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A NOTE ON THE THEORY OF PRIMES

J. E. SCHNEIDER

In this paper we find those commutative rings for which
the theory of primes is subsumed under classical ideal theory,
that is, for which every finite prime is an ideal. The charac-
terization is given in terms of domains with this property and
they are shown to form a class of domains from number theory.
In addition we give two characterizations of the primes of a
subring of a global field. The first establishes them as the
nontrivial preprimes whose complements are multiplicatively
closed and the second relates the space of all primes to that
of the quotient field.

The concept of a prime for commutative rings with identity
was introduced by Harrison in 1966.

In what follows all rings are commutative and have a unity and
all primes are finite. X(R) denotes the set of primes of a ring R and
Xf{R) denotes the set of valuation preprimes (preprimes T such that
for each finite EaR,TnE = 0 => there is PeX(R) with T c P and
P Π J B = 0 ) . For a preprime T of R which is closed under subtraction,
define the idealίzer A(T) of T in R by A(T) = {a e R: α Γ c T). A(T)
is a subring of R in which T is an ideal.

1. Call a ring a C-ring if every finite prime of it is an ideal.
It is easy to check that the class of C-rings is closed under taking
subrings and homomorphic images.

THEOREM 1. The following are equivalent for a ring R:
(1) R is a C-ring
( 2 ) X(R) = {maximal ideals of R]
(3) R/P is a C-ring, for each minimal prime ideal P of R;
(4) X\R) = SpecCR).

Proof. That (4) => (2) => (1) => (3) is clear. In any case,
Spec(i2) c X'(R) [1, Lemma 2.6]. Let P e X'(R). P contains a minimal
prime ideal Q of R and P/Q e X'(R/Q). Then P/Q is the intersection
of the primes of R/Q which contain it; so, if R/Q is a C-ring, then
P/Q e SpecCR/Q) and Pe Spec(β).

Because of condition (3), we turn to the classification of C-domains.
If S denotes the ring of rational integers or a ring of polynomials in
one variable over a finite field, then one checks that the polynomial
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ring S[X] has primes which are not ideals. Thus, since a subring of
a C-ring is also a C-ring, the transcendence degree of a C-domain is
zero or one, the latter only if it has nonzero characteristic.

Let 22 denote a domain whose quotient field F is absolutely alge-
braic and has characteristic zero. Let 22' denote the integral closure
of R and S' the integral closure in F of its prime subring. Let
S = R Π S'. S' (and hence S) is a C-domain and P~>Pf] S' gives a
bijection from X(F) onto X(S'). In fact, the finite dimentional case
follows from Proposition 3.4 of [1] and the general case follows im-
mediately from it. Since for PeX(F), P Π 22' is an ideal of Rf if
and only if R'czA(P), we have that 22' is a C-domain if and only if
R' = S'. Now S'aR'aF yields that P —> P f] S' gives a bijection
from X{Rr) onto X(S') and P -> P Π R' gives a bijection from X(F)
onto X(R'). Since Sa S' are both C-domains, PnSeX(S) for any

LEMMA 2. // Pe X(F), then Pf]Re X(R).

Proof. Note that it suffices to consider the case where F is finite
dimensional over its prime subfield. Moreover, since P Γi Rr e X(22')
for any Pe X(F), as already noted, it suffices to show that P Π Re X(R)
for PeX(R'). We may assume that R Φ R', whence S Φ S'. Let
c(S) (resp. C(JB)) denote the conductor of S in S'(resp. i? in R'). Recall
that (0) Φ c(S) c c(R). Now let P e X(R') and just suppose that P n 22
is not in JSΓ(22). Then P (~) R(z T e X(R), since P Π 22 is a preprime
of R. But T is a preprime of R\ so TaQeX(R'). Then
PΓ\RczT=QnR. Since PnRΦ T, we have P ^ Q and
P n S ' ^ Q n S ' . Now P n s = P n 2 2 n S c Q n 2 2 n s = Q n s . B u t

P n S ' e X(S') yields P f) S = (P n S') f) Se X(S). Thus P Π S - Q Π S.
Hence, by [2, p. 91], c(S)cP(ΊQ. By the approximation theorem,
there is a e F whose (normalized exponential) value is — 1 at P, + 1
at Q, and nonnegative otherwise. Note that a is in Rr. Let
0 Φ be c(S) dP Π Q and let n be its (positive) value at P. Then
ban e Q Π S'. Also ban e c(S)R' c c(22)22' c R. Thus 6α% e Q n S' Π 22 =
Q η s = P Π S. But this a contradiction, since ban was constructed
to have value zero at P.

Now assume that 22 is a C-domain. We will show that then 22'
is a C-domain, so Rf = S' and 22 is absolutely integral. Let P e X(R').
We must show that A(P) = 22'. If 22 = 22' we are done, so we as-
sume that RΦR\ By the lemma, P|Ί22eX(22). But then
A(P) Γ)R = A(P n 22) = 22, so 22 c A{P). Since A(P) is integrally
closed in 22', it is integrally closed in F. Then 22cA(P) yields

whence A(P) = R'.
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We have shown that a domain of characteristic zero is a C-domain
if and only if it is absolutely integral. An absolutely integral domain
of nonzero characteristic is always a C-domain (such a domain has a
unique prime and a unique proper ideal, namely (0)). We are faced
with determining which domains of nonzero characteristic and tran-
scendence degree one are C-domains. This case is handled in a
fashion similar to the above case with the usual care necessary to
handle a finite set of primes (those arising from the "infinite" valu-
ations of the quotient field). If R is such a domain, F its quotient
field, and R' its integral closure, then P—> P f) R' gives a bijection
from X(F) onto X(R') or onto X{Rr) U {(0)}, depending on whether
there is not or is a unique valuation ring of F which does not contain
R. For P G J ( J P ) , Pf)R^X(R) unless there is a unique valuation
ring of F which does not contain R and P is its maximal ideal, in
which case P Π R = (0). Now if R is a C-domain, then so is Rr.
But then R! (or equivalently R) is contained in all but one valuation
ring of F. We omit the details. This completes the classification of
C-domains.

THEOREM 3. R is a C-domain if and only if R is absolutely
integral or R has nonzero characteristic, has transcendence degree
one, and is contained in all but one valuation ring of its quotient
field.

REMARKS. The hypothesis on the transcendence degree of R is
superfluous in Theorem 3, but we admit it to emphasize that C-domains
lie in the realm of number theory. Since the Krull dimension of a
C-domain is zero or one, the same is true for C-rings. Using Propo-
sition 2.11 of [1], it is easy to check that X(R) = Spec(i?) if and only
if jβ/yΊΓ is a generalized Boolean ring. Theorem 1 answers a question
arising in the theory of valuations of commutative rings introduced
by Manis [3], namely, every valuation of a commutative ring is trivial
if and only if it is a C-ring.

2* Call a domain a global ring if its quotient field is a global
field, that is, a finitely generated field of adjusted transcendence degree
one (equals transcendence degree plus one or zero depending on whether
the characteristic is zero or not). We seek to characterize the primes
of a global ring. Since the infinite primes are easily seen to arise
in the same way and correspond exactly to the infinite primes of its
quotient field [1, Propositions 3.5 and 3.6], we will consider only finite
primes.

Let R denote any domain of adjusted transcendence degree one
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and F its quotient field. Let T denote a nonzero preprime of R whose
complement in R is multiplicatively closed. Then T is closed under
subtraction, A — A(T) also has adjusted transcendence degree one, and
the complement of T in A is multiplicatively closed. Thus T is a
maximal ideal of A and a (finite) prime of A. We seek to show that
T is a prime of R. We may assume that A Φ R, i.e., that T is not
an ideal of R. Let S and B denote the integral closures in F of
R and A respectively. Then B c S, R Π B = A, and B Φ S.

Let E(R) denote the set of valuation rings of F which do not
contain R. Since B a S and B Φ S, #(#) is not empty. It suffices
to consider the case where J? is a global ring and E(R) is finite. In
fact, assume that T is properly contained in a prime P of R. Let
aeP,a^T, and 0 Φ b e T. Let Rλ denote the subring of R generated
by a and b. Then Rι is a global ring (otherwise a is a root of unity
and 1 G P). ^(i^O is the set of valuation rings of the quotient field
of Rί which exclude a or 6, so E(RX) is finite. T Π R^ is a nonzero
preprime of i?i whose complement in Rί is multiplicatively closed, and
T Π Rί is properly contained in the preprime P Π R±.

We omit the proof of the following lemma since it is a stright-
forward application of the approximation theorem and the fact that
the conductor of a global ring in its integral closure is not zero.

LEMMA 4. Let L denote a global ring and Vu •••, Vn a set of
valuation rings of the quotient field of L which do not contain L.
Then L Π Vγ Π ΓΊ Vn is an irredundant intersection.

Let M= M(T,R) = {VeE(R): AaV}. Since B Φ S, M is not
empty. Let M = {Vlf , Vn}. Then B = S Π V1 Π Π Vn and
A = RΓ)V1C)--Γ}Vn. Let P̂  denote the maximal ideal of Vt e M
and let N = {Ply -, Pn}. Recall that Na X(F).

LEMMA 5. T = An P, for Pe N.

Proof. Just suppose that T Φ A Π P, for all P e iV. Let Q e X(F)
with T(zQ. Since Γ ^ i f l Q and Γ is an ideal and a prime of
A, Ad A(Q). QίN, so A(Q) £ E(R). Thus J8c A(Q) and Λ Π Q is a
maximal ideal of R. Since T is not an ideal of R, R Π Q Φ T = Af]Q.
Let beRnQ with 6 g A n Q. Now, for P{ eN, An P< is a maximal
ideal of A and since AnPiΦ T = i f l Q , there is α< 6 A Π P̂  with
α ^ i Π Q. Let α = aγaγ αΛ. Let w (resp. ^) denote the normalized
exponential valuation of F associated with Q (resp. Pi). Then
w(δ) > 0, w(a) = 0, and ^(α) > 0. We fix m > 0 so that Vi(amb) > 0,
for l£i^n. Then ambeRn Fin ••• Π F,ΠQ = ^ΠQ = Γ. But
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a,beR, so amb e T implies that a e T or b e T. By this contradiction
T = A Π P, for some PeN.

Now reindex N if necessary so that T = Af] P{ for 1 ̂  i <£ s,
and T ̂  4 Π ̂  for s < i <: w. Just suppose s < n. Let i^ = R Π
VΊ Π Π Vs. T is a preprime of R1 with multiplicatively closed
complement in Rlm By Lemma 4, AφR1 and M(T, i2x) = {V9+1, , V»}.
Applying the first part of this proof to T and B19 we get Γ = ̂  fl Pi,
for some s < i ^ n. But then T = T f] R = R Γ\ Pi9 a contradiction.

LEMMA 6. Let L denote a global ring, T a nonzero preprime of
L with a multiplicatively closed complement in L, and A the idealizer
of T in L. Assume that E(L) is finite and that M(T,L) = {V}.
Then TeX(L).

Proof. Let P denote the maximal ideal of V. Then Lemma 5
yields T = AnP. But Λf(Γ, L) = {V} yields A = L (] V. Thus
T = L Π V Π P = L f) P. But if L has characteristic zero, Lemma 2
yields T = L f] Pβ X(L). If L has nonzero characteristic, we consider
E(L). At least Ve E(L). If £7(L) = {F}, then A = L Π F is a finite
field and T = (0). Hence #(!/) is not a singleton and Γ ^ L Π P G X(L).

We can now give the first characterization.

PROPOSITION 7. Let R be a domain of adjusted transcendence
degree one. A necessary and sufficient condition that a nonzero
preprime of R be a prime is that its complement be multiplicatively
closed.

Proof. Necessity holds for arbitrary commutative rings. [1, Propo-
sition 2.1]. To prove the sufficiency, we have already noted that we
may assume that R is a global ring, that E(R) is finite, and that the
idealizer A of T in R is not R. In the notation established above,
M(T, R) = {Vι , Vn}. By Lemma 6, we need only show that n = 1.
Just suppose n ^ 2. Let L = R Π V, Π Π Vn. Then A =
L ί l F j ί l V2. Let R, = L Π V19 so A = Rι D V2. By Lemma 6 applied
to R, and T, we have that Γ G I ^ ) ; and by Lemma 5, T =
A Π Pi c R, Π Px, so T = Px n #i. Then, since A is the idealizer of Γ
in Rly A = Fi ΓΊ ί?i = i?i, in contradiction to Lemma 4.

For a commutative ring jff, X(iϋ) is topologized by taking the sets
U(a) = {PeX(R): agP), for all aeR, as subbasic open sets. Let R
denote a global ring and F its quotient field. We fix an element x e R
so that x is not absolutely algebraic, if char(i?) Φ 0, and x — 1, other-
wise. Let FQ (resp. Ro) denote the subfield (resp. subring) of F gener-
ated by x. Let V = U(l/x) c X(F). Let S (resp So) denote the
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integral closure of R (resp. Ro) in F. We fix c e RQ with cSczR and
c Φ 0. Note that for P e V, x e A(P) so ceRQa A(P).

For commutative rings KaL, let π(L/K) denote the map from
X(L) to the power set of K given by π(L/K)(P) = P n K. We have
noted that π(F/S0) restricted to V is a bijection onto the set of maxi-
mal ideals of So, and π(F0/R0) restricted to {PeX(FQ): 1/xgP} is a
bijection onto X(RQ)[cί. l, Proposition 3.4 if.]. Thus So c SaF implies
that π(F/S) restricted to V is injective and that for PeV,
π(F/S)(P) Φ (0). Then by proposition 7, π(F/S)(V) c X(S). Note that,
for P,Qe X(F) with P n R = Q Π #, either both P and Q are in F
or both are not. In fact, Pe V if and only if P Π Ro ^ (0).

LEMMA 8. Let P,QeV. If P Φ Q and P f) R = Q Π R, then
cePnQ.

Proof. Let T = (P Π S) + (Q Π S) + (P Π S)(Q Π S). Γ is closed
under addition and multiplication, but T properly contains P Π Se X(S).
Thus T is not a preprime of S and hence leT. Then C

Since X(F) is cofinite space, C = {PeX(F): 1/xeP or ceP} is
finite. By Lemma 8, π(F/R) restricted to the complement C" of C
is injective. X(R) lies in the range of π(F/R), and we may choose a
subset ΰ of C on which π(F/R) is injective and so that π(F/R)(D) =
π(F/R)(C). Then ΰ U C is a cofinite set and an open set, and π(FJR)
restricted to D U C is a bijection onto X(iϋ). Since X(F) and X(i2)
are cofinite spaces, this map is a homeomorphism. We have proven.

PROPOSITION 9. Let R denote a global ring and F its quotient
field. Then X(R) is homeomorphic to an open (cofinite) subset of
X(F) and the homeomorphism is induced by π(F/R).
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