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A NOTE ON ̂ -SPACES AND MOORE SPACES

D. K. BURKE AND R. A. STOLTENBERG

In this note we investigate p-spaces and their relationship
to Moore spaces. Specifically, it is shown that among p-spaces
Moore spaces are equivalent to semi-metric spaces and spaces
with a (7-discrete network. A certain class of p-spaces, called
strict p-spaces, is given an internal characterization and this is
used to show that a pointwise paracompact p-space with a
point-countable base is a pointwise paracompact Moore space.

l Developable p-spaces* Let us first discuss some of the defi-
nitions and basic concepts which will be used throughout this paper.
Unless otherwise stated, all topological spaces are assumed to be T2

and regular. The set of positive integers will be denoted by Z+.

A sequence {^»}Γ of open covers of a space X is called a develop-
ment for X if for any x e X and any open neighborhood 0 of x, there
is an integer neZ+ such that St(x, %fn) = U {Ue <&n: x e U} c O. A
regular developable space is a Moore space.

By ArhangePskiϊ [1], a completely regular space X is called a p-
space (plumed space) if in its Stone-Cech compactification β(X) there
is a sequence of families {Ύn}T, where each yn is a collection of sets,
open in β(X), which covers X and satisfies: For each xeX,
Π~=i St(x, Ύn) S X. The sequence {yn}T is called a pluming for X in
β(X). A space X is called a strict p-space if it has a pluming {7Λ}Γ
with the following additional property: For any xe X and any neZ+

there is n(x) e Z+ such that St(x, 7n{x)) S St(x, 7»). In this case we call
{7n}T a strict pluming. The class of ^-spaces includes all metric
spaces, locally compact spaces and completely regular Moore spaces
(see [1], [2]).

A collection & of subsets of a space X is called a network for X
if for any open set 0£X and xeO there is a set P e ^ 5 such that
xePQO.

Let X be a topological space and d a real valued nonnegative
function defined on X x X which satisfies: For x, y e X

(1) d(x, y) = 0 if and only if x — y;
(2) d(x, y) = d(y, x).

The function d is called a symmetric [2] for the topology on X provided:
(3) A g l i s closed in X if and only if d(x, A) = inΐ {d(x,z):ze A}>0

for any xeX — A.
The function d is called a semi-metric [9] for X provided:

(3') For A g l , xe A if and only if d(x, A) = 0.
It is clear that a semi-metric space is a symmetric space and it can
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easily be shown that a symmetric space X is a semi-metric space if
and only if X is first countable. In [2] there is an example of a
symmetric space which is not semi-metrizable. Aso, for later use,
we note that open or closed subsets of symmetrizable space are sym-
metrizable and that compact symmetrizable spaces are metrizable [2].

In [2] ArhangeΓskiϊ defines a space X to be σ-paracompact if for
any open covering ^ of J there is a sequence {̂ "»}Γ of open covers
of X such that for any xeX there is n(x) e Z+ and some Ue^f with
St(x, %Sn{x)) S U. Later, we give sufficient conditions for a space to
be σ-paracompact and show that this property is enjoyed by a large
class of topological spaces.

The following theorem, which is the main result of the section,
answers some questions posed by ArhangeFskiϊ in [2].

THEOREM 1.1. For a completely regular space X the following
are equivalent:

(a) X has a development.
(b) X is a pspace with a σ-discrete network.
(c) X is a semi-metrizable p-space.
(d) X is a symmetrizable p-space.

The following propositions are used to assist in the proof of
Theorem 1.1.

PROPOSITION 1.2. If X is a topological space with the property
that every open cover of X has a σ-discrete refinement, then X is
σ-paracompact.

Proof. Let ^ be any open cover of X and suppose that & =
Un=i &n is a σ-discrete refinement of ^ with each &>n a discrete
collection. We may assume the sets in & are closed. For each P e ^
pick a set U(P) e ^ which contains P. For each ne Z+ we define an
open cover ^ n as follows: If x e X and xeP for some P e ^ f t , define
Un(x) = U(P) n [X - U {P' . P' e^n,xί P'}\. If x g U {P: P e &>n}, let
Un(x) = X — U {P: Pe^n}. Then ^/n = {Un(x): x e X} is an open cover
of X for each neZ+. It is clear that xePe&*n implies that
S t ( x , ^ r n ) S S t ( P , ^ n ) S U ( P ) . S i n c e e v e r y xeX i s i s s o m e e l e m e n t
of ^ , it follows that X is σ-paracompact.

McAuley [7] has shown that in a semi-metric space every open
cover has a σ-discrete closed refinement.

COROLLARY 1.3. Any semi-metric space is σ-paracompact.

The next corollary follows immediately from Proposition 1.2 and
the definition of a σ-discrete network.
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COROLLARY 1.4. Any topological space X with a o'-discrete
network is σ-paracompact.

LEMMA 1.5. If X is a p-space and xe X such that {x} is a Gδ

set in X then x has a countable neighborhood base.

Proof. Let {yn}? be a pluming for x in β(X) and suppose {x} =
Γ\n=iGn, where GnQX is open in X. For each neZ+ there is a set
G'n open in β(X) such that Gn = X f] G'n. It follows that {x} =
[Γin=ιG'n] n [Γϊn=iSt(x, Ύn)\. Thus {x} is a Gδ set in β(X) and must
have a countable neighborhood base in β(X) since β(X) is compact.
This neighborhood base relative to X will give a neighborhood base
for x in X.

PROPOSITION 1.6. A symmetrizable p-space X is semi-metrizable.

Proof. By our previous remarks it suffices to show that X satis-
fies the first axiom of countability and for this it is enough to show
that each point x e X is a Gδ subset of β(X). Assume {τw}Γ is a
pluming for X in β(X); then for each neZ+ there is a β(X) open
neighborhood of x, say Un(x), such that Un(x) £ St(x,7n). Let C =
Π"=i *7«(&) £ ΠΓ=i S£(a, 7Λ) £ X Then C is a closed compact set in X
since it is compact in β(X). Recall that a closed subset of a symme-
trizable space is symmetrizable and a compact symmetrizable space is
metrizable. Thus C is metrizable and there is a sequence {Nn(x)}Γ of
open sets in β(X) such that {C Γ) Nn(x): ne Z+} is a neighborhood base
at x relative to C. Clearly {x} = [Πn=iUn(x)]Π[Πn^Nn(x)]; so the pro-
position is proved.

PROPOSITION 1.7. A p-space X with a σ-discrete network is
semi-metrizable.

Proof. Since X has a σ-discrete network it is clear that all closed
sets, and in particular singleton sets, are Gδ sets. By Lemma 1.5 X
is a first countable space with a σ-discrete network and consequently
is semi-metrizable by a theorem of ArhangeΓskiϊ [2].

PROPOSITION 1.8. A space X with a development {^n}T has a
σ-discrete network.

Proof. A developable space is semi-metrizable and thus each ^ n

has a σ-discrete closed refinement &?n. It is easy to show that
U"=i -^n is a σ-discrete network for X.
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Proof of Theorem 1.1. Since a completely regular Moore space
is a p-space, Propositions 1.7 and 1.8 show that (a) implies (b) and
(b) implies (c). That (c) implies (d) is obvious, so all that remains
is to show that (d) implies (a). If we assume condition (d), then X
has a semi-metric d by Proposition 1.6 and is also σ-paracompact by
Corollary 1.3. Let {yn}? be a pluming for X in β(X). For each
x e X let S'n{x) be a neighborhood in β(X) such that S'n(x) Π X = Sn(x),
where Sn(x) = {y e X: d(x, y) < 1/n). Keep in mind that the collection
{Sn(x):neZ+} is a base (not necessarily open) for the neighborhood
system at x in X. For each x e X let Un(x) be a neighborhood of x
in β{X) such that TΪJxjS S'n(x) and such that the family {Un(x): xeX}
refines 7n. Let %S(n) = {Un(x) Π XixeX}. Now, since X is σ-para-
compact, for each ne Z+ there is a sequence {%fm(n)}Z=i of open covers
of X that has the following property: For xeX, there is m(x)eZ+

and Ue ̂ (n) such that S£(α?, ̂ w ( s ) (n)) S Ϊ7. We may assume ^w+1(w)
refines ^<m(n) for each meZ+. Finally, for neZ+ let ̂ n be an open
cover of X such that &n refines each ^/8(t) for s ^ n, t ^ n and 5f%+1

refines ^ w . We show that the sequence {gfw}«=1 is a development for
X. If x G X is fixed and k is any positive integer, than there is some
xkeX and nkeZ+,nk^ k such that St(x, ^njc(k))S !/*(»*) ΓΊ X So
Sί(a, ^ n j b ) S iSί(a?, ̂ /n]β)) £ ^(^ib) Π X We may assume wfc+1 > nk so
that Sί(», ^»fc+1)£Sί(a?, ^ * A ) . Suppose 0 is any neighborhood of a?,
open in X, and 0' is a set open in β(X) such that O = X Π 0'. If
Π?=i Uk(Xk) is not contained in 0' for any meZ+, then

{ή E7K - O'Γ

is a decreasing sequence of nonempty closed sets in β(X) and hence
Γ\~=iUiίxj-OrΦ0. Now

n Tΰxj s Γή sί(», 7*)]nΓήsί(a;*)l s x n Γή SK**)] = ή &(&*).

Hence y e Π?=i ^(^Λ) — O' implies that y e ΠΓ=i SA(a;fc) and so it follows
that {xk}T -^> y. But also {xk}? —*x; so x = y which is a contradiction.
So there is a positive integer m such that p|?=i ^(^Λ) £ O'. It follows
that Sί(a?, ̂ . w ) C Πk=iSt(x, &nj) s [n?=i^*(**)] n l g O ' Π l ^ O . Hence
a? G Sί(a?, ^*m) £ 0 and the theorem is proved.

COROLLARY 1.9 (ArhangeΓskiί). A collectίonwίse normal p-space
with a symmetric (or with a σ-discrete network) is metrizable.

2. A characterization of strict p-spaces*

LEMMA 2.1. A pointwise paracompact p-space X has a pluming
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{yn}T in β(X) which satisfies:
(a) Each yn is point-finite at points in X;
(b) For each xeX and neZ+, St(x, yn+1)gSt(x, y n ) .

The proof of Lemma 2.1 is straightforward and is omitted.

The next theorem gives an internal characterization of strict p-
spaces; that is, strict p-spaces are defined without use of the compacti-
fication β{X). In some cases this characterization has proved to be
more useful than the original definition.

THEOREM 2.2. A completely regular space X is a strict p-space
if and only if there is a sequence {S Ĵ~=i of open covers of X
satisfying:

(a) Px = Π»=i St(x, &n) is a compact set for each x e X;
(b) The family {St(x, &n): n e Z+) is a neighborhood base for the

set Px.

Proof. If X is a strict p-space, there is a strict pluming {jn}T
for X in β(X) where we may assume that yn+1 is a refinement of yn.

Let Px = Π~^St(x,yn) = Γl~=1St(xyyn)2Lnd%?n = {GnX:Geyn}. Clearly,
Px is a compact subset of X and Px = Π~=i St(x, &n). To show that
{St(x, 5fn):neZ+} is a neighborhood base for the set Px, let U be any
open set in X which contains Px and let U' be an open set in β(X)
where U = X Γ) U'. Now if the set Γlΐ=ιSt(x, yk) - U', which is
closed in β(X), is not empty for any neZ+ we have f\ΐ=1 St(x, yk)~
jj' Φ 0 . This is impossible; hence there is a positive integer n such
that n*=iSί(a,7*)Sί7'. Since St(x,%?n)QSt(x,yn) Π X^[Γ)k=iSt(x,yk)]n X
it follows that Px C St(x, Sfn) S U.

Conversely, suppose {Ŝ w}?=i is a sequence of open covers of X
which satisfies (a) and (b). Let yn be the collection of all sets G'
open in β(X) such that G'C)Xe5fn; we will show that {τw}n=i is a
strict pluming for X in /3(X). Let xeX,ye β(X) - X,neZ+ and 0
be an open set in β(X) with PXQO^O^St(x, yn) Π [5(X) - {?/}[. By
assumption there is an integer nf e Z+ such that Px^St(x, c^n) g O f l l .
But St(x, &n.) = St(x, yn,) n X which implies that St(x, yn,) - 0 is an
open subset of β(X) — X and therefore must be empty. So
St(x, yn) g θ g β ( X ) - {y} and y was an arbitrary element of β(X) — X.
Hence f|ϊ=i St(x, yn) £ X and {τw}Γ=i is a pluming for X. We also have
St(x, yn,) g δ g St(x, yn); so St(x,yn,) S Sί(x, τΛ). Thus {τw}~=1 is a strict
pluming for X

REMARK 2.3. (a) Notice that if the sets Px, as in Theorem 2.2,
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are singleton sets, then sequence {&n}Γ is actually a development for
X. (b) If {^n}n=i is a sequence of open covers satisfying (a) and (b)
in Theorem 2.2, the following is easily verified: If x e X and {xn}n=i is
any sequence of points in X such that xn e Γ\ί=ιSt(x9 gfj for each n e Z+,
then {xn}Z=ι has a cluster point in Px = Π»=i St(x, gfn).

PROPOSITION 2.4. If X is a pointwise paracompact p-space, then
there is a sequence {&n}Γ of point-finite open covers of X satisfying:

(a) Px = Π«=i St(x, 5fn) is a compact set for each x e X;
(b) The family {St(x, ί?n):neZ+} is a neighborhood base for the

set Px.

Proposition 2.4 follows from Lemma 2.1 and the proof of
Theorem 2.2.

LEMMA 2.5. // & is a point-countable collection of subsets of
a space X and A g l , then the family of all minimal finite covers
of A with elements from & is countable.

LEMMA 2.6. A topological space X is semi-metrizable if and only
if at each point x e X there is a decreasing open neighborhood base
{Un(x)}n=i such that the following is true: If {xn}T is any sequence of
points in X and yeX such that y e Un(xn) for each neZ+

y then
{Xn}T -> y.

Lemmas 2.5 and 2.6 are used in the proof of Theorem 2.7. Lemma
2.5 can be found in [4] and Lemma 2.6 in [6]. Theorem 2.7 generalizes
a result due to Filippov [4].

THEOREM 2.7. A pointwise paracompact p-space X with a point
countable base & is a pointwise paracompact Moore space.

Proof. First we show that X has a tf-point-finite base for its
topology. By Proposition 2.4 there is a sequence {5fn}T of point-finite
open covers of X such that for any x e X, Px = Π"=i St(x, 5fn) is compact
and the family {St(x, 5fn): neZ+} is a neighborhood base for Px. Let
ne Z+ and GeSfn. By Lemma 2.5 there are at most a countable
number of minimal finite covers of G by elements of ^ , say G(l,ri),
G(2,n),G(S,n), . (if they exist). For k e Z+ let %fktn = {BnG: Ge <&n

and B e G(k, n)}. For fixed k and n e Z+, ^k>n is point-finite since each
a e l is in at most a finite number of Ge&n and in only a finite
number of elements from G(k, n). To show that ^/ = U£=i U~=i ^4,*
is a base for the topology, let O be an arbitrary open neighborhood
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of a point xe X. There is a B e ^ such that xeB^O and since Px

is compact, we can find a finite cover {B19 B2, •• ,J?A;} of Px with
elements from & such that B = B1 and B is the only element in the
cover which contains x. Because (Jί=i B% * s a n open neighborhood of
PXJ there is an integer meZ+ such that Px Q St(x, gfw) g UίU B{. If G
is any element of 2^m which contains x9 there is a minimal subcover
from {B19 B21 , Bk} which covers G, say G(j,m) for some jeZ+.
But B must be an element of G(j,m); hence B f] Ge^j>m and

To complete the proof, we use Lemma 2.6 to show that X is semi-
metrizable and apply Theorem 1.1. Assume Xe ^k>m for all k,me Z+.
L e t x e X a n d n e Z+. D e f i n e Ϊ 7 ; ( α ) = Π {Ue %Sk,m: x e U , k ^ n , m ^ n }
a n d Un(x) = U n ( x ) n [ Γ i k = ι S t ( x f ^ k ) ] . S u p p o s e f o r s o m e x e X t h a t
there is a sequence {xn}T of points in X such that x e Un(xn) for
each n e Z + . Then x e Π?=i Sί(a?Λ, ^ ) for each t ι e ^ + which implies
that »»eΠf=iSί(ίc,^i). By Remark 2.3b {α ̂ Γ has a cluster point
y£Γ\n=iSt(x,%7n). If 7/ ^ x, then there exists meZ+ such that
&£ Ur

m{y). But also, since # is a cluster point of {xn}, there exists a
positive integer m^m such that a?mi 6 U'm(y). Thus Z7«(a?mi) S ϊ/»(3/)
and x e U'mi(xm) £ U'm(xml) £ i7«(i/) which is a contradiction. Therefore
a? is the only cluster point of {xjΓ Let {a^JΓ=i be any subsequence of
{xn}~. Since α? e Unk(xnj) S ΓlKi Sί(a?Λfc, Sf 4) S Π"= 1 > S ^ ^ , ^ ) , it follows
that xnjc e Π*=i Sί(», ^<). So {o;njfc}r=1 has a cluster point by Remark 2.3b
which from above must be x. Thus {xn}T —> ̂ .

We have satisfied the conditions of Lemma 2.6; so X is semi-metriz-
able and hence developable.

Addendum. It has recently come to the author's attention that
Theorem 1.1, (a) <=> (c), and Theorem 2.7 were announced in [10] by
Creede and Heath.
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