HYX, A; 7,.(Z, hf)) for all m =0
and a map of spectral sequences

(1.5.3) h,:’Er*—*Epr* for all p,q,r.

2. Nonbase-point-preserving homotopies.

2.1. Using the techniques of §1, we can compute all b.p.p.
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homotopy classes of maps from a finite-dimensional space X to a
space Y. What if we want to know, instead, all free homotopy
classes of maps?

2.2. Let f: X— Y be any b.p.p. map, and let ae7(Y,¥,). By
the homotopy extension property, we can find a free homotopy F:
X x I—Y of f such that F'|{x,} x I represents a. Let f(z) = F(x,1)
for any x¢ X; f* is unique up to b.p.p. homotopy, and f*(f°)?® for
any other be (Y, y,).

THEOREM (2.2.1). If f and g are any b.p.p. maps from X to Y,
then f is freely homotopic to g if and only if f° is b.p.p. homotopic
to g for some acm(Y,y,).

Proof. If f* is b.p.p. homotopic to g, then f is obviously freely
homotopic to ¢ since f is freely homotopic to f°. If, on the other
hand, F: X x I— Y is a free homotopy of f with g, let a be that
element of 7,(Y,y, represented by the loop F'|{x,} X I. Then f*=g¢
(up to b.p.p. homotopy).

THEOREM (2.2.2). If n=2,f: X—(Y), ts a map,
ae HY(X, v w(Y, 1)) ,

and ben (Y, ¥y,), then (f + a)® = f° + 14(a), where 1% is the homo-
morphism induced by the map 1° (cf.1.5.2), where 1 is the identity
map on (Y),.

Proof. The theorem follows from naturality of obstruction theory.
3. Sheaves of local coefficients.

3.1. The homotopy groups of BO(n) are sometimes acted on
nontrivially by 7,. We must therefore study twisted sheaves.

DEFINITION (3.1.1). A twisted group is an ordered pair (G, T), G
an Abelian group, T: G — G an automorphism of order 2. If X is a
space, a (G, T)-sheaf over X is a fiber bundle over X with fiber G
and structural group Z,, action determined by 7. Let G’[u] be the
(G, T)-sheaf over P. obtained by identifying (z, g) with (T, Tg) for
all (z, g)e S* X G, where T: S*— S~ is the antipodal map.

DEFINITION (3.1.2). If ae HYX, 2 Z) and f: (X, x,) — (P., *) is
a map where f*u = a (v = fundamental class of P.), let G’[a] =
S7'G"[u]. We call a the twisting class of G"[a].
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ProrosiTiON (3.1.3). G'[u] is universal in the sense of Steenrod
[6], that is, if G s a (G, T)-sheaf over a space X,G = G'[a] for
some unique a € H'(X, x,; Z,).

Proof. P. = BZ,.

REMARK (3.1.4). If F: X x I— P, is a free homotopy of f with
itself, where f*u = a, then F' induces an automorphism of G%[a]; 1
or T depending on whether F|{x,} x I is a trivial loop in P. or not.

3.2. If X is a space, BC Ac X are closed, and S is a sheaf
over X, we have a long exact sequence:
- — H"(X, 4; S) — H"(X, B; S) — H"(4, B; S)
L (X, A; 8) — -+
ProprosiTiON (3.2.1). If S is a sheaf over a space X, and AcCcX
18 closed, we may find an tsomorphism
st HY X, A;S)— HX X I, X xolUAXI,S < I),
called the suspension, of degree 1, where S X I = p~'S; p: X X I— X
being the projection.
Proof. Let S’ be that subsheaf of S such that S’|4 = 0 and
S| (X — A) = S|(X — A). According to Bredon [1],
H*X, A; S) = HYX; S")
and
H(XxI,Xx0lUAXIS xI)=H(X x I, X x oI, S’ x I).

Now H*(X x I, X x {t}; ) = 0 for any tel [1], and by the long
exact sequence of (X x I, X x oI, X x {1}) and excision we have an
isomorphism H*(X x {0}; 8" x I) — H*(X x I, X x oI; 8’ x I) of degree
1; the left group is isomorphic to H*(X; S’).

3.3. Let X be a space, AcC X closed. If a: S— S is a homo-
morphism of sheaves over X, we get a homomorphism «,:H*(X, 4; S) —

H*(X, A; ). If S and S’ are sheaves over X and

E:0 St,g P,y 0

is an extension of S’ by S, then E determines a long exact sequence
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. — HY(X, 4; 8) 2 HX(X, A; S") 2% HY(X, A; ')
2 H(X, 4 8) — -
where 6% is called the Bockstein of E.

ProposiTiON (3.3.1). If S and S’ are sheaves over X and if

(2

E:0 S st s 0

and

Fio— St 02,5 —0
are elements of Ext(S', S), then 6*+F = 6% 4 o7,
Proof. We use the Baer sum construction to find
E+ F:0 S v S’ 0;

our result follows from the commutative diagram, where each row is
exact:

00— S X S—S"xU— S8 xS —0

I T §

0— S x S— w — S —0

d l p

0O— S — Vv — § —0.

3.4. As Abelian groups Ext (Z,, Z,) = Z,; the nonzero extension
is Z,. Fix a space X; we study Ext of sheaves over X.

PROPOSITION 3.4.1. As sheaves over X,
Ext (%, Z,) = Z, + H'(X, x; Z,) .
For any ac H(X, x,; Z,), (0, a) corresponds to the extension
B0 — Z,—" (Z, + Z)'[a] 2 Z,— 0,

where T(x,y) = (» + v, y), 1.(x) = (2, 0), and p(x, y) = y; (1,a) corres-
ponds to

E:0— 7, Z[a) — Z,— 0,
where T(x) = — x for all xe Z,, m(1) = 2, and e(1l) = 1.

Proof. Routine computation shows that E? + E¢ = E*f} for any
x,y€ 4, and a,be H(X, x,; Z,). On the other hand, suppose that
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)

E:0 Z, G2z, 0

is some extension. Then the stalk of G at x, is Z,, in which case
G = ZT[a] for some ae€ H\X, x,; Z,), or it is Z, + Z,. In that case,
we have an exact sequence of stalks at z,:

0— 27,2z, + 222 —0.

Since G is locally isomorphic to Z, + Z,, it is a fiber bundle with fiber
Z, + Z, and structural group Aut(Z, + Z,). But the only nontrivial
automorphism which commutes with ,: Z,— Z, + Z, and p,: Z, + Z,—
Z, is T given above. So the structural group of G may be reduced
to Z,; G = (Z, + Z,)"[a] for some ae€ H'(X, x,; Z,). This gives us the
isomorphism.

We have the following commutative diagram with both rows exact,

for any a e H{X, x,; Z,):
0— Z"[a] — Z"[a] —> Z,— 0

L

0— Z, — Zlla] — Z,— 0.
m e

DEFINITION (3.4.2). Let 8"[a] (or simply A7, when a is understood)
denote the Bockstein of the top row of the above diagram, and let
(SH[a] (or (S;)") denote the Bockstein of the bottom row.

REMARK (3.4.3). II.B" = (S)”.

ProrosITION (3.4.4). For any n =0 and any xc H (X, A: 7)),
S’z = S + U a.

Proof. Samelson [5].

PROPOSITION (3.4.5). For any n=0 and any x¢c H X, A; 7))
o(x) = xUa, where 0 s the Bockstein of E3:0— Z,— (Z, + Z,)"[a] —
Zz - Oo

Proof. The result follows immediately from (3.3.1), (3.4.1), and
(3.4.4).

3.5. Let T(n,m)=(m — n,m) for any (n,m)e Z+ Z. If S and
S’ are sheaves over a space X, and if #:SQ® S — S” is a sheaf
homomorphism, then we have a cup product defined from

H*(X, A4; S) ® H*(X, B; S')
to H*(X, AU B; S”) for any closed Ac X and Bc X. We have thus
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cup products generated by the following relations:
Z"a]l @ Z7[b] = Z"[a + b], 2. R (Z, + Z,)"[a]
=(Z, + Z)'[a], ZQ (Z + Z)"[a]
=(Z + Z)'[a], Z"[a] & (Z + Z)"[a] = (Z + Z)"[a]
(where 7 Q& (p, ) = (np, 2np — nq)), Z{[a] Q Z{[b] = Z[a + b],
and many others.
Let (X, A) be a C. W.-pair. Let ae H'(X, x,; Z,) and
a = B'[a](1) e H(X; Z'[a]) .
We have the following commutative diagram; where
e = (¢, 0), T(x, y) = (¥ — @, ¥), jw = (v, 22),
and q,(x,y) =y — 2.

0 — Z7[a] -2 (Z + Z)'[a] 2> 7 0
|7 |7 |7
0—Z, —(Z+ Z)[a] 2> 2, 0

In In In

0—2Z 2 Z+ 2)la] B Za] — 0.

ProPOSITION (3.5.1). The Bockstein homomorphisms 6, and 4§, are
both cup products with «.

Proof. By (3.4.3) and (3.4.4) we may compute that
H'(Po; Z"[u]) = Z,

and is generated by # = £7(1).

Let e HY(X, A;Z). If n =0, then the universal example is
X=P,,A=@,2=1. Then a = u. Now H(P.; Z") =0, 80 (J.).:
HYP.; Z)— H(P.; (Z + Z)T) is an isomorphism, and p,j, = 2. Thus
1¢ Im(p.),, so 6,(1) = #. If m» =1, the universal example is X =
K(Z,n) x P,,A=%xP,,x=wv, x1, Then a = p*#, where p: X—P,,
is projection onto the second factor. Now routine computations using
(3.4.3) and (3.4.4) show that H**'(X, A; Z”) = Z, and is generated by
(v, x 1) U p*#, which is mapped onto /7,v, X v under /1,: H*(; Z*) —
H*(; Z,). The result follows from (3.4.5).

Let xe HYX,A;Z"). If n=0,2=0. If » =1, the universal
example is X = K(Z",n), A= P,, and « =v., where K(Z",n) is
obtained as follows:* Let K(Z,n) be a topogical group, let T(g,y) =
(g7, Ty) for all ge K(Z,n) and ye S. Let

! Personal communication from C. T. C. Wall.
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K(Z",n) = K(Z,n) x S°|T .

We have inclusion and projection

P K(Z", n) -2 P,

where i[y] = [*, y] and p[g, y] = [¥]; P. may thus be considered to be
a subset of K(Z7,n), and its cohomology group is a direct summand'.
Then v! e H*(K(Z*, n), P..; Z"[u]) is the fundamental class.

H\X, A; Z,) = Z,

is generated by I[I.vf; H**Y(X, A; Z,) = Z, generated by /I .vl U u.
Thus, by (3.4.3) and (3.4.4), H**(X, A; Z) = Z, generated by v! U,
and the result follows from (3.4.5).

(3.5.2). We summarize the results of (3.4.5) and (3.5.1) in the
following commutative diagram with all rows exact:

e HY(X, 4; 20 8 BN, A (Z 4 2y) P2 HN(X, A3 2) 25 B(X, A 2T —

! s lu* lu* lm
e HYX, A2 Z) O EH(X, 452+ 200 P BN, A Z) S HX, A Z) — e
{II* A”* 1% Tﬂ*

S HYX, A3 2) D HNX, A2+ 2)) O He(X, A5 27) S HX, A Z) — e

3.6. Applying the results of 3.4 and 3.5, we compute the coho-
mology of real projective space P,, for k = 1:

generated by u", if n <k

Zy,
3.6.1 H"(P,; Z,) = .
( ) (Py; Z) {O if n>rFk.

Z,, generated by u", if n
even, 0 <n =<k

Z, generated by 1, if n =0

(3.6.2) HYP,;Z)={0, if nodd, 0 <n<Ek

Z, generated by t(P,), the
top class, if » = k£ odd

0 ifn>Fk.

Z,, generated by u", if n odd,

0<n=sk

if n even, 0 < n <k

Z, generated by t(P,), the top
class, if » = k even

0, if n>Fk.

(3.6.3) H"(P,; Z"[u]) =
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0,

ifn=0
(3.6.4) H"P,,*; Z"[u]) = {Z, generated by #, if n = 1.
\H"(Py; Z"[u]) if n>1

(3.6.5) H"(P,; Z, + Z,) = H"(P,; Z,) ® H"(P,; Z,) .
(3.6.6) H"(Py; Z + Z) = HW(P; Z) ® H'(Py; Z) .
Z, generated by (5.).1,
ifn=0
0, if0<n<k
Z, generated by 3(i,).t(P,) =
(3.6.7) H"(Py; (Z + Z)"|u)) = (@)=H(P) if m = k is even
Z, generated by 4(j.).t(P;) =
()7t(Py) if m =k is odd
0, if n >k
Z,, generated by (7,),1
ifn=0
0, if 0<n<k
B , _ | Z., generated by (p.)y'w*
(3.6.8) HY(Py; (Z, + Z,)"[u]) = (= I,3(i).t(Py)) if k
even, = [1.3(5).t(Py) if k
odd) if n =k
0, ifn>k.

4. Evaluation of the differentials.

4.1. We need two remarks.

(4.1.1) If Y, and Y, are spaces, and h: Y, — Y, is a map, ~ induces
a map (Y),,—(Y,),, and a sheaf homomorphism h: 7, (Y, 1) —
T, (Y,,h). If k' and k2™ are the n'™ k-invariants of Y, and Y,

respectively, ﬁ*kf“ = k7 € H V' ((Y)) ger; TWu( Yy, R)).

(4.1.2) Let X and Y be spaces, 2 < m < n integers such that
7(Y)=0 for all m <k <, and f: X—(Y), a map.
invariant £"*' of Y is based on the relation 4(1, k™*) = 0, where ¢
is a map cohomology operation and 1:(Y),_, — (Y),_, is the identity

map, then; for any

ve H"N(X; n,(Y, f)), d,(x) = s70(p, . SP, 8°0), 7 = —m + 1,

where P: X x S*— X is projection,

st H*(X, %) > H* (X x S8, X X *Ux, X S

If the k-
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is suspension and p%_, = D, o Dot (Y)y — (Y)se

Proof. Let (S',*) be a circle, which we think of as the unit
interval with end-points identified. Let C: X x S'—(Y), be the
constant homotopy of ps f with itself. Now 9,(C + sx) = p,C, where
C + sx is as defined in (1.2.2) and d.(x) = 0*(f, f; C + sx) by (1.3).
Finally, so*(f, f; C + sx) = (C + sx)*k**' = s~'0(p~_, fP, s’x).

4.2, Kervaire [3, p.162] gives us the following table of homotopy
groups:

BO(1) BO(2) BO@B) BO@4) BO(B) BO®G BOMm) for7T=n=o

1 Z> Zs Zs Zs Zs Zy Zs
2 0 A4 Z> Z> Zs Zs Zs
73 0 0 0 0 0 0 0
T4 0 0 Z Z+7Z Z A Z
5 0 0 Zs Zs + Zo Zs 0 0
76 0 0 Z> Zs+ Z2 Zs VA 0.

Now m,(BO(n)) = Z, acts on 7w, (BO(n)) for all n =1,k =1; this
action is trivial if 7,(BO(n)) is stable, that is, &k < n; because BO is
simple. For = even, Z, acts nontrivially on 7,(BO(n)), because the
first relative k-invariant of BO(n) — BO is

k"t = B7[w,w, € H*(BO; Z"[w,)) .

(Because 7.k, the reduction mod 2, must be w,,,). Z, acts trivially
on 7, (BO(3)) because if acts trivially on x,(BO) and the map Z =
7 (BO(3)) — 7, (BO) = Z is just multiplication by 2. Since Z, can only
act trivially on Z,, we need only now examine the action on 7,(BO(4))
for k = 4,5, 6.

ProproSITION (4.2.1). We may choose generators x and y of
w,(BO4)) such that T(x) = — x, T(y) = © + y, and the maps

13: T (BO()) — n(BO4)) and 1} 7, (BO4)) — 7 (BO(5))

have the properties 13(1) = x + 2y, ii(x) = 0 and i(y) = 1.

Proof. We know that 4! is onto. Choose x to be a generator of
Ker 4!, and pick a such that ila = 1. Now 2a — ¢i(1) € Ker ¢}, since
243 = 2. So 2a — 73(1) is a multiple of x. It can’t be an even multiple,
because then 4%(1) would be divisible by 2, and 7 (BO(3)) is a direct
summand of 7,(BO(4)). So for some k, 2a — 3(1) = (2k — 1)x. Let y =
a — kx; then 23(1) = « + 2y, 74(x) = 0, and ¢i(y) = 1. Now T(x) < Ker 2,
so T(x) must be —x. T(x+ 2y) =2 + 2y so T(y) = ¥z + 2y — Tx) =
x + y. We are done.
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We represent 7,(BO(4)) as ordered pairs of integers, where (p, q)
represents pr + qy.

ProrosiTIiON (4.2.2). 7(BO(4)) and my(BO(4)) may be represented
as ordered pairs of elements of Z, such that ii(x) = ii(x) = (=, 0),
5@, y) = (@, y) =y, and T(x,y) = (¢ + y,y) for all »,ye Z,.

Proof. wy(BO(n)) and m,(BO(n)) are the images, under » and 7
respectively, of m,(BO(n)), for n = 3, 4, or 5. Apply (4.2.1).

REMARK (4.2.3). There are two possible choices of 2 in (4.2.1) we
retroactively make that choice such that the image of 7, (BU(2)) = Z,,
under the classifying map of the reallification BU(2) — BO(4), is generated
by (0, 1) € 7,(BO(4)).

4.3. We need to describe k-invariants for BO(n).
(4.3.1) For all n,k* of BO(n) is zero, since the projection

P,: BO(n) — (BO(n)), = K(Z,, 1) = BO(1)

has a lifting, namely, the map induced by the inclusion of O(1) in
O(n). Also k* = 0, since m,(BO(n)) = 0.

(4.3.2) For BO(3), k* = *+ B, Pw,, where B, is the Bockstein of Z—
Z—Z, and B: H*(; Z,) — H'(; Z,) is the Pontrjagin square [2], and £°
is based on the relation S:/I.k° + w, U /I k° = 0.

(4.3.3) For BO(), k* = 2B, Pw, = Bw; (see [4]), and k° = w,, based
on the relation S:/1 .k + w, U I k> = 0.

(4.3.4) Using (4.3.2), (4.3.3), we get that for BO4), k° = (B, Bw,,
where ¢: H*(; Z) — H*(; (Z + Z)) is (4,). as described in (3.5.2), and
k* is of order 4 and generates H°((BO4)),; (Z + Z)"[w,]). Also, k° is
based on the relation S:/I.k° + w, U II.k*, where

Si: H*(; (2, + Z)"[a]) — H***(; (Z, + Z)[a])

is that unique operation which is ordinary S; on each factor when
a =0, and w, U is as described in (3.5).

(4.3.5) For BO(6), k* = 28,Bw, = Bw:, and k" = B7[w,]w,;, based
on the relation B7(S:/ . k° + w, U I1,.k°) = 0.

4.4. Using (4.1.1) and (4.1.2) we can now evaluate some differen-
tials d, = df for a map f: X —(Y),.

4.4.1) If Y= BOQ) or BO(2),d, = 0.

(4.4.2) If Y=BO@®) and k<4,d,=0. If k=4,d,=0: by
(4.1.2), dy(x) = B(@* + x U f*w,) € H(X; Z) for all xe H'(X; Z,). This
was also known to Dold and Whitney [2]. If
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k=5, dyx) = S,z + f*w, U Il .z e H(X: Z) ,

for all xe H¥X; Z) by (4.1.2); d, = 0, and d, requires special compu-
tation.

(4.483) If Y=B0O4) and k< 4,d,=0. If k=4,d,=0; and by
(4.1.2),

dy(®) = B + 2 U f*w,) € H(X; (Z + Z)'[f*w.])
for all x e HY(X; Z,); if
k =5,d)(x) = Sl & + f*w, U Il ,x € H(X; (Z, + Z)"[ f*w,])

for all xe H¥X; (Z + Z)"[f*w,]) by (4.1.2), d; =0, and d, must be
computed specially.
(4.44) If Y=BOG) and k< 5,d, =0. If

k=5,dy(x) = Sl .x + f*w,U Il .2 € H(X; Z,)
for all xe HYX; Z),d, = 0, and

dx) = 2° + fFfw, Ut + fHw, Ua® + fFw, U
+ ffw,Ux + Imd,e B> = H(X; Z,)/Im d,

for all xe H(X; Z,).

Proof. We have a map S: YK(Z,1)—BSO, such that S*w,,, = su'
for all 7 =1, where w is the fundamental class. Now (BO(5)), = (BO),
has the same homotopy as BO up through dimension 7, so we identify
H*((BO(5)), with H*(BO) for 0 <k <17. Let h: YK(Z,, 1)—(BO(5)), be
given by the commutative diagram:

SK(Z, 1) - (BOG)).= (BO),

N Ir

BSO —— BO.

(BO(5)), has an H-space structure p: (BO(5)), x (BO(5)),— (BO(5)), and
rrws =S5 w; X we_;. Let QX be the space obtained from X x S' by
collapsing z, x S'; let J: QX — Y X be the map which collapses X x *,
and let p:QX — X be projection onto the first factor. For any
xe(H*X), let qx = pfx and let Qx = J*sx, both in H*(QX). We
showed in [4, 5.1] that qa U gb = q(a Ubd), qa U Qb = Q(a Ub), and
Qa UQb=0 for all a,be H*(X). Let C: X— K(Z,, 1) be a classifying
map for a given xec H(X; Z,), and let F: QX — (BO(5)), be a map,
which represents a homotopy of p,f with itself, defined by composing
the following maps:
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QX -1 0x x @x X, sx « x 297, s gz, 1) x (BOG)).

DXL, (BO®)). x (BOG), — (BOG)), .

By (1.3), d.(x) contains ¢°(f, f; F'). Now routine computation shows
that f*w; = Q@° + «*f*w, + 2°f*w, + 2’ *w, + xf*w,), and the result
follows from [4, 5.2].

(4.4.5) If Y=BO®) and k<6,d, =0. If t=6,d,=0 and
dy(x) = B7(S; ! ¢ + f*w,Ull x)e HYX; Z7[ f*w,]) for all x e H¥X; Z);
d, = 0 and

dy(®) = B7(@® + @'f*w, + &*f*w, + &’ *w, + xf*w,)
+ Imd,e E¥ = HYX; Z'[f*w,])/Im d,

for all x e H'(X; Z,).

Proof. same as (4.4.4).

4.5. We are now ready to classify real vector bundles over P,,
for k£ < 5.

DEFINITION (4.5.1). A locally oriented real n-dimensional vector
bundle over a space X shall be a b.p.p. homotopy class of maps from
X to BO(n). If f: X— BO(n) represents a locally oriented v.b. &,
let ~ &, or & conjugate, be that locally oriented v.b. given by a map
¢g: X — BO(n) which is connected to f via a free homotopy which
sends the base-point of X around a nontrivial loop of BO(n). Obviously
~ & =¢, and conjugate classes of locally oriented vector bundles
correspond to equivalence classes of vector bundles.

TABLE (4.5.2). For k=1, let h: P,— BO(1) be the canonical line
bundle. Let “@” denote Whitney sum. We give a complete list of
all locally oriented real n-dimensional vector bundles over P,, each n
and k; all bundles are self-conjugate unless otherwise specified.

Let G denote (q)7't(P) = %(1),t(P,) which generates

HYP,; (Z + Z)"[u]) .

Also (p¥)~'w® generates H(P;; (Z, + Z,)"[u]). Locally oriented real
n-dimensional vector bundles over P,, for n — 1 < k < 5:

Over P: Over P
1 ’ 2 1| 2 3
h hP1 ho| Tp=h®1) + pt(Py), for all peZ; | hd2

stable class A + 1 if p even, 2hP1 =3+ u?
3h —11if podd; ~Tp=T_p. 3h = (hP2) + u?
2h = 2 + 2
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Over Ps Over P,
12 |3 4 1{2 | 3=8+at |4=4+(@*,0) 5
h |hP1 | P2 |hP3 ||h|hPl| hP2 2hP2 hP4
2h |2RPB1|2hDP2| |2k | (RD2)+at | 2hP2+ (a4, 0) 2hP3
3h 3nP1 2hP1 4h=4+(0,2*)=4h+(@4,0)| 3hP2
@ChP1)+a* | 2hP2+(0, @4); stable 4Pl
3h=38h+ut class 6h—2 5h
2hP2+ (it ,it) = (2hP2)+(0, a4)P1;
~(2hED2+(0, i) stably 6h—1
E,=h®P3+pG for all | FiPl; stable class
pE Z; stable class Th—2
h+3 if p even, 5h—1
if p odd; ~E,=FE_,
Fp=3h@P1+ pG for all
pE Z; stable class
3h+1 if p even,
Th—3 if p odd;
~Fp=F_,
Over Ps
12 3 4 5=5+us 6
h hD1| 3+us 4+ (us, 0) hD4 hP5
2h hP2 44-(0, us) hPa+us 2hP4
hD2+ud 4+ (ub, ud)=~(4+(0, u®)) 2hP3 3hP3
A=A+us; hP3 2hD3+ub 4hP2
A|Ps=hP2+at | hB3+(p;) " tus 3hd2
2hP1 2hP2 3hP2+us 5hP1
2hP1+usd 2hP2+(us, 0) 4hP1 6h
B=B+us; 2rP2+(0, us) 4hPl+us ChrPpl
B|Py=2hP1+u* | 2hP2+(us, us) = ~(2hH2+(0,u%)) | 5h=5h+us
3h B®1=B®P1+ (s, 0) CP1=CP1+us
3h+us BP1+(0, us) = BAH1+(us, us) COh=CPHh+us

3hP1
3hP1+(py)~tus
4h
4h+(us, 0)
4h+(0, us)
4h+(us, u®) = ~(4h+(0, ud))
C=C+(0,u5); C|Ps=2hP2+(0,7*)
D=D+(0,u)=~C
C+ (ud, 0)=C+ (us, us)
D+(us, 0)=
~(C+(us, 0))=D+(us, us)
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4.6. Similarly, we can classify all complex vector bundles over
P,, for k <5. We give a table of homotopy groups:

BU(1) BU(2) BU(n) for 3= n =
71 0 0 0
72 zZ Z A
T3 0 0 0
T4 Z Z Z
s 0 Zs 0

The only nonzero k-invariant in this range is k° of BU(2), which
is 11 ,(c.c;) + St ,c,, where c¢;e€ H*(BU(2); Z) are the Chern classes.
We thus have:

REMARK (4.6.1). For any space X, all complex line bundles over
X correspond to H¥X; Z).

REMARK (4.6.2). For any space X of dimension < 5, all complex
n-bundles, for n = 3, over X correspond to KU(X), satisfying the
exact sequence 0 — HY(X; Z) - KU(X) — H X; Z) — 0.

REMARK (4.6.3). If f: X — (BU(2)); is a map, then

dy(®) = I (c,®) + SiI o € HY(X; Z,)
for all xe HXX; Z); d, = 0;d,(x) = IT .(f*c, U x) + Imd, for all
xe H(X; Z) .
Proof. Let S:8*= YK(Z,1)— BU be the generator of m,(BU);

then S*¢, = 0, the fundamental class of S? and S*c, = 0. The result
follows just as in (4.4.4).

TABLE (4.6.4). We summarize complex n-bundles over P, 2n —
1 <k £5. The reallification is given in square brackets.

Over P, Over Ps
1 [2] 2 [4] 1 [4] 2 [4]
H [2h] HB1 =2+ u2 [2h B 2] H [2h] HP1 [2h B 2]
Over P,
1 [2] 2 [4] 3 [6]
H [2h] HP1 [2h B 2] Hop2 [2h B 4]
2H = 2 + 4 [4h] 2HP1 =3 + at [4h P 2]
HP1 + at [2h 2 + (a4, 0)] SH=H®H2+ it [6R])

Stable class 3H — 1
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Over Ps

1 [2] 2 [4]

H  [2h] 2+ us [4 + (0, u%)]
HP1 [2h & 2]
HP1Ewus [2h P 2 + (0, u%)]
2H [4R]
2H + us [4h + (0, u®)]
C [C]
C + wb [C]

4.7. We give a few representative examples of evaluating those
difficult differentials. Is f: P,— (BO,); is a map representing a 4-plane
bundle &, then df(u) is defined if and only if

di(uw) = (7B + wf*w,) = 0e H'(Py; (Z + Z)'[f*w.]) .

If dy(w) = 0, then d{(u) = 0 if and only if there is a map F: QP,—
(BO,); which represents a homotopy of f with itself, such that
F*w, = qf*w, + Qu, where QX is as given in [4; 5].

ExavpLE (4.7.1). If € =4 or 4h, then f*w, =0, so d,(u) = (@*, 0)
and d,(») is not defined. Thus 4,4 + (%*,0),4 + (0, %), and 4 + (¥, w’)
are all distinct oriented vector bundles.

ExaMpPLE (4.7.2). If & =2h 2, then f*w, = u?, so d,(u) = 0.

Let 7, be that line bundle over QP; such that w,(y,) = qu; now
2-plane bundles over a space X with w, == are classified by H¥X; Z"[]);
let 7, be that 2-plane bundle over QP;, with w,(7,) = qu classified by
Qu. Then wy(7,) = Qu. Let ¢: QP,— BO(4) be the classifying map
of 7,@7,P1L; c*w, = qu’ + Qu and ). P7.P1)|P,=2nhPH2. Thus
F, the projection of ¢ onto (BO(4));, and df(u) = 0.

ExampLE (4.7.3). If & = C, then f*w, = u? so df(u) = 0, and d{(u)
is defined. Now p,C = p,(2h P 2) + (0, @*),

QP,— . (BOW)),
N S
R
X
/2h@2\ i
C

Ds
P, ————3(BO(4)),
ps(2h>2)

Ds

and so d(u) = 0 if and only if we can lift the map
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DsF" + q(0, u'): Qps; — ((BO(4)),

to (BO(4));, where F' is the map given in (4.7.2). Now the k-invariant
k® is based on the relation S:I7.k° + w, U Il .k* = 0, and (p,F)*k® = 0,
so (p:F + a)*k® = S .a + (p;F)*w, U II,a which, when a = ¢(0, @,
equals S7q(0, ') + (qu’ + Qu) U q(0, w*) = Q(0, »’). So, by [4; 5.2], d,(u) =
0,%’). Thus C + (0,%°) = C, but C + («%, 0) is different. We also
have that there are two complex structures on C, because since C
is the reallification of the complex bundle C, C = C + (0, #*) is the
reallification of C + .

4.8. We would like to know how vector bundles behave under
tensor products. If L is any line bundle over any space, L QL = 1.
Furthermore:

REMARK (4.8.1). If 7, and 7, are locally oriented real =-plane
bundles over a space X, which agree on X* ', and if ¢ is a locally
oriented real m-plane bundle over X, then ¢.0%(7, ) = 0*(n, P&, 1. P &)
and j.0%(n,n,) = d*n Q& 1, Q &), where i: BO(n) — BO(n + m) and
j: BO(n) < BO(nm) are the maps induced by the inclusion of O(n) in
O(n + m) and O(nm). Similarly for complex vector bundles.

REMARK (4.8.2). If £ is an oriented real vector bundle which has
a complex structure, and if 7 is any other locally oriented real vector
bundle, then & » also has a complex structure.

Proof. Let C(n) be the complexification of 7, and let & be a
complex bundle whose reallification is &. Then we can see routinely
that the reallification of & @ C() is £ R 7.

With the above information, we can almost completely determine
the action of “@” and “X” on all locally oriented real vector bundles
over P,k <5. For example,

ARh=B,CRh=C,ARQh=4h, (4 + 0, ) Rk = 4h + (0, w’),
T Qh="T,EQh=F, @h+ @, u)D1l=4rD1+ u.
The only unsolved questions are whether A@Qh = B@P1; it is also

possible that A@h = BP1 + (0, %*); and whether BEP 2 equals 22 H 3
or 2h P 3 + .
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