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BEST CONSTANTS IN A CLASS OF
INTEGRAL INEQUALITIES

DAVID W. BOYD

In this paper a method is developed for determining best
constants in inequalities of the following form:

S b (Cb Λ(p+q)/r

\y\*\y{n)\*w(x)dχ£Ki\ \ y{n) \rm{x)dx\
where yia) = yι(ά) = = y{n-ι\a) = 0 and y{n~1] is absolutely
continuous.

It is first shown that for a certain class of m and w,
equality can be attained in the inequality. Applying variational
techniques reduces the determination of the best constant to
a nonlinear eigenvalue problem for an integral operator. If
m and w are sufficiently smooth this reduces further to a
boundary value problem for a differential equation. The method
is illustrated by determining the best constants in case (a, b)
is a finite interval, mix) = wix) = 1, and n = 1.

A number of special cases of the inequality have been studied but
usually without obtaining best constants. An exception to this is the
case n — l,q = 0,p = r which was studied very thoroughly by Beesack
[1], who gave a direct method for determining best constants. The
method of [1] was modified by Boyd and Wong [5] to apply to the
case n — 1, q = 1, r = p + 1. Recently Beesack and Das [2] obtained
constants for the case n — 1, r = p + q but these were not in general
best possible.

We shall state our result only for n = 1 although it will be clear
that the analogous result for n > 1 is valid. In our closing remarks
we indicate a number of other inequalities to which the method of
this paper applies.

1. Preliminaries* Throughout we assume that p, q, r, α, b are
real numbers satisfying p > 0, r > 1,0 ^ q < r and —oo ^ α < δ ^ o o .
The functions m and w are measurable and positive almost everywhere.
We write dμ(x) = m(x)dx and

for 0 < s < oo .

The space Ls

m is the set of functions with | | / | | s < °°, with the usual
identification. We shall use the notation fn—+fiί \\ fn — f\\s —* 0, and if

IV

s ^ 1 so Ls

m is a Banach space, we write fn •/ for weak convergence
in Ls

m. We denote the dual of Ls

m by Lsή so for s > 1, s' = s/(s — 1).
We shall consider integral operators of the type

367
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( 1 ) Tf{x) = \k(x, t)f(t)dμ(t) ,
Ja

where k{x, t) ^ 0 a.e. A function / is in the domain of T if

T\f\(x) < - a.e.

For Theorem 1, the operator T becomes

( 2 ) TJ(x) = w{x)^m{x)-ιίλX f(t)dt ,
J

so that k(x, t) = w(xylPm(x)~llpm(tyιχ[a}X}(t). A necessary and sufficient
condition for the domain of Tι to contain Lr

m is that

\X m(t)-1{r

Ja

l)dt < for a ^ x < b .

This follows from Holder's inequality and its converse.
If T maps Lr

m —»L8

m, where s = prftr — g), with norm || T|| <
then we can define the functional J on Lr

m by

(3) J ( / ) =

It then follows from Holder's inequality that

(4) J(f)<\\T\\*\\f\\*+q.

2. Main results.

THEOREM 1. Suppose that w, me Cι(a, 6), that w(x) > 0 a.e. and
m(x) > 0 for a < x < b, that p > 0, r > 1, 0 ^ g < r, ami ίfcaί ίfeβ
operator Tx defined by (2) is compact from Lr

m—+Ls

m(s = pr/(r — q)).
Then the following eigenvalue problem (P) has solutions (y, λ) with
y e C2(a, 6) ami (̂a;) > 0, y'(x) > 0 in (a, 6).

'r-'m - qypyfq^w) + pyv~ly'qw = 0

= 0 a^d lim (r\yfr~ιm — qyvy'q~ιw) — 0

( i ) -A.

There is a largest value λ sucfe ίfcai (P) Λ.as a solution and if λ*
denotes this value, then for any feLr

m,

b Γx

a Ja
^-^—\\ \f\'m(x)dx\

p - j - q Ija )

Equality holds in (5) if and only iff— cyf a.e. where y is a solution



BEST CONSTANTS IN A CLASS OF INTEGRAL INEQUALITIES 369

of (P) corresponding to λ = λ*, and c is any constant.

The proof will require two lemmas which we state in reasonable
generality.

LEMMA 1. Suppose that p > 0, r > 1, 0 ^ q < r, and that T, as
defined by (1) is a compact operator from Lr

m—>Ls

m, (s = pr/(r — q)).
Let J be defined by (3), and

( 6 ) Z *

Then, there is an element /0 6 Lr

m with | | / 0 | | r — 1 such that J(f0) = ϋΓ*.

Proof. Since «/(/) < J ( | / | ) unless / is of constant sign a.e., we
can restrict consideration in (6) to / Ξ> 0. Let {fn} e Lr

m be a sequence
with /„ ^ 0, | | Λ || ^ 1 such that J(fn)->K*. We begin by assuming
g > 0 so that 1 < rjq < co. By the weak sequential compactness of
the unit balls of Lr

m and LrJq ([7], p. 68), and by the compactness of
T, we may assume that there are functions

such that fn > /, fl > h, Tfn —* g in the appropriate spaces; clearly
Tf' — g. Furthermore, by the uniform convexity of Lr

m and LrJq we
may assume that fn and fl are strongly (C, l)-summable to their weak
limits ([7], p. 462), so that

Σ Λ >f and K = n-*
fc = l

Now, we have

( 7 ) J(/J - Γ^M^ - \\{TfnY - g*)f*

Now, since /J >h in L^/(/ and since gp e Lsiv = L{ZlqV, the second
integral in the right member of (7) tends to zero as n —> oo. To show
that the first integral tends to zero we consider separately 0 ^ #> < 1
and 1 ^ £ > < C O . If 0 <: p < 1, we use the inequality | Ap — Bp | g
I A - £ |p for A ^ 0, β ^ 0 to obtain

The second step follows from Holder's inequality with exponents s/p =
r/(r — q) and rfq. The final term in (8) tends to zero since Tfn —> g
in L s

m .
In case 1 ^ p < oo, we consider instead
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( 9 )

by Minkowski's inequality. As in (8), the right member of (9) tends

to zero. Thus, if An = Ϋ (Tfn)
pfl and Bn = Γgpfq

n, we have that
Ja Ja

Λ — JDn
0 .

But {An} and {Bn} are bounded sequences (A, = J(fn) ^ || Γ | | p by (4),
Bn^\\g\\p ^\\T\\P by Holder's inequality and Tfn-*g), and thus
\An- Bn\^p\ Aιίp - Bip I II T\\p~γ shows t h a t An - Bn — 0 as required.
Hence, we have

= \bgphdμ .(10)

In case g = 0, (10) also holds with h = 1, by a similar argument.
Now we show the existence of f0 for which J(f0) = K*. The cases

0 ^ g < 1 and 1 ^ q < r are considered separately. If 0 ^ g < 1,
define f0 = f. Since φ(t) = ίg is concave, we have

(li) h = (n-1 Σ Λ)g ^ ~̂1 Σ Λ = k .
1 1

Now, since/%—>/o in Z4, we have

(12)

I C
1
1

I J

b Γb

y Jo \ 9 J n
J

\ fq — fq

I Jo Jn

Similarly, \ gphn-+\ gph. Thus, combining (10), (11) and (12) we

obtain

J(f*) =
(13)

= K* .

However | | / 0 | | r ^ 1 so J(/o) ^ K* and hence (13) implies J(/o) = K*
from which it is clear that | | / 0 | | r = 1.

In case 1 ^ q < r, let /„ = h1'9. Now, instead of (11), we have
f l ^ h n . S i n c e \ \ h n - h\\rlq-*Q, a n d s i n c e |h'J" - h ι l q \ ^ \ h n - h I 1 " w e
have
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Thus hHq -> hίlq = f0 in Lr

m and since T is continuous, ThHq -> Tf0 in
L;. However fn ^ hιiq and k(x, t) ^ 0 a.e. so Tfn ^ Th\lq, a.e. and
thus Tf=g^ Tf0 a.e. Thus (10) implies if* ^ J(/o), which again
means that J(f0) = K* and | | / 0 | | r = 1.

REMARK. A simple sufficient condition for T to be compact from
Lr

m—*Ls

m is that k have finite (r', s)-double norm. That is

(14) I

(see [9], p. 319; the proof there applies even if 0 < s < 1).

Using (4), we see that K* ^ || T\\p ^ ||| T\\\p so (14) also supplies
an upper bound for if* (rarely the best).

For the operator T1 given by (2) one may calculate that

(15) HI 2^ IIIs = Γ w ( α 0 r / ( r - g ) m ( a 0 ~ g / ί r ~ f f ) Γ Γ ^ ^ .

In the paper of Beesack and Das [2], the following inequality is proved:
If pq > 0, p + q > 1, y(a) = 0 and ?/ is absolutely continuous, then

(16) \b\y\p\v' \qw(x)dx ^ K,φ, p, q)[ I y' \p+qm(x)dx ,
Ja Ja

where K^b, p, q) is explicitly given. The constant K^b, p, q) equals
the best constant K* if and only if for some c ^ 0

G x \p(ί-q)lq

m(ί)-i/c-i>dίJ (r = p + q ) .
The constant K^b.p.q) given there is in fact equal to (q/r)qlr\\\ T Ί | | | P ,
so, unless (17) holds we have

(18) if* < i Γ 1 ( δ , p , g ) < HIT, HI-.

LEMMA 2. Suppose that T is given by (1), and that k(x, t) > 0
for almost all (x, t) with a ^ t ^ x ^ 6. Lei p > 0, r > 1, 0 ^ g < r,
cmd suppose T is a bounded operator from Lr

m—>Ls

m. Let J be defined
by (3), if* by (6). Lei / sαίΐs/τ/ | | / | | r = 1 and J(f) = K*. Then f
is of constant sign a.e. and

( a ) fφQ a.e.
(b ) / satisfies a.e. the equation

(19) rλ/'-Hs) - q(Tff{x)fq-\x) - p\k{t, x)(Tfy~\t)fq{t)dμ{t) = 0 ,
Ja

where λ — λ* = if*(p + q)/r. Furthermore X* is the largest value of



372 DAVID W. BOYD

λ for which (19) has a solution f with \\f\\r = 1.

Proof. ( a ) We have seen that / is of constant sign a.e. so we
assume / ^ 0 a.e. Let E — {x: f(x) = 0}; we must show that E is a
null set. First choose a function heLr

m such that h(x) ^ 0, and
h(x) > 0 if and only if xeE. Such h exist: if μ(E) < oo, take h =
χE, while if μ{E) = oo, let

F % = F Π [- n, n] n {#: m(a?) ^ w} ,

so μ(2£w) < oo, and define h = X 7»%tfn where {TJ is chosen so γw > 0

and Σ T M ^ ) < °°

For ε > 0, define fe=f+ eh, and let F = T/, F ε - Tfe, H = TΛ.
since J(f)/\\f\\?+Q is maximal, we have

0 ^ J(/ β ) - J(f) S (\\f\\l+q - l)J(f)

( 2 0 ) {(1 + ε\\h

= 6'H AHJT^-Vί/), (where 7 = (p + g)/r, and 1 < f < 1 +

= 0(εr) as ε I 0.

First assume that q > 0, so if CE — [α, 6]\^, we may write

(21) J(f) - J(f) = e« \ F>h< + \ (Fΐ - F*)f« .
JE JCE

From (20) and (21) we immediately deduce that

0 ^ \ Fphq ^ f Ffhq = 0(εr-q) ->0 as ε [ 0 .
JE Jε

Thus, F(a;) = 0 a.e. on E so k(x, t) = 0 a.e. o n ί / x OE7.
Next, we note that JP\x) > 0 a.e. on CE, since &(#, t) > 0 a.e. for

a ^ ί ^ a; ^ δ. Thus, for almost all x in C^, we have {d/de)Fffq =
pFΓιHfq- Hence, if 0 < ε < ε0 we have.

(22) <pFv~lHfq ^ s-^Ff - F p ) / 9 a.e. on CE, p ^ l

(23) pFe

p-Ήf9 < er\F* - Fp)fq a.e. on CE, 0 < p < 1 .

Thus, if p ^ 1, (20), (21) and (22) imply that

(24) 0 ^ ( pFp~Ήfq ^ ε-1^ (Ff - F^)/9 = Oίε^1) -+ 0 as ε j 0 .

Thus, since F(x) Φ 0, we have H(x) = 0 a.e. on CE. A similar argument
using (20), (21) and (23) proves H(x) = 0 a.e. on CE, if 0 < p < 1. Thus
fc(x, ί) = 0 a.e. on CE x E, and hence on (E x CF) U (CF x F ) . But,
since &(#, t) > 0 a.e. for α <̂  ί ^ a; <Ξ 6, the last sentence implies that
ExCE has plane measure zero and so either μ(E) — 0 or μ(CE) = 0.
However, μ{CE) = 0 implies that / = 0 a.e. contradicting /(/) = K* φ 0.
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Thus μ(E) — 0 as required.
In case q = 0, (21) no longer holds. In this case, let

A = {x: F(x) = 0}

so k(x, t) = 0 a.e. on A x CE. Clearly μ(A Π CE) = 0, since k{x, ί) > 0
a.e. for α ̂  £ ̂  # ̂  6. Instead of (21) we have

(25) J(fε) - J(f) = e*\ H*+\ (Fi - F*) .
JA JCA

Proceeding as in (24), we use the second integral in (25) together with
(20) to show that H(x) = 0 a.e. on CA, so Jc(x, ί) = 0 a.e. on CA x E.
Now if B — CA Π E has μ(Z?) > 0, we would have k(x, t) = 0 a.e. on
B x B with contradicts &(#, ί) > 0 a.e. for α ̂  ί ^ x ^ 6 and thus
μ(B) = μ(E\A) = 0. We already have shown that μ(A\E) = 0. Thus
fc(&, 0 = 0 a.e. on (A x CE) (j (CA x JB?) means &(«, ί) = 0 a.e. on (Ex CE) (j
(CE x E), which leads to a contradiction as before. (We note that if
p < r, a simpler argument is available using the first integral in (25).)

(b) Consider the functional

- J(f) - Γ[λ/r ~
Ja

We shall show that if J(f) = K*, and if | h \ ̂  /, then for λ = λ* =
K*(p + g)/r, we have

(26) 3/(/; Λ) - lim ε~ι(I(f + ελ) - /(/)) = 0 .
£->0

First, suppose that \h\ ̂  f and that | ε | ^ 1/2. Now define A(ε) =
J ( / + εfe) and β(ε) = | | / + εh\\r

r. Then A and B are differentiable at
e = 0, and

(27) A'(0) - ( (pFp~ψH + qFpf«-ιh)dμ
Ja

(28) B'(0) = ["rf-'hdμ .

To see this, note that (d/de)F?f? = pFΓΉfϊ + qFffΓ'h a.e. since

/ > 0 a.e. by (a), and .F> 0 a.e. since &(#, t) > 0 a.e. for α <£ ί ^ a? ̂  6,

and thus /£ > 0 a.e., Fε > 0 a.e. for | ε | ^ J and | Λ-1 ^ /.

But, we have

^-w sJS/ } {{Hj {\r}
by Holder's general inequality with exponents s/(p — 1), s and r\q.
Similarly, one shows Fvfq~ιh is integrable. And, for | ε | ^ -| one may
bound I (djde)Fff! | in terms of Fp~1Hfq and Fvfq~ιh. For example,
if p ^ 1, <7 ̂  1, one has
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(30) JLFI
dε

( Q \

a.e.

with similar bounds if 0 < p < 1 or 0 ^ # < 1. Thus, Lebesgue's
dominated convergence theorem gives (27). A similar argument gives
(28).

By assumption /(/)/||/| |?+ f f = A(0)/B(0){p+q)lr is maximal and hence

— (A(ε)B(ε)~ip+q)lr)
dε

= 0 .

Differentiating and using A(0) = K* and J3(0) = 1, we obtain

(30) A'(0) - K*((p + q)/r)B'(0) = 0

or if we write λ* = K*(p + q)/r, we obtain

(31) Γ (rλ*/ r-^ - pFp-ιfqH - qFpfq-ιh)dμ = 0 .
Jα

By Fubini's theorem we have

§ k(x, t)h(t)dμ(t))dμ(x)

Thus, if we write T" for the operator with kernel &(ί, x) we have
from (31) and (32)

0 = Ϋh(x){r\*fr-1 - q(Tf)*f*-1 - vTr({Tf)*-ιf*)}dμ(x)
(33) "

- h(x)G(x)dμ(x) .

To obtain (19) set /φ) = f(x) sgn G(a ) in (33) and use the fact
that f(x) Φ 0 a.e.

To see that λ* is the largest value of λ for which a solution to
(19) is possible with | | / | | r = 1, note that if (19) holds then (33) and
hence (31) hold for any \h\^f with λ in place of λ*. Thus, setting
h = f in (31) (with λ for λ*), we obtain rx\\f\\r

r-(p + q)J(f) = 0,
and thus λ = (p + q)J(f)/r ^ (p + q)K*Ir - λ*.

REMARK. Part (a) of Lemma 2 may be strengthened by allowing
k to vanish on more extensive sets. However, the precise condition
that is needed to insure fΦO a.e. depends on the relationship of p, q
and r. For example, if q > 0 and p < r, and if there are no sets
E with μ{E) > 0 and μ(CE) > 0 such that k vanishes on (E x CE) (J
(CE x E) then for / as in Lemma 2, one has f Φ 0 a.e.
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Proof of Theorem 1. By Lemma 1, sup{J(/): | |/ | | r^l} = iΓ*<oo,
and there is an / ^ 0 with | | / | | r = 1 and J(f) = K*. Since m(x) > 0
and w(&) > 0 a.e., Lemma 2 applies and we have fΦO a.e. in [α, 6],
and / satisfies

(34) \rfr-ι(x)m(x) ~ qF(x)pf(x)q-ιw{x) - pΫ Fp~ιfqw = 0 a.e.
JX

where F(x) = [ f(t)dt.
Jα

We claim that by modifying / on a set of measure zero, we will
have feC'ia, b),f(x) Φ 0 in (α, b) and / will satisfy (34) everywhere.
To see this, rewrite (34) as

(35) / - 1 - A(x)fq~' = B(x) a.e.

where A(x) ^ 0, and B(x) > 0 for all xe(a,b).
Consider the equation ζ7*"1 - ζζ*-1 = η. For η > 0, £ ^ 0 this has

a unique positive solution ζ = φ(ζ, η) which can be extended to be C°°
on an open region containing the set {(£, η): £ ^ 0, η ^ 0, ξ + 7) > 0}.
To see this, consider the function ψ(ζ) = ζ r - 1 — £ζ 9 - 1 for fixed ζ, r and
#. First suppose q ;> 1, and £ > 0, then α/r'(ζ) has a single positive
zero ζ0 — Co(ί), and r̂ decreases from ψ(0) = 0 to ^(ζ0) < 0 and is
strictly increasing on [ζ0, oo) to + c>o. Thus τ/r(ζ) = rj has a unique
solution for η > 0 which we denote 9>(£, )y). We define φ(ξ, η) for
ξ > 0 and 0 ^ ^ > ^(ζo(f)) to be that solution of -η = ^(ζ) with ζ > ζ0.
If g ^ 1 and f ^ 0, then ψ is strictly increasing from ψ(0) = 0, hence
^r(ζ) = η has a unique solution for η :> 0. Thus, for # ^ 1, ψ(ξ, rj) is
defined on an open set containing Q = {(ξ, ^ ) : f ^ 0 , ) 7 ^ 0 , ζ + ^ > 0 } ,
and since φ'(φ(ξ, η)) > 0, the implicit function theorem shows that
φ e C00. To show that φ(ζ, η) — ^(0, 0) = 0 as (ζ, rj) -> (0, 0) in Q, we
note that if 0 ^ ξ ^ δ, 0 ^ η ^ δ and ζ, = αδ 1 " '- 1 ' with a = 2ll{r~q\ then

W~l)«r-l) ^ a^" 1^-^ - l)δ ^ δ (if δ ^ 1) .

Thus φ(ζ, η) <, aδιl{r~l) for 0 ^ f ^ δ, 0 ^ 97 ̂  δ proving the assertion.
If 0 ^ g < 1 and ζ > 0, then ^ is strictly increasing from - c o to

00 on (0, 00) so ψ(ζ) = 37 has a unique solution for all η. If 0 ^ (? < 1
and £ < 0, then ψ(Q—^00 a s ζ — > 0 + o r ζ - ^ o o , and ^ has a minimum
at a point ζ0 where ψ(ζ0) = y\ξ \i'-vnr-o a n ( j 7 > 0 . If £ = 0, ψ(ζ) = η
has a unique solution for η ^ 0. Again we have φeC™ on an open
set containing Q and that φ(£, 57)—>0 as (£, rj) —> (0, 0) in Q.

Now, from (35), by modifying / on a null set, we have

(36) f(x) = <p(A(x), B(x)) for all x e (a, b) .

If WymeC1 then A, B are absolutely continuous so (36) shows that /
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is absolutely continuous. But then FeC1 so in fact, A,BeCι and
(36) shows that / e C1. That f(x) Φ 0 for x e (α, b) follows immediately
from (36).

Now, defining y = F and differentiating (34) once gives (P) (i).
The conditions (ii) and (iii) are apparent from (34). The problem (P) thus
has solutions for λ = K*(p + q)/r. To identify the largest eigenvalue
of (P) as K*(p + q)/r, we note that a solution of (P) gives a solution
of (34) and by Lemma 2 the largest eigenvalue of (34) is K*(p + q)/r.

The inequality (5) and the statement concerning equality are now
obvious.

REMARK. If m(x) > 0 and w(x) > 0 for all x e [α, b], and if q > 0,

then A(x) > 0 unless # = a and B(#) > 0 unless x = 6. Hence equation
(36) shows that f(x)>0 for all #e[α, 6]; and feCι[a, 6]. We also
note that if lima._6 A(#) is finite and lima._>α i?(&) is finite then f(a) < oo
and f(b) < oo. This will be used in § 3.

3* Some inequalities on a finite interval* As an application of
Theorem 1, we obtain the best constants in case (α, b) is a finite
interval and m{x) = w(x) = 1. We immediately consider

S I (Γ1

o 11/ N 2/ΊffdflJ ^ ίΓ(p,g,r) | j o | y' \r

(p + q)lr

where y is absolutely continuous and y(0) = 0.
Some special cases of (37) are known. The case g = 0,p = r = 2fc

(k a positive integer) is inequality 256 of [8], which was derived there
by classical variational methods using the Weierstrass sufficient condition.
This case was handled by elementary methods in [3]. OpiaPs inequality
is the case p — q = 1, r = 2. If q = 1, r = p + 1, the best constant
can be obtained by Holder's inequality (see [5], for example). The
case r = p + q was considered in [6] but the best constant was found
only when q = 1 or r = 1.

Note that if q > r, there is no inequality of the form (37), since
for y(x) = 1 - (1 - x)ι-r, q~' < Ύ < r~\ the left member of (37) is
infinite while || y'\\r < oo. The case p = 0 is simply Holder's inequality
with K(0, q, r) = 1.

THEOREM 2. For r ^ 1, p > 0, 0 ^ q ^ r, the inequality (37) is
valid with a finite constant K(p, q,r). The best such constant is
given by the following expressions

( a ) if p > 0, r > 1, 0 ^ q < r,

(38) iΓ(p, q, r) = ( r ~ q)pP β^Kp, q,
(r - l)(p + q)
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where

= j p ( r - i) + ( y - g ) y
I (r - l)(p + q) I

S
1 Γ Wtf — 1\ 1 ~(q + P+rp)lrp

i l + n«—iL ί I {l + (? -
o I r — q )

r — q

(b) If r = 1, then

K(p, g, 1) =

U
( c ) If q = r, then

(39) j r ( P l r, r) = p

If r = 1, q = 0, there is strict inequality for all y ^ 0 while in all
other cases there is equality only for multiples of a single function
y(p, Q, r, x) which is in C~(0,1), and is concave if 0 <Ξ q < 1, convex
if q > 1, linear if q — 1.

For special cases of (a), (28) reduces to a simpler form. First,
if r — p + q, we have

(40) K ( p , q , p + q) = q(p + q γ - ι { p L { p , q) + q}~*, q ^ O

where

In particular,

\ 2 g log g } , g ^ 0,1 .
2q —

If q = 0, and r > 1, we have

K(p, 0, r) =

, r) =

where r' = r/(r — 1). Note that A(p, r) is the norm of the mapping

T: Lr->LP where here Tf(x) = \'f(t)dt. By (4), if | | / | | r - 1 we have

J(f) ^ II T\\p, where || Γ| | is the°norm of T as a mapping from l4->

χs

m, (s = pr/(r - g)), and so we always have K(p, q,r) ^ A(s, r)3'.
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We also note that in (38), if q Φ 1, one may make the replacement

(41) (r - q)I(p, q, r)~*> = rp+1(q - l)Up, q, r)~p ,

where

UP, Q,r) = ±(r - q) PV^l =F tγ~ιdt + r P V ^ α + tγdt ,
J Jo

where T1 = l—[(r — q)/q(r — 1)],7 = (p + q — r)/rp, and the upper sign
is used with q > 1, the lower sign with q < 1.

Proof. In case (a), Theorem 1 applies since certainly ||| ΓJH < oo.
We seek solutions of the problem (P). We first observe that by the
remark at the end of § 2, we have y e C2[a, b] and 0 < y'(0) < oo, 0 <
y'(l) < oo except in case q = 0 when we have y'(l) = 0. To see this
note that the functions A and B which appear in (35) are here just

A(x) = q(Xr)-ιy{x)\ B(x) =

But y(l) - ( V ( ί ) d ί ^ Hi/'llr < °°, so A(l) < oo, and

J
o

I ffl l̂ (r-q)/r

y-ιy'q ^

which shows that B(0) < oo.
Notice that equation (i) of (P) has the integrating factor yf from

which we obtain

(42) (r - l)λ?Λ - (ί - l)yvy'q - αλ ,

where a is a constant which is evaluated by using \\y'\\r = 1 and
/') = rλ/(p + g). Thus we have

( 4 3 ) a = {r _ i) _ (g ~ Dr = pr - p - g + r > Q ̂
P + ^ p + ?

Solving (42) for y = XllpG(y') and differentiating leads to a variables
separable equation for ?/', and if we write z = yr we have, for q Φ 1

(44) dx = ±— \

χ / r — l)(r - q)zr~q~2 +

To obtain boundary conditions, we use (42) and (ii) and thus,
since 2(0) Φ 0 and 2(1) Φ 0 for q Φ 0, we obtain
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(45) z(0)r = a/(r - 1) and z(l)r = aq/(r - q) .

We now integrate (44) from x = 0 to x = 1 using (45) and make
the change of variables (for q Φ 1)

ra q — 1

which leads to equation (38).
For q = 1, we note that I(p, 1, r) = p, β = 1, and so (38) gives

ίΓ(p, 1, r) — (p + I) " 1 which is the correct result by our earlier remarks.
In the equation y — XllPG(y'), G is increasing if q > 1 and decreasing
if q < 1. Thus, since y is increasing, we must have yf increasing if
q > 1 and decreasing if q < 1. The solution to problem (P) with
λ = λ* can be seen to be unique in the following way. We know
that a solution of (P) must satisfy y — XllpG{y') and thus also yf —
xUpG'(yf)y", and hence yf satisfies

Cy'ix) d?

(46) λ1^ G'(z) — = x.
Jv'(O) Z

But, for q Φ 1, Gf(z) does not change sign on the interval from y'(0)
to y'(l) so (46) has a unique solution for y'{x), and hence (P) has a
unique solution when λ = λ*.

To obtain the alternate expression for (r — q)I(p, q, r)~p given in
(41), we make the change of variable t = 1 — a(r — l)""1^** in (44).

To obtain the formula (40), we make the following change of
variables in (38)

= Λ _ τ(q - 1)
— 1) /

Then t = (p/g(r — l))spi2(s)-\ and ί = 0,1 correspond to s = 0,1 and
one has

(47) /(p, g, r) = const |ifi(e)^^+<1^+1-»/^-1(p5(s)-1 +

= const {^(p, Q') + q}, since r = p + q .

The formula (40) can be obtained in a more direct way by making
the substitution u = (q/rX)llP(y/yf) in equation (i), where we assume
q Φ 0 so y\x) > 0 for x e [α, 6]. Then the conditions (ii) give ^(0) = 0,
u(ΐ) = 1, and equation (i) reduces to

(48) (r - 1) {l - r(f ~ ]\ uΛ - pf^Y'u' (r = p + q) .
I g(r — 1) J V q I

Separating variables and integrating gives (40).
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I y' \dt, and then if q > 0
o

I y \p I y' \qdx ^ [\zPl9z')qdx
J

using Holder's inequality with exponents 1/g > 1 and 1/(1 — q). Equality
holds only if zPlqz' is constant, and y — z which means y(x) = cxql{p+9).
For q = 0, we have

y \pdx ̂ [ \z \pdx ^ z(l)p = [ \ z\x) \dx .
Jo Jo

Equality holds only if y = z, and z(x) — z(l) for all x, so y(x) — z(x) = 0.
For case (c), we let q—*r— in formula (38), using the equation

(41) to evaluate lim (r — q)I(v, q, τ)~p. This shows that the best
constant is given by (39), because if yr eLr and q < r, then

[\y\p\y'\9-+[\y\p\y'\r

Jo Jo

by dominated convergence. To handle the case of equality we cannot
apply Lemma 2 directly since the proof of Lemma 2(a) used r > q.
However, if there is an / with J(f) = K(p, r, r) — ϋΓ* then we know
that / ^ 0 a.e. Now referring to the proof of Lemma 2(a), since
r > 1 we do have (24) which proves that if Έ — {x: f(x) = 0}, then
k(x, t) — 0 a.e. on CE x E. This means that

(CE x E)f] {(x, t): 0 ^ t ^ x ^ 1}

is a set of measure zero. This implies that E differs from an interval
[c, 1] by a set of measure zero. To see this, let

c = sup {x ^ 1: [0, x] Π E is of measure zero} ,

and let d = inf {x :> 0: [x, 1] Π CE is of measure zero}. Clearly d^ c.
But, if d > c, and β = (d + c)/2, then [c, e] Π £? and [β, d] Π CE have
positive measure; but then CE x J57 intersects {(x, t): 0 ^ t ^ x ^ 1} in
a set of positive measure which is absurd.

However if equality held for such an /, we would have (writing

Ax) = V'(x))>

(49) jQ \y\'\y' \rdx = # * { j | y' |

Define z(t) — y(ct) so z'(t) = cy'(ct), and from (49) we obtain
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S I ΓΓ 1 Λ(P+r)lr

\z\p\z' \rdx = κ*c-'lr-1)ir 11 I z' \rdx\
But, if c < 1, then κ*e~p^-ί)lr > if* contradicting the maximality of
if*. Thus c = 1, so /(a?) = 2/'(α) > 0 a.e. on [0,1].

Still proceeding on the assumption that there exists an / with
J(f) — K* we have shown f(x) > 0 a.e. on [0,1], so the proof of
Lemma 2(b) is valid and / satisfies

(51) \rfr~\x) - τF(xYfr-\x) - p[ Fp~ιfrdt = 0 a.e.
Jx

where F(x) = y(x) = \*f{t)dt, and λ = (p + q)K*\r.
Jo

If a? is any point where f(x) > 0 and (51) holds then (51) shows that
Xf'-'ix) > Fp(x)fr-\x), so Fp(x) < X a.e. But F is strictly increasing
so F(x)p < X for 0 ^ E < 1. Now we can solve (51) for / and obtain

(52) f{x) = φ(A{x), B(x)) for almost all x e [0,1) .

where φ(ξ, η) = (37/(1 - i))1 / ( r"1 }, A(x) = X-'FixY < 1 for 0 ^ x < 1, and

^ 7 3 1 - 1 / ^ > 0 for 0 ^ a? ̂  1. Now we proceed as in
the proof of Theorem 1. If we modify / on a null set so that it
satisfies (52) everywhere then we obtain /eC^O, 1), and f(x) > 0 for
0 ^ x < 1. Thus we see that if J(f) = K* and y' = f then y must
be a solution of the problem (P), with λ = λ* = (p + r)K*/r. But a
solution of (P) must be a solution of (42) (with q — r) which is

(53) \y» - ypy'r = pX/(p + r) .

However if (53) has a solution then it must also satisfy

(54) \yiX\x - uψrdu = (pX/(p + r))1/rx .
Jo

To see that (54) has a unique solution for 0 ^ x ^ 1, we note that

S XHP / 1 -I \

(λ - ΐ ^ ) 1 ^ - p-V^Sί— + 1, -i.) = (pλ/(p + r))ι

0 \ T p /

) ι l r

using the formula for if(p, r, r) = K* and λ = (p + r)K*/r. Since
λ — ̂  > 0 for 0 ^u < λ1/p, (54) has a unique solution 7/ = y(x) which
is strictly increasing and has y(0) = 0, y(l) = XllP. To complete the
proof we must show that y in fact satisfies (i), (ii) and (iii) of (P).
By the implicit function theorem yeC2(a,b), and differentiating (54)
twice shows that y satisfies (i). Clearly y(0) = 0. For the other part
of (ii), we note that for 0 ^ x < 1, we have

(λ - y>(x))ίlry'(x) - (pX/(p + r)f'r ,



382 DAVID W. BOYD

a n d s ince yp(x) —• λ a s x —> 1 — , w e h a v e y'(x) —> oo a s a? —• 1 — . B u t

this means that

(56) (λ - yp(x))y'(xy-1 = (p\/(p + r))y'{x)-χ > 0 as x > 1 .

To verify that || y' \\r = 1, let us first introduce the function g by

(57) g(t) = (pλ)~llr(p + r) 1 / r Γ(λ - tf*)1"^ ,
Jo

so flf(2/(.τ)) = a? for x e [0,1] and hence y(g(t)) = t for t e [0, λ1 / p]. Now

(58) fV<«rd» = - i £ - 1 1 ^
Jo p + r Jo λ — 2/p(a;)

= (~^—) (λ - tψ'^
Vp + r / Jo

where we use the change of variable x = g(t). Now using the formula
for λ, we obtain

(59) [y'(xydx = ^ s f i V^f + 1
j o p-\-V\V>P'\V p

REMARKS. ( 1 ) As was mentioned above, the method of this
paper applies to inequalities of the form (1) with n > 1. In this case
T becomes

w { x ) ι l l ί > m { x ) - l l Ί ) [x (χ~ fl*"1 f ( t ) d t .
u (n — 1)!

A discussion of the special case p = q = l,r = 2 will be found in [4j
where, for m(x) = w(x) = 1, [α, 6] = [0,1], the best constant is shown
to be asymptotic to Iβnl

( 2 ) The method is equally applicable to inequalities in which the
function y is restricted by other boundary conditions. For example,
if [α, b] is a finite interval we may treat

S b fCb \ (p + q)lr

ypy"qw{x)dx ^ K\ \ y"rm{x)dx \

y(a) = y(b) = 0 .

In this case, if / is a given function in Lr

m, the boundary value problem

S b

G(x, t)f(t)dt, where
a

G(x, t) ^ 0 a.e. Hence our lemmas apply.
( 3 ) When Theorem 1 is specialized to the situation studied by

Beesack in [1] (q = 0, p = r), the results are not as general as his.
This is because we can effectively handle only those inequalities where
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we can insure in advance that equality is possible. There is some
compensation in the fact that the existence of solutions to the Euler-
Lagrange equations (P) is a conclusion of our theorem rather than a
hypothesis as in [1] and [5].
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