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SOME RENEWAL THEOREMS CONCERNING
A SEQUENCE OF CORRELATED

RANDOM VARIABLES

G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Consider a sequence {xn\, n = 1, 2, of random variables.
Let Fn(x) be the distribution function of Sn = Σ2=i %k and
Hn(x)9 the distribution function of Mn = m a x ^ ^ Sk Here
we study the asymptotic behaviour of

1.1 Σ anGn(x) ,
n = l

where Gn(x) is to mean either Fn(x) or Hn(x) (so that if a
property holds for both Fn(x) and Hn{%) it holds for Gn(x) and
conversely) and {an} a suitable positive term sequence, when
{%n} form

( i ) a sequence of dependent random variables such that
the correlation between Xι and Xj is p, ί Φ j,i, j — 1, 2, ,
0 < JO < 1, -E'CίCt) = //t, i = 1, 2, and

1.2 lim A*i + »̂ + - " + / * » = ^ , α > l , 0 < / , < o o

and
(ii) a sequence of identically distributed random variables

with E(Xi) = μ, ΐ = 1, 2, such that the correlation between
Xi and Xj is pa — ριi~jι, i, j = 1,2, , 0 < p < 1.

Suitable examples are worked out to illustrate the general
theory.

Let N(x) be the first value of n such that Sn ^ x, x > 0. N(x)
is a random variable and let

1.3 H(x) = E{N(x)} .

H(x) is called the renewal function and much research work has been
done with reference to the study of the asymptotic behaviour of H(x)
as x —» oo. Feller has shown that

1.4 lim H(x)/x = 1/μ ,
X—»co

when {xn} form a sequence of independent and identically distributed
random variables with μ = E(xn), 0 < μ < oo, the limit being inter-
preted as zero when μ = oo. Black well has generalised the above, by
considering the renewal process N(x, h) which denotes the number of
renewals occuring in the interval (x, x + h]. He has shown that, for
any fixed h,(h>0), if

785
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1.5 H(x, h) = E{N(x, h)} ,

then

1.6 lim H{x, h) = h/μ .

This has been proved earlier by Doob for the discrete case. Tatsuo
Kawata has extended this further. He has proved that

1.7 lim Σ a<nP(% < Sn ^ x + h) = ha/μ ,

where

1.8 (1/n) Σak = a + o(l/λ/~n) .

He has also shown that if 1.8 is replaced by

1.9 (1/n) Y,ak = a + o(l/n«) , a < 1/2 ,
k

then 1.7 does not hold.
Herbert Robbins and Y.S. Chow have relaxed the restriction of

independence and obtained a renewal theorem for the dependent case.
They have shown that if

1.10 E(xn I xl9 x2, -, xn_x) = E(xn) = ^..(constant) ,

1.11 lim ̂  + μ* + ' " + t** = μ , 0 < μ < oo

and for some a > 1

1.12 E{\ x n - μ n \ a \ x19 x 2 , , a?n-i} ^ fc < ^ ,

then

1.13 lim H(x)/x = 1/μ .

C.C. Heyde has proved that if {xn} is a sequence of independent
and identically distributed random variables with mean μ, 0 < μ < oo y

then

1.14 Σ anGn(x) - *L(X)

 λ (x/μ)r , α? - - ,
i Γ( l + r)

where αήs are positive term coefficient sequences such that

115 Tax*- β^Kl-s)- 1] fl ^ i -
1.15 ΣV (i _ a jr ' α ; ^ 1 '
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α, r are real numbers greater than zero and L(x) is some nonnegative
function of slow growth.

Here we extend the above theorem to the two cases (i) and (ii)
given in the beginning. Subject to suitable restrictions we have shown
that in the first case

and in the second case

1.17 Σ a.Gm(x)
(λ

where

1.18 an ~

λ being chosen such that Σ~=i an i s divergent.
We illustrate 1.16 for the particular case when {a J follow the

normal law with mean μi and variance one and 1.17 for the cases
when they follow (i) the normal law with mean μ and variance one
and (ii) the type III distribution with density function

f(x) = [ΓίrM-^-V-'V-1 , x ^ 0 ,
-L.-Ly

= 0 , x < 0 .

For the type III distribution we also prove that

1.20 Σ o,nP(x < Sn ^ x + h) ~ (hfrθ)(x/rθYL(x) , x — oo .
n = l

2. A lemma^ We use the following lemma extensively.

LEMMA 2.1. Let L(x) be such that L(cx) — L(x) for every positive
c as x tends to infinity. If

2.11 an — nλL{n) , n—> oo ,

λ being chosen such that X a
n
 is divergent, then

2.12 Σ ane-*θ - ( l / β ) Γ [ ( λ + l)/θ]s^λ+l)lθL(l/s°) , s -> 0 , 0 > 0 ,
1

2.13 Σ , a % n β e r ' β ( / ) [ ( ) / ] (
n — L

s —0, (? > 0 ,

2.14 Σ α.e-""'8 ~ Γ(λ + l)(βm)-(i+ι»I,(l/β) , s — 0 ,
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2.15 Σ nα.β— ~ Γ(X + 2)(sm)~u+2)L(l/s) , s — 0 ,
n = ί

These can be got from Corollary l(α) of [8, p. 182] by proper sub-
stitutions.

3* Renewal theorems*

THEOREM 3.1. Let {#J, i = 1, 2, be a sequence of dependent
random variables such that the correlation between any two variables
Xi and Xj is p, i Φ j, i, j — 1, 2, and 0 < p < 1. Let E{x^j = μiy

i = l , 2 f - . . . / /

3.1.1 lim μ i + μ* + ' " + P* = μ , α > l , 0 < / £ < o o ,
»-»oβ ^

3.1.2 1 ~ Hn(nax) < p(n, x) ,

where p(n, x) satisfies

3.1.3 δn = \ p(n, x)dx —> 0 , ^ —> oo ,

f̂eβ nonnegative constants an satisfy 2.11 ami ί/̂ β condition

3.1.4 Σ dnFn(naβ) < - , 0 < /9 < μ ,

3.1.5
»=i (λ + 1)

Proof o/ Theorem 3.1. Lei

= Σ anGn(x)U(x - naβ) .

3.1.6
= Σ a.t^(a - «ai«) - Σan[U(x - n"μ) - Gn{x)\U(x - naβ)

where

3.1.7 mX) = 1 " S β

= 0 , <B < 0 .

Let

3.1.8 φ(s) =
Jo
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Then we have

3.1.9 φ{s) = s-1 Σ α n e - ^ - Σ an(Ln - Kn) ,

where

3.1.10 Ln — I e~sx[l ~ Gn(x)]dx, Kn = 1 e~sxGn(x)dx ,

the term by term integration is justified by the monotone convergence.
Now using 2.12, we have

3 1 11 s-1 f a e~na'is ~ Γ^X

n-=ί

Also

L n = J ^ e~sx[l - Gn(x)]dx

3.1.12 = ^ α f °° e~nasx[l - Gn(nax)]dx

g ^*β~%αr/3s I [1 — Gn(nax)]dx .

Using 3.1.3 and the fact that Gn(x) ^ Fn(x), we get

3.1.13 ί°° [1 - Gn(nax)]dx -> 0 , ^ — oo .

Hence we may write

3.1.14 Ln = nae-n"?sδn ,

where δn —> 0 as n —> <» uniformly in s > 0.

3.1.15 = %β Γ e-*'"sxGn(nax)dx
J β

But

n2aε2

3.1.16
^ w[l + (n -
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The right hand side of 3.1.16 tends to zero as n—»oo. Thus
Fn(nax) —• 0 as n —• oo for all x < μ. Hence using the mean value
theorem we may write

3.1.17 Kn = nae-na?sδ'n ,

where δ'n —> 0 as n—> oo uniformly in s > 0. Combining 3.1.14 and
3.1.17 and putting δ" —8n — δ'n, we have

3.1.18 Σ an(Ln -Kn) = ± a%nae"^'δ': ,

where δ'
In view

3 119

of
• 0

3.
as

1.11

n —>• •

and

Σ<

s-1

o o .

2.13

0, s -> 0+ .

71 — 1

Hence

3.1.20 Γ [ ( λ

a+1)la* )

Using Karamata's Tauberian theorem, we have

3.1.21 ± ['φ(t)dt[φ(t)dt
L(xa)xίa+1)la]+1 )o aΓ{[(X

U s i n g t h e same reasoning as Heyde, we have if $ > 0 ,

3.1.22 φ(θx)(x - θx) ^ Γ ^(ί)dί ^ ^(α;)(α; - to) .
Jθx

So

ώiθx) < Γ - ]
x{X+1)i«L(xa) L (1 - θ)L(xa)xίιλ+1)la]+1 J

3.1.23 x Γί

< ό(x) .

Using 3.1.21 in the above inequality we have

Km sup φ{θx) <
ί u + 1 ) ' α L ( α ) ~ (ί c L ( a ) (1

<l iminf
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Taking limit as θ —» 1 in the right hand side and left hand side of
3.1.24

3.1.25 lim inf && >
(λ

and

3.1.23 lim sup —

Combining the two we get

φ(χ) _
3.1.

So

3.1.

.27

.28

Now put

3.1,

so

.29

that

lim
*-~ xa+1)i«L(xa) (λ

φ(χ)

- U(x - βn")\

3.1.30 X α.G.ίa;) = (̂ίc) + ψ{x) .

From 3.1.4 and 3.1.29, we have

3.1.31

Hence

3.1.32

Thus

3.1.33

This proves

(x/μYλ+1)laL(xa)

Theorem 3.1.

- * 0 , x -+ o

(x/μyi+ί)l°L(x«)
(λ + 1)

In the next theorem we discuss the case when xn is a sequence
of identically distributed random variables having an exponential auto-
correlation.
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THEOREM 3.2. Let {#J, i = 1, 2, be a sequence of identically
distributed random variables with E(x^ = μ, i = 1, 2, . Lei ί/zis
sequence be such that the correlation between x{ and xό is pi3 — p]ί~j\
i,j = 1,2, ••

3.2.1 1 - JBΓΛΪMO ^ p ( n , a?) ,

where

3.2.2 δw = [pin, x)dx—>0, n-+oo,

the nonnegative constants {an} satisfy 2.11 and

3.2.3 Σ anFn{nβ) < oo , 0<β<μ,
n = ί

then

3.2.4 Σ^^Tf.
w = l (λ + 1)

Proo/ o/ Theorem 3.2. Let

3.2.5 ^(x) = ^anGn(x)U(x - nβ) .

Using the same technique as in Theorem 3.1, we have

3.2.6 φ(s) = s-1 Σ α.β-' l β - Σ aΛLn - JBΓn) ,

where

3.2.7 Lw = Γ β—[1 - Gn(x)]dx , ^ - p
J fin Jβn

Using 2.14

3.2.8 S - Σ a.,r»
n = l

Also

3.2.9 Ln S ne~nsβ [ [1 - Gn(nx)]dx .
jμ

Using 3.2.1 and the fact that Gn(x) ^ ^(a;), we get

3.2.10 (~ [1 - Gn(nx)]dx -> 0 , w - > o o .
J
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Hence we may write

3.2.11 Ln = ne~nβsδn ,

where δn —> 0, n —• oo uniformly in s > 0.

Also

3.2.12 Kn ^ ne~nβs [" Gn(nx)dx .
jβ

Using the fact that Gn(nx) <Ξ> Fn(nx), the law of large numbers by
virtue of which Fn{nx) —• 0 as n —• oo for all x < μ, and the mean
value theorem, we way write

3.2.13 Kn = ne~nβsδf

n ,

where <5'π —> 0 as ^ —* oo .
Combining 3.2.11 and 3.2.13 and putting δ'J = δn - δ'n ,

oo oo

where δ '̂ —> 0 as ^ —̂  oo.
Using 2.15 and 3.2.8,

Σ an(Ln - Kn)
3.2.15 ^ ^ — -^0 as s — 0 + .

Now put

3.2.16 ψ(x) = Σ αnGw(α;)[l - Ϊ7(α? - βri)]

so that

3.2.17

Using 3.2.3

ψ(χ) ^ Σ '

< OO

So

3.2.18

Using the same reasoning as in Theorem 3.1, we have 3.2.4.
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4* Examples* We now give a few examples to illustrate the
theorems. In view of their independent interest they are given in
the form of theorems.

EXAMPLE 1. We now illustrate Theorem 3.1 when the sequence
{Xi} follow normal law. The result is given in Theorem 4.1.

THEOREM 4.1. Let {x{}, i = 1, 2, be a sequence of normal vari-
ables with E(Xi) = μi and E(xt — /^)2 = 1, ί = 1, 2, . Let this se-
quence be such that the correlation between Xi and xά is p, 0 < p < 1,
i,j = 1, 2, •••, i Φ j .

If μls satisfy 3.1.1, then 3.1.5 is true.

Proof of theorem 4.1. We first prove the case when Gn(x) = Hn(x).
Let

4.1.1 φ(x) - ΣanHn(x)U(x - βna) , 0 < β < μ ,

where U(x) is defined by 3.1.7.

4.1.2 φ(x) = Σ anU(x - μna) - Σ [U(x - μna) - Hn{x)}U{x - βna) .
n—L n^l

4.1.3 φ(s) = s-1 Σ αne-α" - Σ «,(i, - ^ )

Term by term integration is justified by monotone convergence.
Here

4.1.4 Ln = I e-*[l - Hn(x)]dx , Kn = \ e~^Hn(x)dx .

Now

4.1.5 Jwα^ Jn f f/ί + ί;mr

fc>0, l < r < α .

But

and

4.1.7 Γβ k r e~sx[l - Hn(x)]dx ^ n V ^ Γ ^ ̂  r [1 - Hn(nax)]dx .
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Now

1 - H,(nax) ^ [1 - Fάrfx)] + [1 - F2(nax)]

+ . . + [1 - F%(n"x)]

4.1.8 S (1 - *<»«* - μί)} + {l - φ [ i ^ ^ . ] }

Γ Γ w^T ^ f / -A- ft A- -\- ft \ ~Π
_|_ . . . _ | _ ^ J L — y/ι = I r ,

I L ι/n[l + (n — l)p] J)

where

4.1.9 Φ(x) = ̂ L ^ ί
Λ/2π J-

Hence

4.1.10 1 - i f . (Λ) ^ nil - 4
^ L τ/w[l + (π -

Lemma 2 in [5, p. 166] gives

4.1.11 1 - Φ(x) ̂  —L^e-* 2 ' 2 , x > 0 .
τ/2τr

Using 4.1.11 in 4.1.10, for sufficiently large n, we have

4.1.12
V2π(x - μ)

Now

(x - μ)

I

4.1.13 <

Using 4.1.11 to the right hand side integral in 4.1.13, we finally get

4.1.14 \l«μ+knr I1 ~ Hn(nax)]dx ^ n*~a~^_e-^^ι. #

The right hand side in 4.1.14 tends to zero as n—> oo, since r > 1.
Thus we can write
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4.1.15 Ln ^ knre-P%as + nae-^asθn ,

where θn —> 0 as n —> oo. Hence we can write

4.1.16 L, = nae-*at δn ,

where δn —> 0 as n —> oo, uniformly in s > 0.
Also

Kn ^ ^ α e - w ^ s Γ Hn(nax)dx

4.1.17 ^ ^ α β - ^ s \μFJnax)dx .

But using 3.1.16 and the arguments leading to 3.1.17, we get

4.1.18 Kn = n«e-naPsδ'n ,

where d'n —> 0 as n —> oo, uniformly in s > 0.
Thus

4.1.19

Take

4.1.20 y(B) = Σ a>nHn(x)[l ~ U(x - βna)] ,

so that

4.1.21 Σ dnHn(x) = φ(x) + Ψ(x) .

Now

Ψ{x) < Σ anHn(n"β)

4.1.22 ": '
^ Σ aΛFn(n"β) ,

where

F.(w/8)
"v ; V2πn[l

4-1.23

— -*- f
l/2π J-o
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Since the upper limit in the integral in 4.1.23 is negative for large
values of n,

4.1.24 ^ & 1 ( £ )

Using 4.1.11 to the right hand side of 4.1.24,

/ n

4.1.25 Fn(n*x) ^ V n [ 1

Hence

4.1.26 Σ anFn(nax) <

So

4.1.27 ? M — 0,

(/μyλ+"iaL(a)
Thus

4.1.28 Σ
»=i (λ + 1)

If we consider Σ*=i anFn{x) instead of Σ* = 1 anHn(x), the entire analy-
sis holds. Here in 4.1.4 Ln is given by

and

4.1.29

This reduces the problem to the case of Hn(x). Thus the theorem
is proved.

EXAMPLE 2. We now illustrate Theorem 3.2 when the sequence
{xn} follow the normal law. The result is given in Theorem 4.2.

THEOREM 4.2. Let {x{}, i = 1, 2, be a sequence of identically
distributed normal variables with E(Xi) = μ and Efa — μf = 1,
i = 1,2, •••. // ίfeίs sequence be such that the correlation between
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Xi and xά is given by piό = p]i~jι, i, j — 1, 2, and 0 < p < 1,

3.2.4 is true.

Proof of Theorem 4.2. Using the same notation as in Theorem
4.1, we have

4.2.1 φ(x) = Σ anU(x - nμ) - Σ an[U(x - wμ) - Hn(x)]U(x - nβ) .
% — 1 n — l

Thus

where

4.2.2

4.2.3

= Γ e-*[l - Hn(x)]dx ,
J

[l - Hn(x)]dx ,

k > 0,1/2 < r < 1 .

nμ-rknr

e~*x[l - Hn(x)]dx ^ kγΐern?s .

Now

4.2.4

and

4.2.5 Γ e~sx[l - Hn(x)]dx ^ ne~^s Γ /rί?r [1 - Hn(nx)]dx .

But

4.2.6 1 - Hn(nx) ^ n[l - </ n<^x ~ ^
/

Using 4.1.11 to the right side of 4.2.6

n
2p(l - p n )

4.2.7 1 - Hn(nx) <

Hence

n/i + fcnr [1 - Hn(UX)]dX ^

(1 —

x> μ

_ 2,0(1 - pn)

(1 ~ Pf

2p(\—pn)τ

ιdx .
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[n(l + p) _ 2p{l - pn)

4.2.8 ^ LίL

I (1-/O) ( l-^) 2 J

Using 4.1.11 to the right hand side of 4.2.8

4.2.9

_p)_ _ 2p(l - ρn)Ύ12 n^

Γ 1 - Hn{nx)dx <

The expression on the right hand side of 4.2.9—>0 as w—>oo, since
1/2 < r < 1. The rest of the arguments are as in the previous ex-
ample and the theorem is proved.

EXAMPLE 3. We now give another example to illustrate Theorem
3.2, when the sequence {xn} follow the type III distribution. The
result is given in Theorem 4.3.

THEOREM 4.3. Let {&J, i = 1, 2, be a sequence of identically
distributed Gamma variables correlated according to an exponential
auto-correlation law and that the correlation between xζ and x3- is
given by pi5 = p{i~jl, i,j = 1, 2, and 0 < p < 1. Let

P(%i ̂  x) = θ-r[Γ(r)]-1e-χlθxr-1 , x ^ O ,

= 0 , x < 0 ,

i = 1,2, . . . .

Then

4.3.1 £α/.W~
* = 1 (λ

and

4.3.2 Σ «»J°(» < S» ^ » + Λ) ^ ^ ^ ( a V r # ) ' , λ > 0, x
Λ = l W

where the aF

ns satisfy 2.11.

Proof of Theorem 4.3. Using the results of Samuel Kotz and
John W. Adams, φn(t), the characteristic function of the distribution
of the sum Sn is

4.3.3 Φn(t) = m
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where

4.3.4 μs = (1 - 2i/7Γcos θs + py^l - p), j = 1, 2, . .

Here 0̂  s are the values of 0 which satisfy one or other of the equa-
ations

sin [(n + 1)0/2] = V~p sin [(n - 1)0/2] ,

cos [(n + 1)0/2] = T/^ΓCOS [(^ - 1)0/2] .

Let

£Γ(£) = f; aJFJx)

and

H(β) = Σ α , Γ β -
n = l JO

Using 4.3.3

4.3.6

Using the fact that log (1 + z) = z + λ̂ ;2, | λ | < 1, | 2 | < 1/2, we write

4.3.7 log (1 + sθμs) = sθμά + λ. s 2 ^ - , | λ, | < 1, i = 1, 2, .

Also [(1 + τ/^o")/(l — V p)] is the maximum value of μ5 and Σ?=i ^i = ^
Using these we get

4 . 3 . 8 Σ l o g ( 1 + sθμs) = sθn + [ s 2 0 2 ^ ( l + V~~ρfl{l - VΊpf] ,\μ\<l.

Using this in 4.3.6, we get

H(s) = Σjane~ronse-rμ

4.3.9 = Σ α.e- r^ s[e-^ s 2 6 2 ( 1 + v^ ) 2 / ( 1-v^ ) 2 - 1 + 1] .

= Λ + /2(say) .

4.3.10 I, = Σ α»β-r*" .

Using 2.14

4.3.11 I, - Γ(λ + l)(sr0)-(;+1)L(l/s) , s — 0+ .
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Now

4.3.12 I 2 = Σ α w e-^ s [β-^

Since ex — 1 < | x | β1*1, we get

I /. l < Σ ane-""r \ μ \ ns2θ2[(l +
n = l

4.3.13 £r\μ\ s202[(l + V~ρY/(l

where p(s) can be made as small as we like since s —• 0+. Thus using
2.15,

4 3 1 4 1121 ̂  r I μ \ s^2[(l

s — 0+ .

Hence

4.3.15 I /21/7, — 0 as s — 0+ .

Using this we get

H(s) ~ Γ(λ

By Karamata's Tauberian theorem, we get 4.3.1. This proves the
first part of the theorem.

To prove the second part of the theorem, take

Q(x) = Σ α»P(* < Sn ^ x + h)

4.3.16 "21

Let

4.3.17 Q(s) = Γ e~sx dQ(x) .
Jo

Then

Q(s) = Σ «» \ e-'xd[Fn(x + h) - Fn(x)] .
4.3.18 n=1 J°

OO f* CO OO

—-- x i Cίn\β J.) 1 β diJJ n\% I y t CLn

n=l Jo n=l

Now

^an(esh - 1) [° e-sxdFn(x) - (h/rθ)Γ(X
4,o.iy

s — 0 + .
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Also

4.3.20 (* e-'dFn(x) ^ Fn(h) .
Jo

So

4.3.21 Σ «. (* e—dFn(x) ^ Σ anFn(h) .
w = l JO w = l

But we can show that

4.3.22 Σ ^&p{l SΛ - wr^ I > wε} < oo , fc > 0 .
w = l

Hence

4.3.23 Σ ^^0*0 ^ Σ w*.P{SΛ ^ w(r# - ε)} < oo .

Using this in 4.3.21, we have

4.3.24 Σ *« Γ e—dFn(x) < co .
n = l JO

Hence

β-«dFn(x)
4.3.25 2 ^ As - > o a s s — > 0 +

^Γ(λ + l ) ( ί ) ^ + 1 ) L ( l / )

Using 4.3.19 and 4.3.25, we have

4.3.26 Q(s) ~ (h/rθ)Γ(X

Using Karamata?s Tauberian theorem we get 4.3.2. This proves the
second part of the theorem.

In particular if an = 1, then

4.3.27 Q(x) - Σ p(x < $n ^ x + h) - Λ/r0 = fc/^^) .
n = l

This is in agreement with the classical renewal theorem. We remark
that in the case of exponentially auto-correlated Gamma variables,
the asymptotic behaviour of Q(x) is independent of the correlotion
coefficient and hence is same as if p = 0 and the variables are inde-
pendent.

The authors wish to express their gratitude to Prof. V. Ganapathy
Iyer for his encouragement.
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