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ON GENERAL Z.P.I.-RINGS

CRAIG A. WOOD

A commutative ring in which each ideal can be expressed
as a finite product of prime ideals is called a general Z.P.I.-
ring (for Zerlegungsatz in Primideale). A general Z.P.I.-ring
in which each proper ideal can be uniquely expressed as a
finite product of prime ideals is called a Z.P.I.-ring. Such
rings occupy a central position in multiplicative ideal theory.
In case R is a domain with identity, it is clear that R is a
Dedekind domain1 and the ideal theory of R is well known.
If R is a domain without identity, the following result of
Gilmer gives a somewhat less known characterization of R:
If D is an integral domain without identity in which each
ideal is a finite product of prime ideals, then each nonzero
ideal of D is principal and is a power of D; the converse also
holds. Also somewhat less known is the characterization of a
general Z.P.I.-ring with identity as a finite direct sum of
Dedekind domains and special primary rings.2

This paper considers the one remaining case: R is a
general Z.P.I.-ring with zero divisors and without identity.
A characterization of such rings is given in Theorem 2. This
result is already contained ih a more obscure form in a paper
by S. Mori. The main contribution here is in the directness
of the approach as contrasted to that of Mori.

In order to prove Theorem 2 we need to establish two basic
properties of a general Z.P.I.-ring R: R is Noetherian and primary
ideals of R are prime powers. Having established these two pro-
perties of R, the following result of Butts and Gilmer in [3], which
we label as (BG), is applicable and easily yields our characterization
of general Z.P.I.-rings without identity.

(BG), [3; Ths. 13 and 14]: If R is a commutative ring such
that R Φ R2 and such that every ideal in R is an intersection of a
finite number of prime power ideals, then R = F1 0 0 Fk 0 T
where each Ft is a field and T is a nonzero ring without identity
in which every nonzero ideal is a power of T.

It is important to note that we do not use Butts and Gilmer's

1 M. Sono [14] and E. Noether [13] were among the first to consider Dedekind
domains. For a historical development of the theory of Dedekind domains see [4;
pp. 31-32].

2 S. Mori in [11] considered both general Z.P.I.-rings with identity and Z.P.I.-
rings without identity which contain no proper zero divisors, but Mori's results in
these cases are not as sharp as those of Asano and Gilmer.
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paper [3] to prove that a general Z.P.I.-ring is Noetherian, while
Butts and Gilmer do use this result from Mori's paper [11; Th. 7],
Theorem 2 gives a finite direct sum characterization of a general
Z.P.I.-ring whereas Theorems 3 and 4 and Corollary 2 give characteri-
zations of a general Z.P.I.-ring in terms of ideal-theoretic conditions.

Since we are only concerned with commutative rings, "ring" will
always mean "commutative ring". The notation and terminology is
that of [16] with two exceptions: g denotes containment and c
denotes proper containment, and we do not assume that a Noetherian
ring contains an identity. If A is an ideal of a ring R, we say that
A is a prper ideal of R if (0) c A c R and that A is a genuine ideal
of R if AaR.

2* Structure theorem of a general Z*P*I*-ring* In this section
section we prove directly that a general Z.P.I.-ring is Noetherian by
proving that each of its prime ideals is finitely generated. We then
use result (BG) to prove the structure theorem of a general Z.P.I.-
ring.

DEFINITION. Let R be a ring. If there exists a chain
PoCPjC c P , of n + 1 prime ideals of R where Pn c R, but no
such chain of n + 2 prime ideals, then we say that R has dimension
n and we write dim R = n.

LEMMA 1. If R is a general Z.PΛ.-ring, R contains only
finitely many minimal prime ideals and dimi? <̂  1.

Proof. If R contains no proper prime ideal, then the lemma is
clearly true. Therefore, we assume R contains a proper prime ideal
P and we show that R contains a minimal prime ideal. If P is not
a minimal prime of R, there exists a prime ideal P1 such that
Pι(zP (Z R. It follows that R/Pλ is a domain containing a proper
prime ideal in which each ideal can be represented as the product of
finitely many prime ideals. This implies that RjPι is a Dedekind
domain [6]. Therefore, Pι is a minimal prime of R. This also shows
that dim R ^ 1.

Since R is a general Z.P.I.-ring, there exist prime ideals
Qi," ,Qn in R and positive integers e19 "-,en such that (0) =
Qt1 Qi*. If Λf is a minimal prime ideal of R, (0) = Q i Q;» g M
which implies that Qt g M for some i. Hence, M = Qι and it follows
that the collection {Qlf , Qn) contains all the minimal prime ideals
of R. Therefore, R contains only finitely many minimal prime ideals.

LEMMA 2. If R is a general Z.PΛ.-ring containing a genuine
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prime ideal, then each minimal prime ideal of R is finitely generated.

Proof.3 Let P be a minimal prime ideal of R and let {Pu , Pn}
be the collection of minimal primes of R distinct from P. If P = (0),
the proof is clear. If (0) c P, we show that P is finitely generated
by an inductive argument; that is, we show how to select a finite
number of elements in P which generate P. We divide the proof
into three cases.

Case 1. P = P2. Since P = P2^RPQP, P = RP. Now,

Pet I \n P

since PgΞP; for 1 <Z i <£ n so let x1 e P\(U?=iP*) Thus, there exist
prime ideals Mu , M8, positive integers e0, elf , e8, and a non-
negative integer es+ι such that

since P = RP. Let δ = Σ J = i ^ . If P = (xj, we are done. If
(xj c P, then by choice of xL each ikf̂  is a maximal prime ideal of
R. Then [2; Proposition 2, p. 70] implies that P g {(a?x) U (U?=i P*)}
If a ; 2 e P \ { W U (UίUP<)}> then

(x2) = PM{i Mf^Rf^Qn ... Qft = PM{I . . . M{^Qg^ Q?f

where Q, is a maximal prime ideal of R for 1 ^ i ^ ί, /^ e ω0 for
1 ^ i <̂  s + 1, and gό e w for 1 <̂  i ^ t. Since (x2) g (xj, we have that
eio > fiQ for some i0,1 ^ i0 ^ s. Therefore,

(xly x2) = PM{i Me

s* +

= PMΓ1 ikfΓs(^Ίei~mi Me

s

s~ms + ΛfΛ"Wl Λf/8"111^?1 Q?0

where m4 = min {e<, / J for 1 ^ i ^ s. By the definition of mif if
βi — miΦ 0, then /4 — m^ = 0, and if fi — miΦ 0, then β4 — m^ = 0.
Let A = ilίί1"1*1 Λfs

e*-m* and let B = ΛίΛ"mi Λf/'-^Qf1 QfS
we show that 4̂ + i? is contained in no maximal prime ideal of R.
Note that βίo — mίo ^ 0 since βίo > fiQ. If ikf is a maximal prime ideal
of R containing A, then there exists a k,l <ί k ^ s, such that
ek — mkΦ 0 and ikf̂  £ Λf. Since ikf*. is a maximal prime ideal of R,
it follows that ikf = Mk. Now, eA — mk φ 0 implies that fk — mk = 0
which shows that B £ Mk = M. Thus, if ikf is a maximal prime
ideal of R containing A, ikf does not contain B. It follows that
A + B is contained in no maximal prime ideal of R. Therefore, there
exists a positive integer λ such that A + B ~ Rλ and (x19 x2) =
PΛfΓ1 ikffS(A + B) = PMΓ1 M?*Rλ = PikfΓ1 ikff*. By our choice
of mi9 we have e ^ m ^ for l<^ί<^s. But β< </< =m< implies that

The proof of Lemma 2 was suggested to the author by Professor Gilmer.
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s - l ^ Σi=i w 4 ^ o.
Assume t h a t we have chosen, as described above, x19x2, " 9xu

in P such t h a t {x19 ••-,»„) = P M ^ M; s and <? - (u - 1) ̂  Σ ? = i ^ ^ 0.
Then by the above method, either P — (x19 , xu) or there exists an
xH+ι 6 P \ { ( ^ , . . . , xu) U (Uti-Pί)} such t h a t

(xu •••,&„, xu+1) = PMP- MΪ

where v\ e ω0 and δ - (u 4- 1 - 1) ^ Σf=i^ί ^ ° Since Σ?=i^ is a
finite positive number, there exists a positive integer g and x19 9xgeP
such that P = (x19 , xq); that is, P is a finitely generated ideal of R.

Case 2. P 2 c P and P = RP. Now, P g {P2 U (U?=i-Pί)} by [2;
Proposition 2, p. 70] so let x1 e P\{P2 U (U?=i^)} τ h e n t h e r e exist
prime ideals Mlf , Ms of i2, ex, , es e ω, and es+1 e ω0 such that
(x,) = PMp - Mβ

8'R
e°+i = PMp M:° since P = i2P. If P = (^)

we are done. If (xλ) c P, then we can choose an

x2 e P\{(x1) U P2 U (UΓ=iPi)}

by [2; Proposition 2, p. 70]. We now consider (xu x2) and the re-
mainder of the proof of Case 2 is the same as the proof of Case 1.
Thus, P is a finitely generated ideal of R.

Case 3. P 2 c P and RPaP. Let xeP\RP. Then there
exist prime ideals M19 , Ms of R and e19 , es+1 e ω0 such that
(x) = PM?1 Me

s

sRes+1 £ RP. Thus, ei = 0 for 1 ^ i ^ s + 1; that
is, P = (a;).

LEMMA 3. Each prime ideal of a general Z.FΛ.-ring is finitely
generated.

Proof. Let R be a general Z.P.I.-ring.
Case 1. i? contains no proper prime ideal. If R = R2, let

r 6 i?\{0}. Since R is a general Z.P.I.-ring, there exists a positive
integer w such that (r) = Rn = R. If i?2 c #, let r e R\R2. Then
(r) - R.

Case 2. J2 contains a proper prime ideal. Let M be a nonzero
prime ideal of R. If Λf is a minimal prime ideal of R, M is finitely
generated by Lemma 2. If If is not a minimal prime ideal of R,
the proof of Lemma 1 implies that there exists a minimal prime
ideal P of R such that P e l f . Thus, 22/P is Noetherian which
implies that M/P is a finitely generated ideal of R/P. Since P is a
finitely generated ideal of R, it follows that M is a finitely generated
ideal of R.

Thus, each prime ideal of R is finitely generated.

THEOREM 1. A general Z.P.I.-ring is Noetherian.
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Proof. Let A be an ideal of R, a general Z.P.I.-ring. Then
there exist prime ideals Ply , Pn of R and positive integers eu , en

such that A = Pi1 P . Since each P< is finitely generated by
Lemma 3, it follows that A is finitely generated. Thus, R is
Noetherian.

REMARK. Theorem 1 also follows from the fact that a ring R
is Noetherian if and only if each prime ideal of R is finitely generated.
[4; Th. 2].

RESULT 1. If Q is a P-primary ideal in a ring R such that Q
can be represented as a finite product of prime ideals, then Q is a
power of P.

Proof. By hypothesis there exist distinct prime ideals P19 , Pn

and positive integers e19 , en such that Q = Pϊ1 P;». Since
Q = p i . . . p«»s P^P.ciP for some i—say i = 1. Now, P - VQ =
Px Π Π Pw which implies that P Q Pi for each i. Therefore,
P S Pi S P; that is, Px = P. We have that Q = PβiP2

β* . . . P> where
P c Pi for 2 ̂  i ^ n. Since

Q - Pei(P2

e2 P » c Q

and P2

e2 P^ £ P, it follows that P e i S Q. Hence, Q = Pβi.

DEFINITIONS. Let i? be a ring. We say that R has property
(a), if each primary ideal of R is a power of its (prime) radical [3].
If each ideal of R is an intersection of a finite number of prime
power ideals, we say that R has property (3) [3]. Finally, we say
that R satisfies property (#) if R is a ring without identity such
that each nonzero ideal of R is a power of R.

REMARK. If R is a ring satisfying property (#), it follows that
either R is an integral domain in which {R{}T=i is the collection of non-
zero ideals of R or R is not an integral domain and {R, R2, , Rn = (0)}
is the collection of all ideals of R for some neω.

COROLLARY 1. A general Z.P.I.-ring has property (a).

Proof. This follows immediately from Result 1.

THEOREM 2. Structure theorem of a general Z.P.I.-ring. A
ring R is a general Z.P.I.-ring if and only if R has the following
structure:
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(a) If R = R\ then Λ = ί 1 © φ ί H where R{ is either a
Dedekind domain or a special P.I.R. for 1 ̂  i ^ n.

(b) If R Φ R\ then either R = F@T or R = T where F is a
field and T is a ring satisfying property (#).

Proof. (—>) If R is a general Z.P.I.-ring, then R is Noetherian
and has property (a). Hence, [3; Corollary 6] implies that (δ) holds
in R. If R = R\ then R contains an identity by [5; Corollary 2].
Therefore, [1; Th. 1] implies that part (a) holds. If R Φ R\ then
by (BG) R = F1 0 0 Fu 0 T where each ί7,. is a field and T is a
nonzero ring satisfying property (#). Using a contrapositive argu-
ment, we show that u ̂ έ 2.

Assume that w >̂ 2. We show that R is not a general Z.P.I.-
ring. Since u >̂ 2, it is clear that T is an ideal of iϋ that is not
prime. The prime ideals of R containing T are R and

P^^θ' 'θ^iθ (0) θ^iθ θ^θϊ7

for 1 <: i <: u where TczPi for each i. Now

Θ ̂ --10(0)0^+10 0^.0 τ2,

and β2 = ^ 0 0 F π 0 T\ Since T2 c T, it follows that Γ
ϊ7 g i?^, and Γ g β2 for 1 ̂  i, j ^ u. Thus, T cannot be repre-
sented as a finite product of prime ideals of R; that is, R is not a
general Z.P.I.-ring. Therefore, if R is a general Z.P.I.-ring, u ̂  2;
that is, R = Fx 0 T or i? = T where 2^ is a field and T is a ring
satisfying property (#).

(•—) If R is a direct sum of finitely many Dedekind domains and
special P.I.R.'s R is a general Z.P.I.-ring by [1; Th. 1]. If R = T
where T is a ring satisfying property (#), then R is clearly a general
Z.P.I.-ring. If R = Fφ T where F is a field and Γ is a ring satisfy-
ing property (#), then { F φ Γ% Γ% (0): i e ω) is the collection of ideals
of R. It follows that each ideal of R is a finite product of prime
ideals. Therefore, if R satisfies either (a) or (b), R is a general
Z.P.I.-ring.

3* Necessary and sufficient conditions on a general Z*I*P*-
ring* In this section we again use results of Butts and Gilmer in
[3] to derive several necessary and sufficient conditions for a ring to
be a general Z.P.I.-ring.

DEFINITION. Let A be an ideal of a ring R. We say that A
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is simple if there exist no ideals properly between A and A2. To
avoid conflicts with other definitions of a simple ring we say in case
A = R that R satisfies property S.

LEMMA 4. Let A be an ideal of a Noetherian ring R. If
B = nr=iA4, then AB = B.

Proof. See [15; LJ.

LEMMA 5. If A is a genuine ideal of a Noetherian domain D,
then nΓ=i-A< = (0).

Proof. Let K be the quotient field of D and let D* = D[e]
where e is the identity of K. Then D* is Noetherian by [5; Th. 1],
and since A is also an ideal of Z)*, [16; Corollary 1, p. 216] shows
that ΓiT^iA* = (0).

LEMMA 6. Let A be a simple ideal of a ring R. Then for
each ieω there are no ideals properly between A{ and Ai+1. Further,
the only ideals between A and An for neω are A, A2, , An.

Proof. See [7; Lemma 3].

LEMMA 7. Let A be a proper simple ideal of a Noetherian ring
R. If there exists a prime ideal P of R such that (0) c P c i c J ξ ,
P is unique and P = f\^ΛA\ Also, if Q is a P-primary ideal of
R, Q = P.

Proof. We first show by an inductive argument that P a Aί for
each ieω. By hypothesis P e l Assume that PaAk for some
keω. Since A/P is a proper ideal of R/P, a Noetherian integral
domain, Ak/P z> (Ak/P)(A/P) = (Ak+1 + P)/Pz)P/P by [5; Corollary 1]
which shows that Ak z> Ak+1 + P 3 Ak+ί. Therefore, Ak+1 + P = Ak+ί.
Since Ak+1 + Pz)P, it follows that PaAk+1. Thus, Pa A1 for each
ieω.

We now show that P = f\T=ιA\ Since A/P is a proper ideal of
a Noetherian domain, P/P = Γ\T=i(A/Py by Lemma 5. Also, since
nr=1(A/P)i = nΓ=i((Aί + P)/P) = nr=i(AVP) = (nr=iAi)/P, it follows
that P = nΓ=iA\

Finally, we show that if Q is a P-primary ideal of R, then
Q = P. Lemma 4 shows that P = A(Γ|Γ=i^) = AP. There exists an
aeA such that ap — p for each p e P by [5; Corollary 1]; that is,
ap — p = 0 for each peP. If & e R\A, then p(α$ — x) — apx — px -
0 G Q for each p e P . Since x$A, ax — x$A which shows t h a t

ax — x& P. Thus, peQ for each peP since p(ax — x) e Q for each
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peP, ax — xgP, and Q is a P-primary ideal of R. Thus, P gΞ Q
which shows that Q = P.

THEOREM 3. Lβί R be a ring.
(A) // 12 contains an identity, then R is a general Z.FΛ.-rίng

if and only if R satisfies the following two conditions:
(1) R is Noetherian.
(2) Each maximal ideal of R is simple.
(B) If R does not contain an identity and R contains a proper

prime ideal, then R is a general Z.PΛ.-ring if and only if R
satisfies the following four conditions:

(1) R is Noetherian.
(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.
(4) ΠΓ=i^ is a field.
(C) If R does not contain an identity and R contains no

proper prime ideal, then R is a general Z.PΛ.-ring if and only if
R satisfies the following two conditions:

(1) R is Noetherian.
(2) R satisfies property S.

Proof of (A). Part (A) follows immediately from [1; Th. 5].

Proof of (B). (—>) Assume that R is a general Z.P.I.-ring.
Then R is Noetherian by Theorem 1. Since R contains a proper
prime ideal, Theorem 2 shows that R = F 0 T where F is a field
and T is a ring satisfying property (#). Hence, R clearly satisfies
property S. If T is a domain, then F and T are the maximal prime
ideals of R. If T is not a domain, then T is the maximal prime
ideal of R. It follows that each maximal prime ideal of R is simple.
Finally, fγr^R* = ΠΓ^ί^Θ T)1 = F, a field.

(«—) Assume that conditions (1), (2), (3), and (4) hold. Let Q be
a P-primary ideal of R. If P = R or if P is a maximal prime ideal
of R, there exists an integer n such that Pn S Q since R is
Noetherian. Hence Lemma 6 shows that there exists an integer k
such that Q = Pk. If P is a proper nonmaximal prime ideal of R,
there exists a maximal prime ideal M of R such that PczMaR,
and it follows from Lemma 7 that Q = P. Thus, R is a Noetherian
ring having property (a) which shows that (δ) holds in R. [3;
Corollary 6]. Therefore, by (BG) R = F1 0 0 Fm © T where each
Fi is a field and T satisfies property (#). Since 22 contains a
proper prime ideal, m ^ 1; condition (4) implies that ra > 1. Hence
i? = ί7! φ Γ which implies that R is a general Z.P.I.-ring.
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Proof of (C). (—>) If £ is a general Z.P.I.-ring containing no
proper prime ideal, then R = T where T is a ring satisfying property
(#), Hence, R is Noetherian and satisfies property S.

(«—) Assume that conditions (1) and (2) hold. Since R is
Noetherian and since R is the only nonzero prime ideal in R, R has
property (a). Thus, R is a general Z.P.I.-ring by an argument
similar to that given in part (B) above.

LEMMA 8. A ring R has property (δ) if and only if R satisfies
the following three conditions:

(1) R is Noetherian.
(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.

Proof. (->) Assume that R has property (δ). If R = R\ [3;
Th. 11] implies that R is a general Z.P.I.-ring. Therefore, (1), (2),
and (3) hold by Theorem 3. If R Φ R\ then [3; Th. 12] implies that
R is Noetherian. From (BG) we have that R = F1 0 0 Fm 0 T
where each Ft is a field and T satisfies property (#). It follows
from the representation of R, that (2) and (3) hold.

(<—) We showed in the proof of Theorem 3 (B) that if (1), (2),
and (3) hold in a ring R, then (δ) holds in R.

LEMMA 9. In a Noetherian ring R, property (a) is equivalent
to the following two conditions:

(2) R satisfies property S.
(3) Each maximal prime ideal of R is simple.

Proof. This follows immediately from Lemma 8 and [3;
Corollary 6].

THEOREM 4. If R is a ring with identity, R is a general
Z.P.I.-ring if and only if R is Noetherian and (a) holds in R.

Proof. The necessity follows from Theorem 1 and Corollary 1
and the sufficiency follows from [3; Corollary 6 and Th. 11].

COROLLARY 2. Let R be a ring without identity.
(A) If R contains a proper prime ideal, then R is a general

Z.P.I.-ring if and only if R satisfies the following three conditions:
(1) R is Noetherian.
(2') (a) holds in R.

(4) f|Γ=i R* ^ a field.
(B) If R contains no proper prime ideal, then R is a general
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Z.'P.I.-ring if and only if R satisfies the following two conditions:
(1) R is Noetherian.
(2') (a) holds in R.

Proof. This follows immediately from Theorem 3 and Lemma 9.
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