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CONJUGATE SURFACES FOR MULTIPLE INTEGRAL
PROBLEMS IN THE CALCULUS OF VARIATIONS

R. DENNEMEYER

The Jacobi equation of the second variation for a multiple
integral problem in the calculus of variations is a linear second
order elliptic type partial differential equation provided cer-
tain hypotheses hold in the multiple integral problem. By
means of the theory of quadratic forms in Hubert space
already present in the literature pertinent properties of solu-
tions of such partial differential equations can be established.
Here the pertinent property discussed is the vanishing- of a
solution on the boundary of a region, i.e. the existence of a
conjugate surface of the differential equation. After develop-
ing the notion of focal point and stating the index theorems
of the associated quadratic form, the existence of one para-
meter families of conjugate surfaces is shown, and illustra-
tions of the theory are given.

1* Introduction* Fundamental theorems for quadratic forms in
Hubert space which are pertinent to problems in the calculus of varia-
tions are established in [7], [9] by Hestenes. Included in [7] is a
theory of indices for an important class of quadratic forms arising in
variational theory, and a general theory of focal points applicable to
simple or multiple integral problems. Illustrations of the applications
of focal point theory to one independent variable variational problems
are given, as well as to boundary value problems for ordinary differen-
tial equations. The theory is, however, also applicable to multiple
integral problems, and to boundary value problems for elliptic partial
differential equations (indeed for integro-differential equations), and
the author had this in mind in the formulation of the theory. In [9]
there are general theorems on properties of quadratic forms applicable
to variational problems involving functionals defined on classes of
vector valued functions of m independent variables and with higher
order derivatives. These theorems have as consequences further theo-
rems on properties of systems of partial differential equations, and
existence and differentiability theorems are established.

The purpose here is to set down an extension of the highly de-
veloped theory of conjugate points for simple integral problems in the
calculus of variations to multiple integral problems. The extension
is afforded by the theory established in [7]. Here the multiple integral
problems in mind are those where the integrand involves at most first
order partial derivatives of a real valued function of m real variables.
The Jacobi equation of the second variation is then a linear second
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order partial differential equation, and it is relative to this equation
that the notion of conjugate surface is considered.

For consistency all definition, terminology, and notation conven-
tions used (apart from certain minor differences explicitly written down)
are carried over from [7] and [9]. For brevity this material is not
repeated, except where necessary for readability.

2* Hubert space and subspaces* In the sequel m is a fixed
positive integer, and Ω denotes m dimensional real euclidean space.
Points of Ω are written t = (tί9 , tm), s = (s19 , sw), and 111 is
the usual length in Ω. If S is a subset of Ω, then i(S), S*,S and
c(S), mean, respectively, the interior of S, the boundary of S, the
closure of S, and the complement of S. An interval ak rg tk ^ bk, k =
1, « ,m, is abbreviated [α, 6], and similarly for (α, b). A region is
a bounded open connected subset of Ω. Letters such as x, y, z, u, v
are used for real valued functions defined on subsets of Ω. The sum-
mation convention for repeated indices in a product is adopted, and all
summations are from 1 to m. The subscripts i,j,k always have the
range 1, « ,m, while the subscripts p, q have the range 1,2,, •••.
Subscripts k, p, q are never used as summation indices. A partial
derivative dx/dtk is often written xk.

Let T be a fixed region of class Bι (see [9], [10], [11]). Simple
examples are: the interior of a sphere or interval in Ω, the interior
of the union of a finite number of closed contiguous nonoverlapping
intervals. Also, the image of one of these regions under a continuous
one-to-one transformation, which is such that the transformation and
its inverse satisfy a uniform Lipschitz condition on every compact
subset of their respective domains, is also a region of class Bι (hence-
forth the superscript 1 is omitted).

The basic Hubert space 3ίf is the class of functions x of class
D(1) on T ([9], [10], [11]), which together with their first partial deriva-
tives are square integrable on T. This is the space 3ίfγ of [9], except
that the functions are real scalar valued. A function x e £ίf need
not be continuous on T, and is characterized by the following pro-
perties:

( i ) x is essentially absolutely continuous on T in the sense of
Calkin and Morrey ([3], [10], [11]);

(ii) x and the derivatives xk, k = 1, , m, are square integrable
on T;
x is normalized by taking x(t) = lim^o xh(t) for each te T for which
the limit exists, and x(t) = 0 elsewhere. Here xh denotes the fe-average
of x ([9], p. 314). This normalization of members of ^f is convenient
in the sequel. The space £{f is also called a Sobolev space ([11], p.
19). The inner product on ^f is
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(2.1) (x, y) = [ Ut)yj(t)dt + { x(t)y{t)dt

and the norm is

(2.2) | |x | | = (x,xY'>.

An important subspace of έ%f is the class of x e 3έf which "vanish"
on the boundary Γ*. More exactly, let CΓ denote the subclass con-
sisting of all functions x having continuous partial derivatives of all
orders on T and whose support set (closure of the set of points t
such that x(t) Φ 0) is contained in T. Then the subspace of interest
is Stf — CΓ, the closure under the norm in Eq. (2-2). This subspace
is denoted by <%?0 in [9]. It can also be shown that J ^ = ^J", where
J ^ denotes the class of all Lipschitzian functions having support set
contained in T. If S is any subset of Ω for which the function classes
are defined, then it will be convenient at times to write £ί?(S), J^(S),
CΓ(S), etc. For example, Cξ(S) denotes the class of all functions
whose derivatives of order Sp are continuous on T and whose sup-
port set is contained in S.

In the sequel the following alternate characterization of j y is
useful. Consider the space ^f = Sίf{T). Extend each xz£ίf to Ω
by setting x(t) = 0 for tec(T). A function x so extended need not
belong to the Hubert space 3(f(Si). However the class of functions
which do belong to έ%f{Ω) when so extended constitute the subspace

3. Divergence theorem* Use is made in the sequel of the fol-
lowing extension of the divergence theorem established by Hestenes.
See also Morrey [12], and Carson ([4]).

THEOREM 3.1. Let S be a nonempty open set in Ω, and let
M, Nlf , Nm be given integrable functions on S. Consider the linear
functional

L(x) = [M(t)x(t) + N3-(t)xd(t)]dt
s

on various linear manifolds. The following statements are equivalent.
( a ) L(x) = 0 on JT0(S).
(b) L(x) = 0 on C$(S), p a given positive integer.
( c ) L(x) = 0 on CT(S).
(d) Let e > 0 be given. Then L(x) = 0 on J2Γe(S), the class of

all xeJstl(S) whose support set has diameter less than ε.
(e) If k is a given integer in the range 1, « ,m, and Sk de-

notes the projection of S onto the tk axis, then there exists a set Zk
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of linear measure zero in Sk such that for each interval [a, b] in S
having neither ak nor bk in Zk the relation

(3.1) £ ['[NΦs, *') - N(a,; t's)Wi = [M(t)dt
1 J J

holds (where primes denote the remaining m — 1 coordinates, e.#.,

(6, t'j) = (t19 , tj_lf b, ίi+1, , O ,

αraϊ

J^ fact, for almost all intervals or spheres R such that R is contain-
ed in S,

(3.2) [ Niiσ^dσ = [ M(t)dt

holds, where lif i = 1, , m, are the direction cosines of the outer
normal to i2* and dσ donotes the surface element on R*.

If M is continuous and each Nk has continuous first partial
derivatives on S, and one of the statements (a)—(e) holds, then Eq.
(3.2) holds for each sphere R such that R is contained in S, and
Eqs. (3.1) and (3.2) are each equivalent to

(3.3)
3=1 θtj

holding in S.

4* T h e q u a d r a t i c f o r m * L e t P, Q19 , Qm, Rij, i,j = l, ,m
be given integrable functions on T. It is assumed that Rji(t) = Rij(t),
te T, for all i, j = 1, , m. Then

(4.1) J(x) = \ {P{t)x\t) + [2Qί(ί)4i(ί)]aj(ί) + R^x^x^dt

defines a quadratic form J on ^f. The associated bilinear form is

(4.2) J(x, y) = \ {Pxy + QA^Vi + *iV) + RiAyJdt .
JT

Let

(4.3) ω(t, x, x) - -^-(Px2 + 2Q&X + RiAfy) .

Then
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J(x,y) =

= l (ω
y
x + cύy.xjdt = /(ΐ/,

for each a; e ^ # e ^%1 The quadratic form J can be written

(4.4) J(x) = K(x) + R(x)

where

(4.5) K(x) = (

(4.6)

are quadratic forms on
It is further assumed that P,QU , Qm are bounded on T. Then

(Theorem 5.1, [7]), K is w-continuous on ^f. Further, thefunctions
Ri3 are assumed continuous on T, with the strong Legendre condition

(4.7) Λ< i(ί)«y>0 ί e f

holding for each m-tuple ζ Φ (0, « ,0). Accordingly i? is positive
definite on j ^ and hence (Theorem 8.1, [9]), the quadratic form J is
a Legendre form on jzf.

Let & be a linear manifold in £$f. A function sc e £%f is said to
be J-orthogonal to & if, for every 3/ e ^ J{x, y) = 0. The set of all
such x is called the J-orthogonal complement of ^ denoted by ^ t Γ .
There may exist one or more x e ^ which are /-orthogonal to . ^ ,
i.e., xe & f)&J. A function a? having this property is called a J-
null vector of ^ . The set of J-null vectors of έ% is denoted by
^ 0 . Observe /(a?) = 0 on ^ 0 . The nullity of J on ^ is the dimen-
sion of the submanifold ^ 0 of ^ The index of J on ^ is the
dimension of the maximal linear submanifold & on which J{x) < 0.
The following basic theorem is proven in [7].

THEOREM 4.1. J is of finite index and nullity on s*f. If & is
a subspace of J ^ L(x) a linear form (functional) on έ% such that
L(x) = 0 on the submanifold of J-null vectors of &, then there exists
a function y e & such that L(x) = J(x, y) on έ$. The fuction y can
be chosen orthogonal to the submanifold of J-null vectors of ^ and
if so chosen is unique.

5. Extremals of J. Let x be a function in έ%f such that

J(x, y) - ^τ(ω*y + ωφ)dt = 0
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holds for every y e j ^ , i.e., x is J-orthogonal to the subspace
From the Divergence Theorem and the fact that C~(T) is dense in

it follows that

r r

ωτdt(5.1) ( ωi.lidσ = \

holds for almost all intervals and spheres R whose closure lies in T.
Eq. (5.1) is the Euler equation for the functional J on £(?. A func-
tion x e ̂ f such that Eq. (5.1) holds for almost all intervals and
spheres with the stated property is called an extremal of J.

Accordingly the linear manifold of extremals of J is just Jzfj, the
J-orthogonal complement of j ^ : The submanifold j^J of J-null vectors
of j y is the class of extremals of J which vanish on T*. In view
of Theorem 4.1 this submanifold is finite dimensional.

With additional hypotheses on the coefficients the usual differen-
tial equation characterization of extremals is obtained. First, if the
functions Ri3 and Q{ are of class C\T) and PeC(T), and if it is
known that the extremal x is of class C2(T), then the Euler equation
(5.1) is equivalent to

(5.2) E(x) = tfate
otiv ot

holding in T. Eq. (5.2) is the Euler equation associated with J as
usually written. The differential operator E appearing in Eq. (5.2)
may be referred to as the Euler operator. Under the preceding hypo-
theses it is an elliptic operator.

In order to insure that the extremal xe S^f is of class C2(T) still
further hypotheses are placed on the coefficients. The following is a
special case of Sobolev's theorem as given by Friedrichs ([6]). Let p
be an integer, p > m/2 + 2. In addition to the previous requirements
assume the functions Riό and Q{ are of class CP(T), and let PeCp~ι(T).
Then if x e ^ f is an extremal, xeC2(T). Henceforth it is assumed
that the coefficients satisfy these additional requirements. Thus x is
an extremal of J on T if, and only if, xe<^ f) C\T) and Eq. (5.2)
holds on T. From Theorem 4.1 it follows that there are at most a
finite number of linearly independent solutions of the Euler equation
(5.2) which vanish on the boundary. The dimension of the submanifold
of such solutions of (5.2) is the nullity of the form J on

6. Focal points of J. Index theorems. In order to apply the
theory of indices given in [7] there is considered in subsequent sections
a one parameter family {j%f(X)} of subspaces of j ^ where the real
parameter λ is restricted to an interval λ' ^ λ ^ λ". The family
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has the following properties:

(a) J^(λ') has as its sole member the function which is

zero everywhere in T, and j^(λ") = j y ;

(b) if λx, λ2 are such that λ' <: X, < λ2 <; λ", then

(6.1) (c) if λ0 is a value such that λ' <̂  λ0 < λ", then

XQ \ ΛJ ^^ X J

( d ) if λ0 is a value such that λ' < λ0 <; λ", then

X ^ X <C Xn

For each λ, λ' ^ λ ^ λ", the symbols c(X), v(X) denote, respective-
ly, the index and the nullity of J on jy(λ). Observe that the index
c is an integer valued function, monotone nondecreasing with increas-
ing λ on the interval. Moreover c(Xf) — 0, £(λ") = ca, the index of J
on jy: In general rα Φ 0, so that there exist one or more values λ0

(though but a finite number of such values) in the interval at which
c is discontinuous, with jump

c(λ0) = ;(λo + ) - c(X0-) > 0 .

Such a value λ0 is called a focal point of J relative to the family
{J^(λ)}. The value c(λ0) is termed the order of λ0 as a focal point.
In virtue of property (d) in (6.1) the left hand limit c(XQ —) = c(XQ),
λ' < λ0 ^ λ" (see [7], §16). The value r(λ" + ) is defined to be ca.
The following theorem, a restatement of results established in [7], is
applied in the sequel.

THEOREM 6.1. Let {Ssf(X)} be a family of subspaces of Stf having
the properties (6.1). Then, for Xf ^ X < λ", the order c(X) of a focal
point of J relative to {Ssf(X)} is the dimension of the maximal sub-
manifold ^(X) of j^0(λ) having the property that no nontrivial
function in ^ (λ) is J-orthogonal to a subspace J^(\), XL > X. In
the event the family {Ssf{X)} has the additional property that, when-
ever λ:, λ2 are values such that Xf ^ Xλ < λ2 g λ", there exists no
nontivial function in Ssf which is J-orthogonal to both J%f{X^) and
J^(λ2), then c(λ') = c(λ") = 0, and for X' < λ < λ", the order c(X) =
v(X), the nullity of J on

7* Conjugate surfaces in 7\ Assume that there has been con-
structed a one parameter family {T(λ)} of subsets of T, defined for
λ' ^ λ ^ λ", having the following properties:
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(a) T(λ') consists of a point of Ω, or else has m —

dimensional measure zero, while T(λ") = T

(b) T(X) is a region of class J3, λ' < X ^ λ"

(c ) if λi, λ2 are such that λ" ^ λj. < λ2 < λ", then

c Γ(λ2); and T*(\) Π Γ(λ2) is not empty :

(7.1) ( d ) if λ0 is value such that λ' <: λ0 < λ", then

T(λ0) = Π T(X) λ0 < λ ^ λ"

(e) if λ0 is a value such that λ' < λ0 ^ λ", then

T(λ0) = ΣT(X) λ' ^ λ < λ0 .

Examples of families of sets which have these properties are given
subsequently.

THEOREM 7.1. Let {T(X)} be a family of subsets of T having
properties (7.1). Define the family {J^(X)} of subsets of j& as
follows:

( i ) jy(λ') is the set whose sole member is the function which
is identically zero on T, and J^(λ") = s/\

(ii) If X is such that λ' < X < λ", the J^(X) is the set of all
having support set Sx contained in T(X).

Then the family {J^(X)} is a family of subspaces of S?f for
which the properties (6.1) hold.

Proof. Let λ0 be a fixed but otherwise arbitrary value, λ'<λ o<λ".
It is readily verifiable that J^(λ0) is a closed linear manifold in s^.
Let <βέ?(T(X0)), j^(T(λ0)) refer to, respectively, the Hubert space, and
the subspace of £έ?(T(X0)) composed of functions vanishing on Γ*(λ0).
Recall J^(T(XO)) is characterized as being the subset of all x e <%?(T(X0))
which when extended to vanish identically on c(Γ(λ0)), belong to
It follows that J^(λ0) is just the subspace j^(T(λ0)). For, if x e
then x restricted to T(X0) belongs to £έ?(T(X0)), while if x is extend-
ed to Ω by setting x(t) = 0 on c(Γ(λ0)), then x e ^f{Ω) since
Thus ^GJ/(T(λ0)). On the other hand

= C0°°(T(λ0)) c

To show that property (c) of (6.1) holds, let λ0 be fixed, λ '^λ o <λ".
If xe J^(λ0), then the support set

Sx c Γ(λ0) c Γ(λ)

whenever λ0 < X ^ λ". Hence

x e Πj^f(x) λ0 < λ ^ λ" .
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On the other hand, suppose x belongs to the intersection of the sub-
spaces jy(λ), for λ0 < λ ^ λ". Then whenever λ0 < λ ^ λ", S,cΓ(λ), so

SxczΠT(X) = Γ(λ0)

and hence xej^f(X0).
To establish property (d) of (6.1), let λ0 be a value such that

λ' < λ0 rg λ". Then it is clear from definitions that

where the union is over all subspaces j^ (λ) for which λ' ^ X < λ0.
On the other hand, as noted above,

= Co°°(Γ(λo)) .

Let xeC~(T(k0)), so the support set S xcΓ(λ 0). Now there must exist
λx, λ' < Xx < λ0, such that

Sx c T(XX) c Γ(λ0) .

For, if not, a sequence {λj exists such that λ' < Xp < λp+1 < λ0, p =
1,2, •••, and λ̂  —>λ0, and there exists a sequence {£j of points such
that tpeSxf] c(T(Xp)), p = 1, 2, - , and tp -> tQ e Sx. The sequence {tp}
has the property that given a value λ, λ' < X < λ0, there exists an
integer qλ such that tp e c(T(X)) whenever p>qλ. Accordingly t0 e c(T(X))
for λ' ^ λ < λ0, and hence

toeΠc(T(X) = c(ΣT(X)) = c(T(X0))

where the intersection and union are taken for X such that λ' ^ λ < λ0.
This is a contradiction in view of toeSx, and SxczT(X0). Thus a
value λx having the stated property must exist, and so a; e J/(λ a ).
Accordingly

for λ' ^ λ < λ0, and so

c Σs^(x) c jy(λ 0 ) .

The following are examples of families of sets {T(X)} which have
the properties (7.1).

EXAMPLE 1. Let toeΩ be fixed, and let T(λ) denote the interior
of the sphere 11 — t0 \ = λ, for 0 < X ^ r, r a fixed positive number.
Let T(0) - {t0}, T={t:\t-to\<r}.

EXAMPLE 2. Let Γ be a given interval (α, b) having positive
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measure, and let λ denote length measured along the diagonal joining
the points a and ί>, where λ" = | b — a |. Let ck denote the k-th direc-
tion cosine of the line joining a to b. Let

T(X) = (a, a + λc) 0 < λ ^ λ"

while T(0) = {α}.

EXAMPLE 3. Let T = (α, 6), and let ί0 denote the center of T.
Define the family {T(X)} for 0 < λ ^ 1 by

= [to - —Ψ - a), to + — (b-a)

and let T(0) - {t0}.

EXAMPLE 4. Let S denote an interval (α, b) of positive measure,
and let t0 be a point on the boundary S*. Let V denote a hypercube
(t0 - h/2, t0 + h/2), where h > 0 is fixed. Let T be the union of S
with V. Let {S(λ)} be the family of expanding subsets constructed
for the interval S in the same manner as for the interval in Example
2, for 0 ^ λ ^ λ", where λ" = | b - a\. Let {F(λ)} be the family of
cubes

F(λ) = (to - - ^ - , ί0 + -^-) 0 < λ ^ 1
V 2 2 /

centered about the point t0, and let F(0) = {t0}. Define the family
{T(λ)} of subsets of T by

T(λ) = S(X) 0 ^ λ ^ λ"
= S u F ( λ - λ") λ" ^ λ ^ λ" + 1 .

Instead of expanding to fill S and then T, one can have the family
of subsets (T(λ)} expand to fill V first, then Γ. Alternatively one can
have the family {T(λ)} expand into both sets simultaneously if

T(0) - {t0} T(λ) - S(λ) U F(λ/λ") 0 < λ ^ λ" .

In any case the desired properties (7.1) hold.
The following theorem shows that there exists a wide class of

families {T(λ)}, each of which have the properties (7.1). The proof
follows from the fact that closure and inclusion properties of sets is
preserved under the transformations considered.

THEOREM 7.2. Let T be a region of class B, and let (T(λ)) be a
family of subsets of T having the properties (7.1). Let S be the
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image of T, S(λ) the image of T(λ), λ' ^ λ <̂  λ", under a continuous
one-to-one transformation which is such that the transformation and
its inverse satisfy a uniform Lipschitz condition on every compact
subset of their respective domains. Then the family {S(λ)} has the
properties in (7.1) relative to the set S, which is a region of class B.

With the foregoing in mind one can relate the index theory given
in [7] to the notion of conjugate surface for the Euler equation as
follows. Assume that Eq. (5.2) has the following weak unique con-
tinuation property: if Tι is a region of class B, T1cz T, and if x is a
solution of the differential equation in T which vanishes identically
on T — T19 then x vanishes identically on T. Now let u be a non-
trivial solution of Eq. (5.2) on such a region Tx and suppose u vanishes
on the boundary T*. Let y be the extension of u to T such that
y(t) = 0 on T - Tλ. Then y e s^f but y £ s^. For if y is a /-null
vector of jzf, then y is a solution of Eq. (5.2) on T. But then y
vanishes identically on T. Hence u is identically zero on TΊ, contrary
to the supposition. Thus y cannot be a /-null vector of s$f. However,
since y restricted to 2\ is an extremal on Tl9 it must be J-orthogonal
to the subspace Ssf{Tx). Observe y is a J-null vector of jy(2\), but
not of any subspace jzf(S) where Sz) 2\.

The index ca of / on Ssf is given by the dimension of a maximal
submanif old cέ? of Sxf on which J(x) ^ 0 and which contains no non-
trivial /-null vector of s$f. In view of the preceding paragraph and
the fact that J(y) = 0 it is seen that y belongs to such a submanif old
^. Thus ca ;> 1. A conjugate surface (of the Euler equation) is the
boundary of a region of class B on which there vanishes a nontrivial
solution of the Euler equation. Accordingly T* is a conjugate sur-
face. The existence of another conjugate surface T? distinct from
T*, where T2z>T19 leads to the conclusion that the index ca >̂ 2.
These properties are analogous to those given for one dimensional
problems in the calculus of variations.

The results given by Cordes ([5]) together with the smoothness
assumptions stated in § 5 for the coefficients and the strong Legendre
condition imply that Eq. (5.2) has the weak unique continuation pro-
perty. Another result of this type is given by Aronszajn ([1]) and
Calderon ([2]).

THEOREM 7.3. Assume the coefficients in Eq. (5.2) have the pro-
perties stated heretofore. Let {Γ(λ)} be a family of subsets of T
having properties (7.1), and let {J^(λ)} be the corresponding family
of subspaces of S?f given by Theorem 7.1. Then

(a) a value λ, λ' < λ < λ", is a focal point of J relative to the
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family {J>sf(X)} if, and only if, T*(λ) is a conjugate surface; more-
over λ' and λ" are not focal points;

(b) there are at most a finite number of conjugate surfaces in
the family {T*(λ)};

(c) if Xj is a focal point, then the order c(Xj) is v(Xj)9 the nul-
lity of J on the subspace j^f(Xό), and this is just the number of
linearly independent solutions of Eq. (5.2) which vanish on T*(Xά)9

in the maximal set of such nontrivial solutions;
(d) there exists a least focal point λ x>0 in the interval λ '<λ<λ",

so that for X' <£ λ < λx the index e(X) = 0 and v(X) = 0;
(e) let λ1? •• ,λiV. be the focal points arranged in order of in-

creasing magnitude, with respective orders v(Xό),i = 1, •• ,iV, then
the index of J on s^ is

N

(7.2) ca = Σ y(λ,) .
5 = 1

Proof. Since Eq. (5.2) has the requisite properties an argument
exactly like that used above shows that whenever X19 λ2 are values
such that λ' < λx < λ2 ^ λ", then there exists no nontrivial functions
in S/ which are J-orthogonal to both J^(λJ and J^(λ2). Hence by
Theorem 6.1 the order of a focal point X3 is exactly the nullity v(X3 )
of J on J^f(Xj). Clearly λ' is not a focal point. One sets *(λ" + ) =
^(λ"), so λ" is not a focal point. There are but a finite number of
focal points in the interval λ' < λ < λ". If λx is the least, then
y(\) = 0 for λ' ^ λ < x19 so c(x) = 0 on that subinterval.

It is noted that the index ca given by Eq. (7.2) is the same for
every choice of a family {Γ(λ)} of expanding subsets of T having
properties (7.1).

8. Oscillation and comparison theorem* The following theo-
rem is a corollary of Theorem 7.1, [9]. It is observed that the proof
does not depend on the weak unique continuation property assumed
above for Eq. (5.2).

THEOREM 8.1. There exists an ε > 0 such that if S is a region
of class B, Sd T, with the diameter of S at most ε, then J(x) > 0
holds for all nontrivial xe,S^(S). Accordingly there are no con-
jugate surfaces contained in S.

Proof. If S is a region of class B,SaT, then each x
is extended to vanish identically on c(S), and J^(S) is a subspace of
jzf. Thus, in virtue of the theorem cited, there exists an ε > 0 and
an h>0 such that if S c Γ and the diameter of S is at most ε, then
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J(x) ^ h || x\\2 holds on j^f(S). Suppose S? is a conjugate surface
contained in S. Let u be the corresponding nontrivial solution of the
Euler equation on Sx which vanishes on S*. Let y be the extension
of u which vanishes on c(S^ Then i/GJ/(S), and moreover

J(y) = \ (ωyy + ωφ)dt = \ (ωu
J S J S±

u + (o^ύ^dt = 0 .

Hence y is the trivial function on S, and so u is the trivial solution
on Su contrary to the assumption. Thus there are no conjugate sur-
faces within S.

The following theorem is a consequence of Eq. (7.2) and the fact
that if J(x) ^ 0 holds on szf, then the index ca = 0.

THEOREM 8.2. // J(x) ^ 0 holds on szf, then there are no con-
jugate surfaces properly contained in T.

COROLLARY 8.3. In addition to the assumptions of the strong
Legendre condition and smoothness conditions made heretofore let
P(t) > 0 on T. Then no solution on T of the differential equation

oscillates in T in the sense that there exists no conjugate surface
properly contained in T.

Theorem 8.4 is a consequence of Theorem 16.3 [7], and the dis-
cussion in § 7.

THEOREM 8.4. Let

J*(x) = \ {P*{t)x2 + 2Qt(t)xxi + R^&iX^dt

(i, j == 1, 2, ' , m) be a quadratic form on £$f having suitable coeffi-
cients P*(t),Q?(t), R*j(t) such that the properties of J hold also for
e7*. Moreover, suppose that

J*(x) ^

holds for all vectors x e jzf. Let

(8.1) E*(x) = JL(R*Jp)-χ(p* - Σ^L) = 0
Oti \ Otj / V i-l Otj J

be the Euler equation corresponding to J*. Let {T(λ)} be a family
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of subsets of T having the properties (7.1). Then the theorems on
focal points and conjugate surfaces hold for Eq. (8.1). Let T*,
2Y, •••, T£, be the distinct conjugate surfaces of Eq. (5.2) ordered
according to the increasing and distinct focal points of J in the in-
terval, and let Tf, T*', •••, T£* be the distinct conjugate surfaces of
Eq. (8.1) ordered according to the increasing and distinct focal points
of J* in the same interval. Let Tr, r — 1, 2, , JV, be the member
of the family {Γ(λ)} having as its boundary T* and let T'r1 r =
1, 2, , N*, be the member of the family {T(X)} having as its bounda-
ry T*'. Then Tra T'τ, r = 1, 2, . . . , N*. If J*(χ) > J(x) holds for
all nontrivial functions x e j ^ then Tra T'r, r = 1,2, , N*.

Order relations between the conjugate surfaces stated in the con-
clusion of Theorem 8.4 hold for the conjugate surfaces of the differen-
tial equations

(8.2) E(x) - A
ot

(8.3) E*(x) = A (RZ-ZΓ) - P*(t)x = 0
oti ^ otj /

provided the operator E is strongly elliptic and

(8.4) R

holds for each ξeΩ, and P*(t) ^ P(t) and for each teT. If strict
inequality holds for some t e T in at least one of these inequalities,
then the proper inclusion of the conjugate surfaces T* in T'r hold,
for r = 1, •-., JV*.

If, in Eq. (8.2), P = P(t, μ), μ a real parameter, and is monotone
strictly increasing with increasing μ, for each teT (for example if
P(t; μ) — P^t) + μ), then the proper inclusion of conjugate surfaces
holds for the equations

where μ* > μ.

9. Examples* In order to illustrate some of the results of the
preceding sections the special case

(9.1) J(x) = \ {Xi&i - μx2}dt
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is considered, where μ denotes a constant. The corresponding Euler
equation is

(9.2) Ax + μx = 0 .

As a first case let T be the open interval (0, b) in Ω. The class
of extremals is the class of solutions of Eq. (9.2). If x is an extre-
mal, then the J-orthogonality

{XiVi - μxy}dt = 0
0

holds for every i / e j / ; moreover x(t) is analytic on (0,6).
The class j ^ 0 of J-null vectors of j y consists of all solutions x(t)

of the problem

/Q ox Ax] + μx = 0 in (0, b)

x = 0 , ί e T* .

There are at most a finite number of linearly independent solutions
of this problem. Separable solutions of Problem (9.3) are of the form

(9.4) χ = ^ ^
*=i bk

where the set (nί9 •••,?&») of positive integers satisfy the equation

(9.5)

The set of functions of the form (9.4) spans the class j^J of J-
null vectors of jzf. There is but a finite number v of linearly inde-
pendent functions of this type, and the number v is the nullity of J
on sf. For if x is a function of the form (9.4) with positive integers
satisfying (9.4), then xe s$f0. Since the nullity of J on j ^ must be
finite, there are at most a finite number of linearly independent func-
tions of this type. Suppose now that x e j^ζ, and let the Fourier
series for x(t) in T be

oo m

X(t) = Σ CLPl:.pm Π
PV->Pm = 1 fc:=1

Since x must satisfy Eq. (9.2),

Σ a

Pl-p
PV'>Pm=1

holds on every closed set in T. Hence whenever aPl...Pm Φ 0, then the
set {Pj} of positive integers must satisfy
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y π2

There are but a finite number of distinct sets {p,} of positive integers
which satisfy this last relation. Thus x(t) must be a finite linear
combination of functions of the type (9.4). The number v of linearly
independent functions of this type in a maximal set is the nullity of
/ on sf. In fact the nullity of J on jzf is given by Λf, where M
denotes the sum of the counts of all distinct sets (pί9 , pm) of posi-
tive integers which satisfy (9.5). A set (p19 * ,pm) is counted ml/rl
times whenever it has r of its elements alike.

Let I denote the length of the diagonal from 0 to the point b.
Define the family {T(X)} of subintervals by T(λ) = (0, Xb/l), 0 < X < I.
Let {j^(λ)} be the corresponding family of subspaces of j ^ A func-
tion x is a J-null vector of Sϊf(X) if and only if x is a linear com-
bination of functions of the form

*=1 Ck I

with (ply * ,pm) a set of positive integers satisfying

There is a set X19 , XN of values λ in the interval 0 < λ < £, such
that for each λ̂  there exists at least one set (ply * ,pm) of positive
integers satisfying (9.6). These values λ, of length along the diagonal
are the distinct focal points of J relative to the family {jy(λ)}. The
corresponding intervals (0, Xjb/l) have boundaries which are the dis-
tinct conjugate surfaces Γ*(λy) of J in T. Let M(Xj) denote the sum
of the counts of sets (plf « ,pm) of positive integers satisfying (9.6)
with λ replaced by XJf the count being made as indicated previously,
for j = 1, , N. Then the index of J on sf is

Consider now the equation

(9.7) Ax + P(t)x = 0

where PeCp~\T), p > m/2 + 2, and also bounded and integrable on
(0,6). Let Xx, « , λ v be the distinct focal points of J relative to the
family {T(λ)} of subintervals of T. Suppose P(t) ^ μ,teT. Then there
are values λ[, λ£, , X'N, of lengths along the diagonal in 0 < λ < I,
such that for each λj there is at least one solution x of Eq. (9.7) in
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the subinterval (0, X'jb/l) which vanishes on the boundary of the sub-
interval; moreover

[0, X'fill] c [0, Xάl

If P(t) > μ,

[0, X'jb/l] c (0, Xjb/l)

j = 1, 2, , N. Let v(X'j) denote the number of linearly independent
solutions of Eq. (9.7) which vanish on the boundary of (0, X3b/l), j =
1,2, ...,iV'. Then

C = Σ »(K) > Σ M(xm) = ca
3=1 3=1

where the numbers M(Xd) are those described in the preceding para-
graph.

For a different example, let T be the interior of the circle of radius
R about the origin, and let m = 2. Separable solutions of Eq. (9.2)
in polar coordinates which are single valued in T are of the form

x = Jp(μr)[c1 cos pθ + c2 sin pθ] ,

where c l f c2 are constants, p = 0,1,2, •••, and Jp is the Bessel function
of the first kind of order p. The class j^J of /-null vectors contains
no nontrivial functions unless μR > tOί, where toι is the first zero of
J0(ί), and in any case the nullity will be either zero or one. Let T(X)
be the interior of the circle of radius X about the origin, for 0 <̂
λ ^ R. Then Γ*(λ) is a conjugate curve if and only if

Jp(μX) - 0

for some p = 0, 1, 2, . Let Jo, Jx, , Jp be the Bessel functions
of integral order which have at least one zero in the interval 0<X<μR,
and let vq be the number of zeros of Jq(t) in this interval, for q =
0,1, •••,#>. Then the index

i = y v
q=ϋ

This value will be the same for any mode of expansion in sets {T(λ)}
having properties (7.1).
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