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A NOTE ON p-SPACES AND MOORE SPACES

D. K. BurkE AND R. A. STOLTENBERG

In this note we investigate p-spaces and their relationship
to Moore spaces. Specifically, it is shown that among p-spaces
Moore spaces are equivalent to semi-metric spaces and spaces
with a o-discrete network, A certain class of p-spaces, called
strict p-spaces, is given an internal characterization and this is
used to show that a pointwise paracompact p-space with a
point-countable base is a pointwise paracompact Moore space.

1. Developable p-spaces. Let us first discuss some of the defi-
nitions and basic concepts which will be used throughout this paper.
Unless otherwise stated, all topological spaces are assumed to be T,
and regular. The set of positive integers will be denoted by Z*.

A sequence {%,}:> of open covers of a space X is called a develop-
ment for X if for any x € X and any open neighborhood O of x, there
is an integer m e Z* such that Si(z, %,) = U{Ue Z,:xcU}CO. A
regular developable space is a Moore space.

By Arhangel’skii [1], a completely regular space X is called a »-
space (plumed space) if in its Stone-Cech compactification B(X) there
is a sequence of families {7,};”, where each v, is a collection of sets,
open in AB(X), which covers X and satisfies: For each ze¢ X,

= St(x, 7, & X. The sequence {v,} is called a pluming for X in
B(X). A space X is called a strict p-space if it has a pluming {v,}7
with the following additional property: For any xz e X and any n e Z*
there is n(x) € Z* such that St(x, 7,.) S St(x,v,). In this case we call
{7.}7 a strict pluming. The class of p-spaces includes all metric
spaces, locally compact spaces and completely regular Moore spaces
(see [1], [2]).

A collection . &2 of subsets of a space X is called a network for X
if for any open set O X and x €O there is a set Pe & such that
xe P=O.

Let X be a topological space and d a real valued nonnegative
function defined on X x X which satisfies: For z,ye X

1) d(x,y) = 0 if and only if x = y;

(2) d(=,y) = d(y, 2).

The function d is called a symmetric [2] for the topology on X provided:

(3) A< X is closed in X if and only if d(x, A)=inf{d(x,z):2€ A} >0

for any xe X — A.
The function d is called a semi-metric [9] for X provided:

(3) For AS X, xc A if and only if d(x, 4) = 0.

It is clear that a semi-metric space is a symmetric space and it can
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easily be shown that a symmetric space X is a semi-metric space if
and only if X is first countable. In [2] there is an example of a
symmetric space which is not semi-metrizable. Aso, for later use,
we note that open or closed subsets of symmetrizable space are sym-
metrizable and that compact symmetrizable spaces are metrizable [2].

In [2] Arhangel’skil defines a space X to be o-paracompact if for
any open covering % of X there is a sequence {%,}7 of open covers
of X such that for any x e X there is n(x) € Z* and some Ue % with
St(x, Z») & U. Later, we give sufficient conditions for a space to
be o-paracompact and show that this property is enjoyed by a large
class of topological spaces.

The following theorem, which is the main result of the section,
answers some questions posed by Arhangel’skii in [2].

THEOREM 1.1. For a completely regular space X the following
are equivalent:

(a) X has a development.

(b) X is a p-space with a o-discrete network.

(¢) X is a semi-metrizable p-space.

(d) X is a symmetrizable p-space.

The following propositions are used to assist in the proof of
Theorem 1.1.

ProrosiTiON 1.2. If X s a topological space with the property
that every open cover of X has a o-discrete refinement, then X 1is
g-paracompact.

Proof. Let Z be any open cover of X and suppose that .&° =
Us., &2, is a o-discrete refinement of 7 with each &7, a discrete
collection. We may assume the sets in & are closed. For each Pe &
pick a set U(P)e % which contains P. For each n € Z* we define an
open cover 7%/, as follows: If x e X and x e P for some Pc &7, define
Ufx)=UP)N[X — U{P:PeR,x¢P}. If v¢ U{P:PecA}, let
UJx) =X — U{P: Pe &#}. Then %, = {U,(x): x€ X} is an open cover
of X for each meZ*. It is clear that xe Pe.&?, implies that
St(x, #,) = St(P, Z,) = U(P). Since every xe€ X is is some element
of &7, it follows that X is o-paracompact.

McAuley [7] has shown that in a semi-metric space every open
cover has a o-discrete closed refinement.

COROLLARY 1.3. Amny semi-metric space 1S O-paracompact.

The next corollary follows immediately from Proposition 1.2 and
the definition of a o-discrete network.
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COROLLARY 1.4. Any topological space X with a o-discrete
network is o-paracompact.

LEmMMA 1.5. If X is a p-space and x € X such that {x} is a G,
set in X then x has a countable neighborhood base.

Proof. Let {7v,}):> be a pluming for  in B(X) and suppose {x} =
N:-.G,, where G, X is open in X. For each ne Z* there is a set
G, open in B(X) such that G,=XNG,. It follows that {x} =
Ne-. G.l1n [N, St(x, 7,)]. Thus {z} is a G; set in B(X) and must
have a countable neighborhood base in B(X) since B(X) is compact.
This neighborhood base relative to X will give a neighborhood base
for x in X.

ProPoOSITION 1.6. A symmetrizable p-space X is semi-metrizable.

Proof. By our previous remarks it suffices to show that X satis-
fies the first axiom of countability and for this it is enough to show
that each point xe€ X is a G, subset of B(X). Assume {v,}7 is a
pluming for X in B(X); then for each ne Z+ there is a B(X) open
neighborhood of z, say U,(x), such that U,(x) & St(z,7v,). Let C =
Nz, U.(@) S N, St(z, v.) S X. Then C is a closed compact set in X
since it is compact in B(X). Recall that a closed subset of a symme-
trizable space is symmetrizable and a compact symmetrizable space is
metrizable. Thus C is metrizable and there is a sequence {N,(x)}; of
open sets in B(X) such that {C N N,(x): n e Z*} is a neighborhood base
at « relative to C. Clearly {x} = [N U.(@)]N[Ns= N.(2)]; so the pro-
position is proved.

ProprosiTION 1.7. A p-space X with a o-discrete metwork is
semi-metrizable.

Proof. Since X has a o-discrete network it is clear that all closed
sets, and in particular singleton sets, are G, sets. By Lemma 1.5 X
is a first countable space with a o-discrete network and consequently
is semi-metrizable by a theorem of Arhangel’skii [2].

ProrosiTION 1.8. A space X with o development {Z/,}T has «a
o-discrete network.

Proof. A developable space is semi-metrizable and thus each %,
has a o-discrete closed refinement <Z,. It is easy to show that
Uz, 2, is a o-discrete network for X.
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Proof of Theorem 1.1. Since a completely regular Moore space
is a p-space, Propositions 1.7 and 1.8 show that (a) implies (b) and
(b) implies (¢). That (c¢) implies (d) is obvious, so all that remains
is to show that (d) implies (a). If we assume condition (d), then X
has a semi-metric d by Proposition 1.6 and is also o-paracompact by
Corollary 1.3. Let {v,} be a pluming for X in B(X). For each
xe X let S,(x) be a neighborhood in B(X) such that S,(x) N X = S,(x),
where S,(x) = {y e X:d(x, y) < 1/n}. Keep in mind that the collection
{S.(®): me Z*} is a base (not necessarily open) for the neighborhood
system at x in X. For each xe X let U,(x) be a neighborhood of x
in B(X) such that U,(x) S S,(x) and such that the family {U,(x): « € X}
refines v,. Let ' (n) = {U.(x) N X:xe X}. Now, since X is o-para-
compact, for each n e Z* there is a sequence {Z/,.(n)}5-, of open covers
of X that has the following property: For x e X, there is m(x)e Z*
and Ue % (n) such that St(x, Z.)(n)) S U. We may assume %, .,(n)
refines Z/,(n) for each me Z*. Finally, for ne Z+ let &, be an open
cover of X such that &, refines each Z/,(t) fors < n,t < mand <&,
refines &°,. We show that the sequence {<,};_, is a development for
X. If xe X is fixed and k is any positive integer, than there is some
z,€ X and m, € Z*,n, = k such that St(z, %, (k)< Uz) N X. So
St(x, & .,) S St(w, Z,, (k) S Uyx,) N X. We may assume 7., > n,; SO
that St(x, =, )< St(x, &,,). Suppose O is any neighborhood of z,
open in X, and O’ is a set open in B(X) such that O = XN 0O'. If
N, U(x,) is not contained in O’ for any m e Z*, then

oo

m=1

is a decreasing sequence of nonempty closed sets in B(X) and hence
Ni= Ui(x,) — O+ @. Now

AT@) <[ A ste, w0 N[ Asied |s X[ sien | = A s

Hence y € Ni=: Uu(x,) — O’ implies that y € N7, S.(x:) and so it follows
that {x,}7 —y. But also {x;}i"— «; so x = y which is a contradiction.
So there is a positive integer m such that N, U.(z,) S O’. It follows
that St(z, Z, ) S N St(x, <,,) S [N~ Uk(z)]N X=0'N X = 0. Hence
xre St(x, <, )<= O and the theorem is proved.

COROLLARY 1.9 (Arhangel’skit). A collectionwise normal p-space
with a symmetric (or with a o-discrete network) is metrizable.

2. A characterization of strict p-spaces.

LEMMA 2.1. A pointwise paracompact p-space X has a pluming
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{v.}r wm B(X) which satisfies:
(a) FEach v, 1s point-finite at points in X;
(b) For each xe¢ X and ne Z*, St(x, V,+1) S St(x, 7,).

The proof of Lemma 2.1 is straightforward and is omitted.

The next theorem gives an internal characterization of strict p-
spaces; that is, strict p-spaces are defined without use of the compacti-
fication B(X). In some cases this characterization has proved to be
more useful than the original definition.

THEOREM 2.2. A completely regular space X is a strict p-space
iof and only if there is a sequence {Z,)p-, of open covers of X
satisfying:

(a) P, =N St(z, &,) is a compact set for each xec X;

(b) The family {St(x, Z,): n € Z*} is a meighborhood base for the
set P,.

Proof. If X is a strict p-space, there is a strict pluming {v,}
for X in B(X) where we may assume that v,., is a refinement of 7,.
Let P, =N, Stx,7,.)=Ni=:Stx,7,) and &, ={GN X:Ge",}. Clearly,
P, is a compact subset of X and P, = N, St(z, &,). To show that
{St(x, =,): ne Z+} is a neighborhood base for the set P,, let U be any
open set in X which contains P, and let U’ be an open set in B(X)
where U= XN U’. Now if the set N;..St(x,v,) — U’, which is
closed in B(X), is not empty for any nec Z+* we have (g, St(x, v:)—
U’ + ¢. This is impossible; hence there is a positive integer » such
that N_.St(x,7,)S U’. Since St(z,Z,)=St(x,7,) N XS[Ni=.St(z, 7)1 NX
it follows that P,< St(x, ©,) & U.

Conversely, suppose {Z,}:., is a sequence of open covers of X
which satisfies (a) and (b). Let v, be the collection of all sets G’
open in B(X) such that G’ N Xe &,; we will show that {v,}7., is a
strict pluming for X in B(X). Letxe X,yeB(X)— X,neZ" and O
be an open set in B(X) with P, 0<0 < St(z, v,) N [B(X) — {y}]. By
assumption there is an integer »’ € Z* such that P,=St(x, <,) S onX.
But St(z, <,.) = St(z, 7,) N X which implies that St(x,v,) — O is an
open subset of B(X) — X and therefore must be empty. So
St(x, v,) S0 <= B(X) — {y} and y was an arbitrary element of 5(X)—X.
Hence N, St(x, v,) = X and {v,}7_, is a pluming for X. We also have
St(x, v,,) S O = St(x, 7,); so St(x,7,) < St(x,7,). Thus {v,};_, is a strict
pluming for X.

REMARK 2.3. (a) Notice that if the sets P,, as in Theorem 2.2,
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are singleton sets, then sequence {Z,} is actually a development for
X. (b) If {&,};, is a sequence of open covers satisfying (a) and (b)
in Theorem 2.2, the following is easily verified: If xe X and {z,}5, is
any sequence of points in X such that z, € M-, St(x, &;) for each n e Z+,
then {x,}5_, has a cluster point in P, = N, St(x, &,).

ProposiTION 2.4. If X is a pointwise paracompact p-space, then
there ts a sequence {<,}7 of point-finite open covers of X satisfying:

@ P,=Ny-.St(x, Z,) is a compact set for each xe X;

(b) The family {St(x, &,): ne Z*} is a neighborhood base for the
set P,.

Proposition 2.4 follows from Lemma 2.1 and the proof of
Theorem 2.2,

LEMMA 2.5, If <Z is a point-countable collection of subsets of
a space X and AS X, then the family of all minimal finite covers
of A with elements from <& is countable.

LEMMA 2.6. A topological space X is semi-metrizable if and only
if at each point x € X there is a decreasing open mneighborhood base
{U.(2)}7-, such that the following s true: If {x,} is any sequence of
points in X and ye X such that ye U, x,) for each neZ*, then
{@, )7 — .

Lemmas 2.5 and 2.6 are used in the proof of Theorem 2.7. Lemma
2.5 can be found in [4] and Lemma 2.6 in [6]. Theorem 2.7 generalizes
a result due to Filippov [4].

THEOREM 2.7. A pointwise paracompact p-space X with a point
countable base <% 1is a pointwise paracompact Moore space.

Proof. First we show that X has a o-point-finite base for its
topology. By Proposition 2.4 there is a sequence {<,};> of point-finite
open covers of X such that foranyxe X, P, = ;. St(x, &,) is compact
and the family {St(x, &,): n e Z*} is a neighborbood base for P,. Let
neZ* and GeZ,. By Lemma 2.5 there are at most a countable
number of minimal finite covers of G by elements of <#, say G(1, n),
G(2,n),G(8,n), --- (if they exist). For ke Z* let %, ={BNG:Ge <&,
and B e G(k, n)}. For fixed k and n € Z*, %/,,, is point-finite since each
xe X is in at most a finite number of Ge <, and in only a finite
number of elements from G(k,n). To show that ¥ = Ur-. U=t Zon
is a base for the topology, let O be an arbitrary open neighborhood
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of a point xe X. There is a Be <Z such that € B< O and since P,
is compact, we can find a finite cover {B,, B,, ---, B,} of P, with
elements from <# such that B = B, and B is the only element in the
cover which contains =. Because |J%, B; is an open neighborhood of
P,, there is an integer m € Z* such that P, S St(z, z,) S UL, B;. If G
is any element of <, which contains 2, there is a minimal subecover
from {B,, B, ---, B,} which covers G, say G(j, m) for some je Z+.
But B must be an element of G(j, m); hence BNGe%,, and
xeBNG<O.

To complete the proof, we use Lemma 2.6 to show that X is semi-
metrizable and apply Theorem 1.1. Assume X e %, for all k, m e Z*.
Let e Xand ne Z*. Define U, (2) = N{Ue X,m:2c U,k < n,m < n}
and U,(x) = U,(x) N [Ni.. St(x, <)]. Suppose for some ze X that
there is a sequence {x,} of points in X such that xze U,(x,) for
each ne Z*. Then xec N, Stz,, &;) for each ne Z* which implies
that x,e . St(x, ;). By Remark 2.3b {x,} has a cluster point
ye N, St(x, =,). If y ==, then there exists me Z+ such that
x¢ Ul (y). But also, since y is a cluster point of {x,}, there exists a
positive integer m, = m such that z, € U,(y). Thus U,(z,)< UL(y)
and ze U, (¢,) S Un(2,) S Un(y) which is a contradiction. Therefore
x is the only cluster point of {x,}7. Let {x, }7_, be any subsequence of
{w,})=. Since xe U, (x.,) & Nt St(x,,, £ S N St(x,,, &), it follows
that @, e M. St(x, £;). So {w, )7, has a cluster point by Remark 2.3b
which from above must be . Thus {z,}7 — =.

We have satisfied the conditions of Lemma 2.6; so X is semi-metriz-
able and hence developable.

Addendum. It has recently come to the author’s attention that
Theorem 1.1, (a) < (c), and Theorem 2.7 were announced in [10] by
Creede and Heath.

REFERENCES

1. A. V. Arhangel’skii, On a class of spaces containing all metric and all locally
bicompact spaces, Soviet Math. Dokl. 4 (1963), 1051-1055.
, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186.
V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl. 9 (1968), 161-164.
R. W. Heath, A regular semi-metric space for which there is no semi-metric under
hich all spheres are open, Proc. Amer. Math. Soc. 12 (1961), 810-811.
, Arc-wise conmnectedmess in semi-metric spaces, Pacific J. Math. 12 (1962),

2.
3.
4.
5.
w
6.

1301-1319.

7. L. F. McAuley, A note on complete collectionwise normality and paracompactness,
Proc. Amer. Math. Soc. 9 (1958), 796-799.

8. A. Miscenko, Spaces with a point-countable base, Soviet Math. Dokl. 3 (1962), 855-
858.



608 D. K. BURKE AND R. A. STOLTENBERG

9. Seminar on semi-metric spaces, Summer Institute on Set Theoretic Topology,
Madison, Wisconsin (1955), 58-64.

10. Topology Conference Arizona State University, Tempe, Arizona, (1967).
Received October 9, 1968.

WASHINGTON STATE UNIVERSITY





