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SOME RENEWAL THEOREMS CONCERNING
A SEQUENCE OF CORRELATED
RANDOM VARIABLES

G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Consider a sequence {x,},n = 1,2, --- of random variables,
Let F,(x) be the distribution function of S, = >;_, 2, and
H,(x), the distribution function of M, = max,<;<, S;- Here
we study the asymptotic behaviour of

1.1 S, 0,G(@)

where G,(x) is to mean either F,(x) or H,(*) (so that if a
property holds for both F,(x) and H,(x) it holds for G,(x) and
conversely) and {a,} a suitable positive term sequence, when
{x,} form

(i) a sequence of dependent random variables such that
the correlation between x; and x; is p,t = j,7¢, j=1,2,---,
0<p<l, El;)=1p4, 1=1,2,--- and

1.2 lim Lt fa ot

n—oo ne

=p,a>1,0< < o

and
(ii) a sequence of identically distributed random variables
with E(x;) = #,©1=1,2, --- such that the correlation between

x2; and x; is p;; = p'" 9,4, 5 =1,2, -+, 0 < p < 1.
Suitable examples are worked out to illustrate the general
theory,

Let N(x) be the first value of n such that S, =z, + > 0. N(2)
is a random variable and let

1.3 H(x) = E{N(x)} .

H(x) is called the renewal function and much research work has been
done with reference to the study of the asymptotic behaviour of H(w)
as ©— oo. Feller has shown that

1.4 lim H(x)/x = 1/z ,

when {z,} form a sequence of independent and identically distributed
random variables with ¢ = E(z,), 0 < ¢t < o, the limit being inter-
preted as zero when ¢ = . Blackwell has generalised the above, by
considering the renewal process N(x, ) which denotes the number of
renewals occuring in the interval (z, 2 + h]. He has shown that, for
any fixed h, (b > 0), if

785
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1.5 H(z, h) = E{N(z, h)} ,
then
1.6 lim H(z, h) = h/p .

L—o0

This has been proved earlier by Doob for the discrete case. Tatsuo
Kawata has extended this further. He has proved that

1.7 lim 3 a,P(@ < S, < @ + h) = ha/p,
where
1.8 1/n) k}_; a=a+olV ).

He has also shown that if 1.8 is replaced by
1.9 1/n) kz; @ =a+olny, a<l2,

then 1.7 does not hold.

Herbert Robbins and Y.S. Chow have relaxed the restriction of
independence and obtained a renewal theorem for the dependent case.
They have shown that if

1.10 Ex,|®, % «+ -, x,_,) = E(x,) = p,(constant) ,
1.11 lmbt et cr vty <o
o0 n

and for some « > 1

1.12 E{'xn—ﬂnlaixlyxb"':xn—1}§k<OO ’
then
1.13 lim H(x)/x = 1/ .

L—00

C.C. Heyde has proved that if {x,} is a sequence of independent
and identically distributed random variables with mean g, 0 < gt < oo,

then

al(x)

1.14 S 0,G,(x) ~ L@
20EE ~ Ty

(x/ﬂ)r’ Xr— o,

where a's are positive term coefficient sequences such that

aL[(1 — x)7]
(1— =y

, x—1,

1.15 i a,x"” ~
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a, r are real numbers greater than zero and L(x) is some nonnegative

function of slow growth.
Here we extend the above theorem to the two cases (i) and (ii)
given in the beginning. Subject to suitable restrictions we have shown

that in the first case
(/) *+0 1= L)

1.16 glanGn(fI» ~ (>\; n 1) y xXr— oo

and in the second case

1.17 wa%G%x ~M’ T —> oo
nz=:1 @) N+ 1)

where

1.18 a, ~ n'L(n), n— oo

A being chosen such that Y2, a, is divergent.

We illustrate 1.16 for the particular case when {wx;} follow the
normal law with mean p; and variance one and 1.17 for the cases
when they follow (i) the normal law with mean g and variance one
and (ii) the type III distribution with density function

f@) = [[(n)]707e e, ©=0,

1.19
=0, x<O0.

For the type III distribution we also prove that
120 3 a,P@ < S, S @+ h) ~ Wro)@/roy L), ©— o .
2. A lemma. We use the following lemma extensively.

LEMMA 2.1. Let L(x) be such that L(cx) ~ L(x) for every positive
¢ as x tends to infinity. If

2.11 a, ~ n'Ln) , n— co ,

N being chosen such that S a, is divergent, then

2.12 i‘, a6~ ~ (LO)[(n + 1)/0)s~ % L(1Js") , s—0,0 >0,

a,m’e" ~ (LJO)[(\ + 0 + 1)/0]s=3+0+017[(1/s")

Ms

2.13

n=1

s—0,0 >0,

ane_”ms -~ F(X + 1)(sm)‘[‘+”L(1/S) y s—0 ’

Ms

2.14

1

3
1l
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2.15 S @, ~ I, + 2)(sm)~*2L(1/s), s—0,
n=1

These can be got from Corollary 1(a) of [8, p. 182] by proper sub-
stitutions.

3. Renewal theorems.

THEOREM 3.1. Let {z;},i=1,2,.-- be a sequence of dependent
random variables such that the correlation between any two variables
x; and x; 18 0, 1 #J, 1,3 =1,2,--- and 0 < p <1. Let E(x) = p,
1=1,2,.--. If

811 lmfiTftrrFh o 51 0<p< oo,

n—r00 na

3.1.2 1 - Hn(nax) é p(ny x) ’

where p(n, x) satisfies
3.1.3 0, = r p(n, x)de — 0, n— oo,
©

the nonnegative constants a, satisfy 2.11 and the condition

3.1.4 ianFn(n“B) <o, 0<B<p,
then
oo 1+1)/aL(xa)
3.1.5 0,G(x) ~ &L L a—oo.
nz='1 (@) n+1)

Proof of Theorem 3.1. Let

#@) = 3% 0,Gu(®) Ulw — nB) .

3.1.6
= glanU(w — n“#) — Zzla”[U(x — ,na#) _ Gn(x)] U(m _ n"ﬁ) ,
where
Ux)=1, z=0,
3.1.7
=0, x<0.
Let

3.1.8 4(s) = S:’ e—g(@)ds .
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Then we have
3.1.9 #(s) = 57 3 a0 — z:‘, a (L, — K.) ,
where

3110 L= | evll-G@ldr, K .=|" G,@0da,
ajp n&

n

the term by term integration is justified by the monotone convergence.
Now using 2.12, we have

3.1.11 s i a,ene ~ LI+ 1)/acli"(‘;j;tx”“””L(l/sa) '
Also

L= | el - Guo)ldo
3.1.12 =n* S:o e[l — G (n°w)]da

N

ng " r [1 — G,(n*x)]dx .
"
Using 3.1.3 and the fact that G,(x) < F,(x), we get

3.1.13 r [1— G.w2)|dzs —0, m—soco.
"
Hence we may write

3.1.14 L, = n%e "%, ,

where 6, — 0 as n — co uniformly in s > 0.

K, S: G (z)da
3.1.15 ~ n S: oG (now)do

< nre s S:Gn(n“x)dx .
But

P|Sep| > o) s BS i)

_ L+ (n—1Dpl
= n2a52

3.1.16
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The right hand side of 3.1.16 tends to zero as m— . Thus

F,n*x)—0 as m— o for all # < . Hence using the mean value
theorem we may write
3.1.17 K, = n%e""%¢,

?

where 0/, — 0 as m — co uniformly in s > 0. Combining 3.1.14 and
3.1.17 and putting ¢ =0, — 0, we have

3.1.18 S au(L, — K,) = S a,nce 69!
n=1 n=1

where ¢/ —0 as n — o,
In view of 3.1.11 and 2.13

3.1.19 _ —0, s—0".
s> e
Hence
3.1.20 #(s) ~ I'[(M + 1)/a]s™ T3 H0I= I [,(1/5%) s — 0F
M aﬂ{ﬂ-l)/a ’ *
Using Karamata’s Tauberian theorem, we have
3.1.91 1 quﬁ(t)dt——» I'l(x + 1)/a]
L(xa)x[(l+1)/aj—{-1 0 aF{[(N + 1)/0(] + 2}#(Z+1)/a ’

€r — oo

.

Using the same reasoning as Heyde, we have if © > 0,0 <6 <1

3.1.22 6(60) (@ — Ox) < ga s(t)dt < @) — Ow) .
So
1 1
m¢(0x) = [ (1 — 0) L(a)at+viaist ]
3.1.23 % [S s(t)dt — S"E(t)dt]

_1_._ @'(x) .
x(2+1‘//aL(xa) ‘

Using 3.1.21 in the above inequality we have

lim sup 200 II0v+ Dja[L — gu=vier]
e @PEL) T (L= Dal{Dv + Dja] + 2he

3.1.24

< liminf — 9(®)
200 x”“”“L(x“)
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Taking limit as § — 1 in the right hand side and left hand side of
3.1.24

3.1.25 liminf — &) > 1
oo w(}-}l)/aL(xa) ()\, + 1)#x2—|—1)/a

and

3.1.23 lim sup —2®) < 1

roo x(l~\-1,\/aL(xa) - (7\’ + 1)F(<1+1>/a .

Combining the two we get

3.1.27 lim wm_f/f”g(wa) S 1§#<2+l’/a .
So

(2+1)/a a
3.1.28 6(x) ~ (x/ﬁ‘()x - S(m L, g
Now put
3.1.29 W(x) = glanGn(x)[l — Ul — BnY)]
so that
3.1.30 3@, @) = 6(0) + v(a) .
From 3.1.4 and 3.1.29, we have
3.1.31 () < fj a,G,(np) = glanFn(oz“B) < e
Hence
3.1.32 (x/m(}’i (sz(xa) —0, 2o,
Thus
3.1.33 S a,G (@) ~ O L)

2= N+ D
This proves Theorem 3.1.
In the next theorem we discuss the case when x, is a sequence

of identically distributed random variables having an exponential auto-
correlation.
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THEOREM 3.2. Let {x;},7=1,2,--- be a sequence of identically
distributed random variables with E(x;) = p#,1=1,2, ..., Let this
sequence be such that the correlation between x; and x; is po,; = p'""~7',
1,7 =1,2,--- and 0 < p< 1. If

3.2.1 1 — H,(nz) < p(n, x),

where

3.2.2 0, = | pln, 2)dz —0,  n—s o,
"

the nonnegative constants {a,} satisfy 2.11 and

3.2.3 gamm,@) <, 0<B<p,
then

2.4 S ~ @/ L)
3 %%Gn(x) T D

Proof of Theorem 3.2. Let
3.2.5 $(@) = 3, 0,G.@) Ulw — nB) .
Using the same technique as in Theorem 3.1, we have
3.2.6 #(s) = s~ gt a,e " — ;Z; a(L, — K,) ,

where

" e G, (x)dx .

Bn

327 L, = S: [l — G(@))de, K, = S

"

Using 2.14

3.2.8 s—‘;:‘i Qe " ~ Ly + lL.s;’:”L(l/s) . s— 0.
Also

3.2.9 L, < ne—s r [l — G, (na)|de .

Using 3.2.1 and the fact that G,.(x) < F,(x), we get

3.2.10 r [l — G,na)de—0, m—oo.
#”
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Hence we may write
3.2.11 L, = ne~"%, ,
where J, — 0, # — « uniformly in s > 0.
Also

3.2.12 K, < ne® S” G, (na)dz .
B

Using the fact that G,(nx) < F,.(nx), the law of large numbers by
virtue of which F,(nx) -0 as n— « for all # < g, and the mean
value theorem, we way write

3.2.13 K, = ne="*9,, ,
where 6, — 0 as 7 — oo .
Combining 3.2.11 and 3.2.13 and putting 6 =6, — ¢/, ,
3.2.14 S au(L, — K,) = 3, na,e 5]
n=1 n=1

where 0! — 0 as % — oo.
Using 2.15 and 3.2.8,

3.2.15 — —0 as s—0+.
st 2 a,e "
Now put
3.2.16 ¥@) = 3,0,G,@[1 - U — Bn)] ,
so that
3.2.17 S 0,G,(@) = 6(@) + V(@) .
Using 3.2.3
v@) = 3 0, F.nf)
< oo
So
3.2.18 _¥® Ly, ro .

(/1) L(®) ’

Using the same reasoning as in Theorem 3.1, we have 3.2.4.



794 G. SANKARANARAYANAN AND C. SUYAMBULINGOM

4. Examples. We now give a few examples to illustrate the
theorems. In view of their independent interest they are given in
the form of theorems.

ExamMPLE 1. We now illustrate Theorem 3.1 when the sequence
{z;} follow normal law. The result is given in Theorem 4.1.

THEOREM 4.1. Let {x;},7=1,2,--. be a sequence of normal vari-
ables with E(x;) = ¢, and E(x, — p)) =1,+=1,2,---. Let this se-
quence be such that the correlation between x; and x; is 0,0 < 0 <1,
1,5 =1,2, «e0, 0% 7.

If pls satisfy 3.1.1, then 3.1.5 is true.

Proof of theorem 4.1. We first prove the case when G, (x) = H,(x).
Let

411 @) = S, H@U@ - pr),  0<B< g,
where U(x) is defined by 3.1.7.

412 ¢() = i a, U — pn) — nil[U(x — ) — H,(@)]U(x — Bn) .

4.1.3 8(s) = s S a,e — S ay(L, — K,) .

Term by term integration is justified by monotone convergence.
Here

414 L, = g‘” e[l — H)de, K, = SM o= H (x)d .
#n® Bn®
Now
n®pf-kn” oo
L, - S el — Ho()]de + S e[l — H,(a)ldz
4.1.5 ndp n®ptkn?
k>0, l1<r<a.
But
n¥p+kn”
4.1.6 S e[l — H,(0)lds < kn'e"
n&p
and

4.1.7 g” e[l — H,(x)|dz < n"e"s S” [l — H,(n')]dz .
nep+knt nXp+kn?
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Now
1 - H,(nw) = [1 — Fi(n*2)] + [1 — Fy(nx)]
4+ eer + [1 — F(n*2)]
B ol e — (e + )
41.8 < {1 — O — 1)) + {1 e ]}
_ ol — (e e+ e + )
et {1 @[ Vn[l + (n — 1)0] ]} ’
where
4.1.9 O(x) = 1—/%_7? S_w e iy, |
Hence

_ « oAl — (e o)
4110 1— Hn') < n{l q)[ o ]} .

Lemma 2 in [5, p. 166] gives

e x>0.

4.1.11 1—- 0@ =< 1/_._

Using 4.1.11 in 4.1.10, for sufficiently large n, we have

e 2n[1+ n— 1)0]

1- H,n) =<2

V2r(ne — nep)
n?—n _n2a(x—!f)2
4.1.12 g me 2n y n“# L kn" é x < oo,
Now
oo oo _/,LZ(CW—])(x._./l)Z/gd/E
— H, (n*w)]de < S ¢ -
Sn"‘!;—;kn"[ ( )] -l/ T z“[:akrﬂ (99 . #)
2—r oo L N
é k,’]ql/z— S’ At fopr eun&aﬁl/(mﬁﬂﬂ/zdx
n n ['\a n
3—a—r o
4.1.1 < S 22
1.13 = 375 Jewres e du

Using 4.1.11 to the right hand side integral in 4.1.13, we finally get

* —a—2r
4.1.14 Sn“/1+kn'f [1 — H,(nw)]dx S kﬁ/ ekl
The right hand side in 4.1.14 tends to zero as n — <, since » > 1.
Thus we can write

n&
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4.1.15 Ln < knre—8n"s + nae—ﬁnasan ,

where 6, — 0 as n— . Hence we can write

4.1.16 L, = n%e""%§, ,
where 0, — 0 as n — oo, uniformly in s > 0.
Also

K, < nee " SZ H,(n*x)dx
4,1.17 < moe Pt S F.(n*x)dx .

But using 3.1.16 and the arguments leading to 3.1.17, we get

4.1.18 K, = n*e %0, ,
where 6/, — 0 as n — co, uniformly in s > 0.
Thus
4119 g(s) ~ DO D/@ls LA g,
a#(l'l—l)/a
Take
4.1.20 T@) = 3, a,H,@)[L — U@ — Bn)]
so that
4.1.21 S 0,5, (@) = ¢@) + F(@) .
Now
@) = 3 a.H,(n)
4.1.22 !
=< g a, F,(np) ,
where
(-3
1 A e
F,(n*B) = S e du
(n°F) V2l + (n — 1)p] J—=
4.1.23 (sur-$o0s)

L
Vx

S Va[l+ (n—1)p] e—v2/2dv
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Since the upper limit in the integral in 4.1.28 is negative for large
values of =,

1 * 2
F,(nx) = —— S e~y
4.1.24 Vern (z pi_naﬁ)

Va[l+(n—1)p]

Using 4.1.11 to the right hand side of 4.1.24,

é#i—n“ﬁ)z
4.1.25 Fonew) < YL+ (0 = Do] “wowtemer
V(3 i — n6)
Hence
4.1.26 S a,F (o) < o
So
4.1.27 T(x) -_ ’ &Xr —> co
(90//,6)(“”/“14(37")
Thus
4.1.28 S o H(z) ~ @A L@)
2 @ N+ 1)

If we consider >\7_, a,F,(x) instead of >3, a,H,(x), the entire analy-
sis holds. Here in 4.1.4 L, is given by

L, = S” e[l — Fo(@)]de
n®p

and
4.1.29 S“’ e[l —F,()]de < S‘” e[l — H,(@)]de .
n&pe n&p

This reduces the problem to the case of H,(x). Thus the theorem
is proved.

ExampLE 2. We now illustrate Theorem 3.2 when the sequence
{x,} follow the normal law. The result is given in Theorem 4.2.

THEOREM 4.2. Let {x;},7=1,2,--- be a sequence of identically
distributed mormal wvariables with E(x;) = ¢ aond E(@x; — p) =1,
1=1,2,.-.. If this sequence be such that the correlation between
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x; and x; s given by p;; = "1, =1,2, .-« and 0 < p <1, then
3.2.4 1s true.

Proof of Theorem 4.2, Using the same notation as in Theorem
4.1, we have

421 4(x) = i @, U — np) — 3, a,[U@ — np) — H @)U — np) .
Thus
8(s) = s S a6 — X a,(L, — K,)

n=1

422 L, = g“’ e[l — H,@)dz, K, — g e H, (w)de .

123 L= """ - Bl + T el - H@lds
| k>0,12<r<1.
Now
4.2.4 S:ZTW e[l — H,()]dx < kn'e™"> .
and

4.2.5 r e~ [1 — H,(x)]de < ne~"?* r e 11— H(n)]do .
np+kn? nt -k

7

But

426 1—Hmo)<nll—0 L C ) .
| n(l +0) 2001 — p")
l T-p0 a-or

Using 4.1.11 to the right side of 4.2.6

nl/n(l + IO) o 240(1 _ pn) n2lx—p0)2
(1 . P) (1 — p)z 2[%([-{-!’}_2{’(1—{)"’”
— r) = — (1--9)  (1--p)2
427 11— Hyne) < s ¢ ey

x>,
Hence

- nd +0) _ 201 —p")]
Sn/twwﬂ [1 — H,(nz)lde < 1 —p) 1 — p)? J

kv 2mn”
_ nz(x—~!l
o n(l1+p0) 2;011 —p"n)
% { e 2[ 1—p)  (1—p)2 ]d%
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[nto) 200 - o)
=

I=p _a—pr |-
4.2.8 d-0) I T
Iy 2mn YT TN
(1—p) (1—p)2
Using 4.1.11 to the right hand side of 4.2.8
4.2.9
n(l+0) _ 20— V)" ____wr

™ So—p"™)

- 1—p) 1 — o)} o <;1—+/:;)— ‘Zl—mz
1— H@mode <=1 =0 (

SLM (n2)de = k 2rn ¢

The expression on the right hand side of 4.2.9—0 as m-— oo, since
1/2 < r < 1. The rest of the arguments are as in the previous ex-
ample and the theorem is proved.

ExAMPLE 3. We now give another example to illustrate Theorem
3.2, when the sequence {x,} follow the type III distribution. The
result is given in Theorem 4.3.

THEOREM 4.3. Let {x;},1=1,2, ... be a sequence of identically
distributed Gamma variables correlated according to an exponential
auto-correlation law and that the correlation between x; and x; 1s
given by 0;; = 07,4, =1,2,--- and 0 < p <1. Let

Px; < x) = 0~"[[(r)] e am x=0,

=0, x <0,
i=1,2, ..

Then

o “lL(x)
4.3.1 a,F(0) ~ ErOTL@

1%“1 @) N +1)
and
432 S aP@<S,=x+h)~ “;éx) @m0y,  h> 0,5 oo,

n=1

where the als satisfy 2.11.
Proof of Theorem 4.3. Using the results of Samuel Kotz and

John W. Adams, ¢,(t), the characteristic function of the distribution
of the sum S, is

133 gult) = T1 (1 — itbpey
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where
484 p,=1-2Vpecost;+p)"L—p), F=1,2,.--.

Here s are the values of # which satisfy one or other of the equa-
ations

sin [(n + 1)0/2] = v/ p sin [(n — 1)6/2] ,

4.3.5 _
cos[(n + 1)8/2] = V' p cos[(n — 1)0/2] .
Let
H@) = 3 0,F.(@)
and

H(s) = i a, S” e-dF.(v) .

Using 4.3.3

8

3
Il

H(s) = X a, ﬂ1(1 + sOp;)"
4.3.6

n
—erog(1+sﬂpj) .
a,e i=t

Ms

n=1

1

Using the fact that log (1 + 2) = 2z + A%, | N ] < 1, |2] < 1/2, we write
4.3.7 log (1 + sOp;) = sOp; + N;s*0% 1, N <1,7=1,2,---.

Also [(1 + v p)/(L — 1V p)] is the maximum value of ; and 33, ¢, = n.
Using these we get

438 Slog (1 + s0u;) = son + [$0un(L + 1V 0)V/L -V OY], || <1.
Using this in 4.3.6, we get

H(S) — i ane—rﬂnse—'rpnszé?(l-}- Vp)2/(1—¥p )2 .
n=1

— - —rons[ p—prns262(1+ V)2 (1—V )2 __ 1].
4.3.9 %ane [e 14+ 1]
= I, + I,(say).
4.3.10 I =3 aer .
n=1
Using 2.14

4.3.11 I, ~ I'(0 + 1)(sr0) "% DL(fs),  s—0%.
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Now
4.3.12 I = - a,e"'m Pt L S R L | I
=3 [ ]
Since e — 1 < |z |€e"”!, we get

(1+vp)?

|L| < i‘,}ane“’””w [p|ns0[(L + V )P /(L — V p)le ' vz .

4313 =7r|p|sP[A+V o)1 -V p)] 2 a,me-ron—p

where p(s) can be made as small as we like since s — 0*. Thus using
2.15,

4314 |EISTIHISOUL+V 0P/ =V OYITO + 2)(ros)- 2 L(1/s) ,
s— 0%,
Hence
4.3.15 |L|/I, >0 as s—0+.
Using this we get
H(s) ~ I'(» + 1)(s70)~ % L(1/s) .

By Karamata’s Tauberian theorem, we get 4.3.1. This proves the

first part of the theorem.
To prove the second part of the theorem, take

Q@) = S0P < S, <o+ h)

4.3.16 -
Let
4.3.17 Qs) = S“’ e dQ() .
Then

Q) = Sya, " e dlF@ + ) - Fy(o)]
4.3.18 o . .

= Sia e — 1) S e*dF, () — S, a, S e—=dF,(z) .

Now
4316 Saner = 1) [TerdRu@) ~ Wrore. + 1) LS

s— 0+,
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Also

4.3.20 S' e dF (1) < Fo(h) .

So

4.3.21 Sa, S: oA (@) < 3 a,F.(h) .

But we can show that

4.3.22 S wrP( S, — nrf| > me) < o, k>0.
n=1

Hence

4.3.23 S\0AF, () = 5, niP(S, S n(rf — ¢)) < oo .

Using this in 4.3.21, we have
oo i3

4.3.24 Zang e dF (x) < <=
n=1 0

Hence

oo h
Sa, S e *dF ()
4.3.25 iz " o =0 0t
ShT(~ + 1)(s70)- "V L(1/s) as s

Using 4.3.19 and 4.3.25, we have
4.3.26 Q(s) ~ (hjrO) (N + 1) (sr0)~L(1/s) .

Using Karamata’s Tauberian theorem we get 4.3.2. This proves the
second part of the theorem.
In particular if @, = 1, then

4.3.27 Q(x) = 2 P@< S, <o+ h) ~ h/ro = h/E(,) .

This is in agreement with the classical renewal theorem. We remark
that in the case of exponentially auto-correlated Gamma variables,
the asymptotic behaviour of Q(x) is independent of the correlotion
coefficient and hence is same as if p = 0 and the variables are inde-
pendent.

The authors wish to express their gratitude to Prof. V. Ganapathy
Iyer for his encouragement.



A SEQUENCE OF CORRELATED RANDOM VARIABLES 803

BIBLIOGRAPHY

1. D. Blackwell, A renewal theorem, Duke. Math. J. 15, 145-160.

2. Y. S. Chow and H. Robbins, A renewal theorem for random wvariables which are
dependent or non-identically distributed, Ann. Math. Stat. 34, 390-395.

3. J. L. Doob, Renewal theory from the point of view of the theory of probability,
Trans. Amer. Math. Soc. 66, 422-438.

4. W. Feller, On the integral equation of remewal theory, Ann. Math. Stat. 12, 243-
267.

5. ———, An Introduction to probability theory and It’s applications, Vol. I, John
Wiley and sons, Inc, 1958.

6. C. C. Heyde, Some renewal theorems with application to a first passage problem,
Ann. Math. Stat. 37, 699-710.

7. Samuel Kotz and John W. Adams, Distribution of the sum of identically distributed
exponentially correlated Gamma variables, Ann. Math. Stat. 35, 277-283.

8. Tatsuo Kawata, A theorem of renewal type, Kodai. Math. Semi. Rep. 13, 185-191.
9. D. V. Widder, The Laplace transforms, Princeton University Press, 1946.

Received November 15, 1968.

ANNAMALAI UNIVERSITY








