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A MONOTONICITY PRINCIPLE FOR EIGENVALUES

V. B. HEADLEY

The smallest eigenvalue of certain boundary problems for
second order linear elliptic partial differential equations in-
creases to infinity as the domain in question shrinks to the
empty set. The object of this note is to formulate and prove
an analogous result for linear elliptic differential operators L
of general even order. Specifically, let G(t) be a bounded
domain in n-dimensional Euclidean space, and suppose that
G(t) has thickness t (in a sense which will be precisely defined
below). Let λo(f) be the smallest eigenvalue of a boundary
problem associated with L and G(t). It will be shown that
λo(t) increases to infinity as t tends to zero from the right.

The proof depends on a generalization of Agmon's form [1] of
Poincare's inequality. In the second-order case, a monotonicity principle
of the type under consideration has been applied to obtain oscillation
theorems (cf. [3], [4]) for partial differential equations on unbounded
domains.

2* Preliminary lemmas* Let G be a domain (not necessarily
bounded) in ^-dimensional Euclidean space Rn. We shall say that G
has bounded thickness ^ s, or simply thickness <g s, if and only if
there is a line / such that each line parallel to / intersects G in a
set each of whose components (i.e., maximal connected subsets) has
diameter ^ s. For example, if | x | denotes the length (X # )1/2 of the
vector x = (x19 , xn) in Rn, then the annulus {x e Rn: rQ < | x | < r j ,
r0 > 0, has thickness ^ 2]/[rl — r2

0].
Let Cm(G) denote the class of all m times continuously differentiate

real-valued functions on G, and Cj*(G) denote the class of all Cm

functions having compact support in G. We use the standard multi-
index notation: let a = (aγ , an) have nonnegative integral components
and "norm" \a\ = aγ + + an; let D^ denote the partial differential
operator (d^/dx^ή, and let Da = Dp Z)£».

LEMMA 1. If G has bounded thickness <̂  s and if every line
parallel to the line / in the definition of bounded thickness intersects
G in a set with at most k components, where k is some positive
integer, then

for all v e C™(G), 0 ^ j ^ m — 1, where
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Σ \D"v\*dx
G \a\=j

Proof. We refine the argument given in [1, pp. 74-75]. Let /'
be a line parallel to /, and assume that x° and x° + q are points in
/' Π dG such that / ' n G is contained in the segment between x° and
xQ + q. By defining v to vanish outside G, we can assume that
v e C?(Rn). For - co < ί < + oo let f(t) = v(x° + t \ q I"1 ?). Then /(0) -
0, so that

f(t) =

Since i? vanishes outside G,

/(*) = ( f'(r)dr ,
JX(67,ί)

where

, t) = {r: r ^ t and £° + r | q \~ιq

This set is by hypothesis a union of at most k disjoint intervals, the
sum of whose lengths is at most ks. By Schwarz's inequality,

I f(t) \2^ks\ I f'(r) |2 dr ^ks\~ \ f'(r) |2 dr .

Hence

Γco r

\ I ~f(f\ ^ rit I
J-oo JK(G, \f()\

\q\)

\f'{r)\idr.

Now express | v \l,G as an iterated integral with one of the integrations
taken in the direction of /. From the last inequality above it follows
that

12 <

\ o f G ^

Applying this inequality to Dfl, we obtain

\Oiv\lG

Summing over all i, we obtain

The conclusion of the lemma now follows by induction.
In the application mentioned in the introduction, if G is an annulus
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with rι — r0 = t, it is important to have an inequality of the form

v \o,G ^ 9(t) I v \m>G ,

where the function g is monotone strictly increasing. Such an in-
equality follows immediately from Lemma 1, but does not appear to
be readily obtainable from the corresponding result in [1],

We now consider the 2ra-th order linear elliptic partial differential
operator L defined by

( 2 ) Lu = ( - 1 ) m Σ Da(AaβD?u) + Bu ,
\a\ = \β\=m

where m i s a positive integer, and a — (<xu , an), β = (β19 , βn)
are multi-indices with nonnegative integral components. The coefficients
Aaβ are supposed to be real-valued, symmetric in the indices, and
have bounded continuous derivatives of all orders ^ m on (?. The
coefficient B is real-valued, bounded, and continuous on G. For each
ze Rn we write za = Π?=i *£*•

Let p(m) denote the number of distinct multi-indices a satisfying
a\ — m. For operators of the kind defined by (2), we shall suppose

that there exists a number E > 0 such that for all xeG and all
2>(m)-tuples {ξa: | a | ~ m} of real numbers ξa

( 3 ) Σ Aaβ(x)ξaξβ^E Σ e .
\a\ = \β\=m \a\=m

Without loss of generality we assume that we may take ξa = ξr if
7 = (7i, , Ύn) is a permutation of a — (a19 •••,«.). We note that
the usual ellipticity condition is

(a) The form Σι«ι=ι^ι=» Aaβ(x)za+β is positive definite at each
point xeG.

If the coefficients Aaβ are constant or if Lu has the form

(-1)" Σ DT(aiSD?u) + Bu ,

it can be shown that (3) is a consequence of the ellipticity condition
(a). We now define the quadratic functional

J[u] = \ Σ (AaβD
auD3u + Bu2)dx

JG | α | = | j 3 | = m

for ue CT(G). Then the following special case of Gording's inequality
is valid.

LEMMA 2. Let Aaβ satisfy (3). Then there exists a number
b > — oo such that
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(4) J[u]^E\u\2

m,G + b

for all ueCγ(G).

Proof. Since B is bounded and continuous on G, there exists a
number 6 > — co such that

( 5 ) \ Bu2dx >̂ b I u2dx

for all u e Co

m(G). Condition (3) yields

\ Σ AaβD
auD?udx ^E\ Σ (Dau)2dx .

JG \a\ = \β\=m JG \a\=m

Combining this with inequality (5) we obtain (4), and the lemma is
proved.

Our next preliminary result is a form of Courant's variational
principle [2].

LEMMA 3. Let G be a bounded domain, with boundary dG having
a piecewise continuous unit normal. The function u0 e C2m(G) which
minimizes the functional J[u] under the condition \ u \0}G = 1 is an
eigenfunction corresponding to the smallest eigenvalue of the problem

( 6 ) Lu = XuinG, Dau = 0 on dG, 0 ^ | a | £ m - 1 .

Proof. According to [5, §§11, 28], there exists a minimizing
function u0 which is a weak solution of (6) in the following sense:

Oo, (L - λ < » = 0 , v e CT(G) ,

where <(, ̂ > is the usual L2[G] inner product and λ0 is the minimum
value of J[u], The results of [1, §§8, 9] now imply that u0eC2m(G)
and u0 satisfies Lu = Xou. A standard argument [2, p. 400] now shows
that λ0 is the smallest eigenvalue of (6).

3* The main result• For 0 < t < oo let Gt be a bounded domain
having a piecewise smooth boundary dGt. We suppose that Gt has
thickness ^ t, and that the line / in the definition of bounded thickness
intersects Gt in a set with at most k components. We suppose that
Aaβ e Cm(Gt) and that B is continuous on Gt. We also suppose that
the coefficients Aaβ satisfy condition (3) on Gt.

THEOREM. / / 0 < r < s < o o implies that Gr is a proper subset
of Gs, then the smallest eigenvalue X0(t) of the boundary problem
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Lu = Xu in Gt; Dau = 0 on dGu 0 ^ | a | ^ m - 1

is monotone nonincreasing in t, and l i m M + X0(t) = + oo.

Proof. Introduce the notation

JtM = \ Σ (AaβD
auDβu + Bu2)dx ,

and

By Lemma 3,

λ o ( ί ) - i n f {Jt[u]/\\ u W l i u e C

Since Gt increases with t, it is clear that the class of admissible
functions is nondecreasing, and therefore X0(t) is nonincreasing in t.
By Lemma 2, there exist numbers E(t) > 0, b(t) > — oo such that

( 7 ) Jt[u] ^E(t)\u\2

m,t + b(t)\\u\\\.

According to Lemma 1,

Combining this with inequality (7) we obtain

Jt[u] :> [(kt)-2wΈ(t) + b(t)] \\u\\l .

Hence

XQ(t) ^ (kt)~2mE(t) + b(t) .

Since E(t) may be chosen to be the infimum of

/Σ_nAaβ(x)ζaξt

over all xeGt and all p(m)-tuples {ξa: \a\ = m) of real numbers, it is
clear that E(t) cannot decrease as t decreases, so that lim inf t_0+ E(t) > 0.
Moreover, since B is bounded and continuous on Gt, there exists r
such that lim inf t_^+ b(t) > r > — c>o. Hence lim^0 + X0(t) = + co.

The author (Ph. D. Thesis, University of British Columbia) has
applied a form of this theorem (in the cases where Gt is an annulus
or a finite cylinder in Rn) in the derivation of oscillation theorems
for elliptic differential equations of even order 2m.
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