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CENTRALIZERS OF ABELIAN, NORMAL SUBGROUPS
OF HYPERCYCLIC GROUPS

ULRICH SCHOENWAELDER

J. L. Alperin proved the following theorem about finite
p-groups G: if E is maximal among the abelian, normal sub-
groups of G of exponent dividing pn, then ΩJίG(E) — E, provided
that pn^2. It turns out that the restriction to p-groups and
also to finite groups in Alperin's proof is not essential. In fact
a similar theorem holds in a large class of hypercyclic groups
(Theorem 2.2). By the same method also a modified version
(Theorem 2.8) will be obtained, the word "normal" in the
assumptions about E being replaced by "characteristic", here
G is supposed to be hypercentral; the modification results in
enlarging E to a characteristic subgroup %Q(E) of class 2 in
a very definite way before taking its centralizer.

The proofs of both theorems rely on a fairly general version (not
used in its full strength) of the lemma used by Alperin on p-automor-
phisms of abelian p-groups that centralize all elements of order p. The
first paragraph is devoted to this generalization (Theorem 1.11) and
may be of independent interest.

TERMINOLOGY. We denote by / the set of all functions from the
set of all primes to the set of all rational integers extended by the
symbol °o. Addition and subtraction are defined on /^by (f± Q)(P) =
f(p) ± g(p), where °o is handled in the usual manner; also f^g for
/, g e / \l and only if f(p) <̂  g(p) for all primes p. A function fe/
is called finite, if f(p) < oo for every prime p. The constant functions
in / will be denoted by their single value. The function de / which
is 2 at 2 and 1 elsewhere will play a particular role in our discussion.

Let / be a function in /. The nonegative part /+ of / is defined
by f+(p) = f(p) if f(p) ^ 0, and f+(p) = 0, if f(p) ^ 0. With every
torsion element x of a group X there is associated a function ex e /
such that Π{peχ{p) \ p prime} is the order of x. We say that an element
x is restrained by /, if x is a torsion element and ex ^ / + . The
elements of X restrained by / generate a (characteristic) subgroup
Ωf(X) of X. We say that X is restrained by /, if every element of
X is restrained by /.

For every torsion element x of a group X and every prime p there
is a uniquely determined power xp of x such that the order of xp is a
power of p and the order of xp, = x~ιx is prime to p. Xp is the set
of all ^-elements of X.
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A group G is called hypercyclic, if every epimorphic image, not
1, of G has a cyclic, normal subgroup, not 1. This implies that every
normal subgroup, not 1, of an epimorphic image H of G contains a
cyclic, normal subgroup, not 1, of H. A group G is called hyper central,
if every epimorphic image, not 1, of G has a nontrivial center. This
implies that every normal subgroup, not 1, of an epimorphic image H
of G intersects the center of H nontrivially.

We use the notation (α, b) = a © b = α~ V where b is an endomo-
phism or a group element and ab = b~ιab. If b operates on A, then
A o 6 is the set of all (α, 6) with aeA. (α, 6, c) = ((α, 6), c). An element
or automorphism a; of I centralizes the ^-invariant factor i?/A, if x
fixes every element in B/A. $lx(A) = normalizer of A in X, (£X(A) =
centralizer of A in X, 3(X) = center of X, X' = commutator subgroup of
X, Az = largest normal subgroup of X contained in A, <S> = subgroup
generated by the set S, p' = set of all primes different from p.

1* After a few lemmas of a general nature this paragraph will
be concerned with torsion automorphisms that centralize Ωd(G).

LEMMA 1.1. For a group G, an endomorphism x of G and an
element b of G define the elements biy i >̂ 0, by

bQ = b, 6f = δ A + 1 ,

and assume b bi+1 = bi+ιbi for i > 1. Then for every integer s ;> 0,

Q) = 1 for all s > 0, the statement is true for

s = 0. We proceed by induction on s to get

b*s+1 = [bo®]'[bP]m

[b.b.+ιp

= bP[bPbP] [b.('-lhP]b.+P

- 6> ^ ^ } . . bs

{s %\r>

where we use the formulas φ + ( * χ ) = (j + J) and (j) = (j) =
1. This proves the lemma.

LEMMA 1.2. If x is an automorphism of the group G that cen-
tralizes the subgroup U of G, then U and ζ$lG(U)°xy centralize each
other.
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Proof. Let u e U and g e %lG(U). Then u9 e U, hence u9 = (ug)x =
(ux)gX = ugX. Therefore g~~ιgx centralizes U which proves the lemma.

LEMMA 1.3. Let U be a subgroup of a group G and x an auto-
morphism of G that centralizes U and satisfies <(G°xy £ U. Then

(1) < G o ϊ ) s M ί / 6 ) ;
(2) if the set G°x has finite exponent n, then x is a torsion

automorphism of order dividing n;
(3) if x is a torsion automorphism, then for every g eG the

order of g o x divides the order of x.

Proof. (1) follows from Lemma 1.2 applied to UG. Let geG and
put h = g~γgx e f f o ^ g U. Then gx = gh and, by induction, gχr — ghr.
In particular, under the assumption of (2), gχn = ghn = g. Hence xn = 1
proving (2). On the other hand, if x is a torsion automorphism of
order m, then g = gχm = ghm, hence hm = 1 proving (3).

LEMMA 1.4. [4, p. 49, 1.5 Hilfssatz.] Every automorphism of a
finite p-group P that centralizes Ωd(P) has order a power of p.

Proof. Let P be a counterexample of minimal order and x ^ l a
p'-automorphism of P centralizing Ωd(P). Assume by way of contra-
diction that ζPoχy is a proper subgroup of P. P being a minimal
counterexample and ζPoxy being ^-admissible, ζP°x} must be centralized
by x. So Lemma 1.3 (2) implies x = 1, a contradiction. Therefore
P = ζPoχ}. Since P is solvable, P' is a proper, x-admissible subgroup
of P. Hence Pr is centralized by x. By Lemma 1.2, Pf Q (£P«Poχ)>) =
3(P) and P has class 2. Let £ be minimal such that P — Ωt+1(P),
hence t ^ 1, and let geP be an element of order dividing pt+1. Then
gpt e Ω^P) is centralized by x, hence

see [9, p. 8., (10)]. If p Φ 2, then p* divides f ^ Ί ; put s = ί. If p = 2,

then p ί - 1 divides (^ put s = ί — 1. Now

(if, g-Y = (gx, g-pΊ ,

see [9, p. 80, (9)], and gpSeΩd(P) S 3(P) by Lemma 1.2. Therefore

OΛ ^ 8 ) = 1, (0% flr')(?t) - 1, and (g^gψ = 1

showing that

P = <Po χ> = <flt+1(P) o »> S β t(P) c P ,
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a contradiction. No counterexamples exist.

COROLLARY 1.5. Let E be a subgroup of a finite group G such
that <HG(E) has a p-Sylow subgroup S which satisfies Ωd(S) £ E. Then

has a normal p-complement.

Proof. Suppose U is a subgroup of S and x is a ^'-element of
9lc(U), C = &G(E). Then Ωd(U) £Ωd(S) g # is centralized by x. Lemma
1.4 implies that U is centralized by x. By a well-known theorem of
Frobenius [3], C has a normal ^-complement.

PROPOSITION 1.6. If A is a locally finite, normal subgroup of the
group B, then any torsion automorphism of B that leaves A invariant
and centralizes BJA and Ωd(A) has order divisible by primes that are
orders of elements in A only.

Proof. Such an automorphism x is the product of its primary
components xq, q prime, xq being a power of x. Put y = xq and assume
that q is not the order of an element in A. Pick aeA. Being finitely
generated F = <α<2/>)> is a finite, ^/-admissible subgroup of A. For any
prime p the number of p-Sylow subgroups of F is prime to q and
y normalizes at least one p-Sylow subgroup P of F. By Lemma 1.4,
P is centralized by y. So F — ζP \ p prime)> is centralized by y and, in
particular, a is centralized by y.

Pick be B. A being a torsion group, b~~ιby e A has finite order
prime to q. By Lemma 1.3 (3) this order divides the order of y,
b~Ψ = 1 and xq = y = 1.

We shall only need the following special case of Proposition 1.6.

COROLLARY 1.7. Let A be a normal torsion subgroup of a group
B, assume Ωi(A)jΩi_d(A) £ Q(Ωi+ι(A)/Ωί_d(A)) for all functions i e /
with i Ξ> d, ieί x be a torsion automorphism of B that leaves A
invariant and centralizes BjA and Ωd(A). If the order of x is prime
to the order of every element in A, then x — 1.

Proof. A is locally finite, since it is the union of solvable (hence
locally finite) torsion subgroups. Exploiting the structure of A one
may prove Corollary 1.7 also without reference to Lemma 1.4.

REMARK 1.8. The quaternion group of order 8 shows that Ωd(P)
in Lemma 1.4 may not be replaced by ΩJJP). However, if P is abelian,
this may be done. Similarly in Proposition 1.6 and Corollary 1.7 Ωd(A)
may be replaced by Ω^A) provided that finite 2-subgroups of A are
abelian.
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LEMMA 1.9. Let A be a torsion group with abelίan factors
Ω^AjlΩi^A) for all finite functions i e /. Let 0 ^ k e / satisfy
k(2) ^ 2 and Ωk(A) £ S(A), assume that only finitely many primes
are orders of elements in A. Then any automorphism of A that
centralizes Ωk{A) also centralizes all the factors Ωn(A)/Ωn_k(A) for
finite functions n e /.

Proof. Clearly by the structure of A, Ωr(A) is' restrained by r for
r e /Γ If there are counterexamples, then there are also counterexamples
of finite exponent, since only finitely many primes are orders of elements
in A. Let A be a counterexample of minimal (finite) exponent Πpm(p).
Then automorphisms of A that centralize Ωk{A) also centralize

Ωό(A)IΩs_h(A)

for j < m. In particular, A centralizes Ωj(A)/Ωj__k(A) for j < m.
Let x be an automorphism of A that centralizes Ωk(A), pick

a e Ωm(A) = A ,

and let p, a prime, be the order of an element in A. Let gt have the
value t at p and 0 elsewhere. Then (ax, cr1) lies in Ωm_9ι{A), since
Ωm{A)IΩm_gι(A) is abelian, and this commutator commutes with ax and
a-ιmoάΩm_9ι_k{A), since A centralizes Ωm_gi(A)/Ωm_gi__k(A). Therefore

(α-Vr* Ξ (a-Y(ay\a% a-1/2^ mod Ωm^9l^k(A)

for natural numbers t, cf. [9, p. 81, (10)]. Since x centralizes

Ωm_gι(A)/Ωm_9l_k(A)

by the minimality of the exponent of A, we have

and

( 1 ) (α-V)'* = (a% a-ψt] mod Ωm_βl_k(A) .

Using a well-known formula, cf. [9, p. 80, (9)], and remembering that
A centralizes Ωm_9l(A)/Ωm_9ι_k(A) we get

( 2 ) (a*, α - y = {{ay, α"1) = 1 mod Ωm_9ι_k{A).

Assume first that p Φ 2 and choose t = 1. Then p divides Πl)

Hence by (1) and (2), (a-'ay = lmodΩm_9i_k(A), a~ιax e Ωm_k(A), and x

centralizes Ωm(A)/Ωm_k(A).

If p = 2, choose t = 2. Then p divides ^ ) and it follows (2)

that (ax, a-1)^ = l m o d f l ^ ^ ^ A ) . So (1) implies
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and a~ιax e Ωm_gi_k+g2(A) £ Ωm_gi(A), since k(2) ^ 2 implies k Ξ> #2.

Therefore

(α% α"1) - (α(α-V), α-1) - (α~V, α"1

lies in Ωm_gi_k(A), and ί = 1 in (1) implies

(α-V)* = 1 mod βw_ffi_,(A) .

Consequently α~V e Ωm_k{A), and a; centralizes ί

LEMMA 1.10. Let O ^ f c e / satisfy k(2) ;> 2, ίeί A be a torsion
group with Ωi(A)IΩi^.h(A) £ 3(^»+i(^.)/^*-*(^)) / o r α ^ ^ i ί β functions
i e /^ cmcZ assume that only finitely many primes are orders of
elements in A. Then any automorphism of A that centralizes Ωk(A)
also centralizes all the factors Ωn{A)jΩn__k (A) for finite functions n e /\

Proof. Let A be a counterexample of minimal (finite) exponent
Πpm[Ί>). Then Ωk(A) Φ 1 and there exists a prime p with k(p) > 0
and Ωg{A) Φ 1 where g(p) = 1 and 0 elsewhere. By assumption A =
Ωm(A)/Ωm_g_k(A) satisfies Ωk{A) S 3(A), since O4(A) - Ωm_9(A)/Ωm_9_k(A).

By the minimality of the exponent of A, an automorphism x of A that
centralizes Ωk(A) also centralizes βw_ί7(A)/ί2w__ff_fc(.A) = Ωk(A). Therefore
by Lemma 1.9, x centralizes Ωk+tt(A)/Ωg(A), i.e., Ωm(A)/Ωm_k(A).

THEOREM 1.11. Let A be a normal torsion subgroup of a group
B, assume βί(A)/βί_d(A) fi S(Ωi+1(A)/Ωi__d(A)) for all finite functions
i e / , let x be a torsion automorphism of B that leaves A invariant
and centralizes B/A and Ωd(A), and let / ^ 0 be a function in/.
Then x centralizes BjΩf(A), if and only if x is restrained by f.

Proof. ( 1 ) To prove the if-part of the theorem we shall assume
without loss of generality that / is finite and assumes only finitely
many positive values, because x is a torsion automorphism.

Assume first that the statement in question is false for some group
A of finite exponent. Then there are counterexamples A of minimal
finite exponent Πpj(p) of A. Choose one where also / is minimal with
respect to the partial ordering ^ . It follows j Φ 0,fΦ 0, and x Φl.
There exists a prime q such that both Aq Φ 1 and q divides the order
of x, since otherwise Corollary 1.7 would imply x = 1. Define ge/
to be 1 at q and 0 elsewhere. A/Ωg(A) is restrained by j — g <j and
has the required structure, x induces in B/Ωg(A) an automorphism
that leaves A/Ωg(A) invariant and centralizes [B/Ωg(A)]/[A/Ωg(A)] and
Ωd(A/Ωg(A)); this last fact follows from Lemma 1.10. So the minimality
of j yields that x centralizes [B/Ωg(A)]/Ωf(A/Ω0(A))f i.e., B/Ωf+g(A).

Again by our hypothesis and Lemma 1.10, x centralizes
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Ωf(A)IΩf_d(A) and Ω/+β(A)/Ωf+σ_d(A) .

So w e m a y a p p l y L e m m a 1.1 f o r a n y beB t o g e t

b" = bbίbP mod Ωf_d{A)

with 6, e β/ +,(A), b2 e Ωf+g_d(A) S β/(A), 63 e Ωf_d(A), since

by the structure of A. If q Φ 2, then bP eΩf_g(A). If q = 2, then
even b2eΩf_g(A). Hence

bxQ = bbl mod Ωf__g(A) .

On the other hand by the minimality of /, xq being restrained by
/ — g ^ 0 centralizes B/Ωf_g(A) so that

b = bxQ mod i?/_,(A) .

Hence bq

ιeΩf_g(A) and δ^f l^A). This signifies that x centralizes
B/Ωf(A) contradicting our assumption and proving the statement for
groups A of finite exponent.

Now consider the general case and let beB. Since A is a torsion
group, there exists a function j >̂ / in / such that Ωj(A) has finite
exponent and contains b~λbx. Hence x leaving Ω5(A) invariant central-
izes <(byΩj(A)/Ωj(A). By what we have already proved above we may
conclude that x centralizes (byΩj(A)/Ωf(A)y whence bx == bmoάΩf(A).
This shows that x centralizes B/Ωf(A).

( 2 ) Conversely, if x is a torsion automorphism of B centralizing
B/Ωf(A), we may assume x Φ 1. Let p be a prime that divides the
order of x and define g e /"to be 1 at p and 0 elsewhere. There
exists hb ^ / depending on b e B such that Ωhb(A) has finite exponent
and contains bι — b~ιbx. By Lemma 1.10 applied to Ωhb(A), b2 = brιbx

is contained in ΩH_d{A) <Ξ Ωf_g(A). Therefore

b*p = bbf mod ί?/»ff(A)

by Lemma 1.1. But 6f e Ωf_g(A), hence xp centralizes B/Ωf_g(A).
By induction on the order of x, xp is restrained by / — g. So x

is restrained by /.

REMARK 1.12. H. Leptin [6, p. 101] proved that in the case of a
reduced abelian p-group A with p ^ 5 the conclusion of Theorem 1.11
remains valid under the weaker hypothesis that x only centralizes
certain factors of Ω^A) instead of Ω^A) as a whole.

REMARK 1.13. Let A be an abelian 2-group of exponent Ξ> 8 and
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let x be the automorphism of A that maps every element onto its
inverse. Then x centralizes Ω^A) and has order 2, but does not
centralize A/Ω^A).

2. Let E be a normal subgroup of the p-group G and denote
by &(E) the subgroup of G formed by all the elements of G that
centralize all the factors Ωi(E)/Ωi_k(E), i ^ k. The following proposition
may be generalized to the case where E satisfies E <Ξ &(E) instead of
being abelian (k — ©o). But if x e &(E) satisfies xp e E and (x, g) s E
then it does not follow that the subgroup W generated by E and x
satisfies WQ&(W), since ΩX{W) S 8(W) may be violated. Hence
no application of the proposition in this case which would be similar
to the proof of Theorem 2.2 or Theorem 2.8 below is to be expected.
Consequently we shall restrict our attention to the abelian case and
follow Alperin's argument.

PROPOSITION 2.1. Let G be a group, E an abelian subgroup of
G, Eγ a subgroup of G that contains E, and f ^ 0 a function in /*
such that

(1) / ( 2 ) ^ 1 ,
( 2 ) if h is a function in / with 0 <̂  h ^ / and if Ωh&G{E^ is

restrained by /, then Ωhf$,Q(Eύ £Ξ E,
(3) there exists an abelian subgroup A of G and a subgroup

Aι of G such that
(a) Ωf&G(E^ normalizes AX1

(b ) i ^ i i Ωf(A) = E, E < A19

( c ) Ωf<$,Q(Ey Π &β(Ai) S A,
(d) if the element x of &G(EL) is restrained by f, then x

centralizes Ax/Ωf(A).
Then Ωf&aiE,) S E.

Proof. Assume that the proposition is false and choose hef
minimal with respect to 0 ^ h ^ / and Ωh&G(Eύ g E. So by (2),
Ωh&G{Ed is n o t restrained by /.

Aiming at a contrary statement pick XΦ\ and y in ^G(Ej) where
x is restrained by h and y is restrained by /. We shall examine ζx, y).

By (3d), x and y centralize AJΩf(A). Hence ζx, y} induces an
abelian group of automorphisms in A19 whence

(x, y) e Ω/S,0(Ey Π ̂ (A,) S A

by (3c). But again x and y centralize A/E, so (x, y, x) and (x, y, y) are
in E, and <a?, yy has class of nilpotency at most 3. By Lemma 1.1,

ίe\

y = yχe = y(y, %Y(y, x, %r; ,
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hence

(*1) 1 - (y, x)e(y, x, x){l)

for every natural number e that is divisible by the order of x. Let
q be a prime that divides the order of x. Let g e / be 1 at q and 0
elsewhere and let k be the smallest function ^ 0 in / that restrains
x. Then xq is restrained by k — g, hence xq e Ωk_fS,G(Eύ. We have
still k — g ;Ξ> 0, but k — g<k <L h, since k is finite. So the minimality
of h yields Ω^&^E,) Q E Q A, hence

(*2) 1 - (2/, x, α?) - (2/, α, x)q ,

cf. [9, p. 80, (9)].
Assume first that h(2) Φ 1 and let y be restrained even by h.

Choose e to be the least common multiple of qh{q} and the orders of
x and y. Note that h(q) ^ d(q), since # divides the order of x.
Therefore q divides (%\ entailing (y, x, xy2' = 1 because of (*2) and

(y, x)e = 1 because of (*1). By the choice of e this proves that (y, x)
is contained in Ωh(A) S ,&. Therefore (cf. [9, p. 80, (9)]), (yyx)e = (y, xq) =
1, since a* e Ωh^0(Ex) S £7, and (cf. [9, p. 81, (10)])

This proves that Ωh&G(EL) is restrained by h ^ /; a contradiction.
Assume now that Λ(2) = 1 and let hr e / ' have the value 2 at 2

and coincide with & elsewhere. Then ht^h' <^f, since 1 = h(2) <£ /(2) ^ 1.
Suppose that 2/ is restrained by hr and choose ef to be the least common
multiple of 4 = 2Λ'(2) and the orders of a; and y. Again q divides

\%\(Vix) is contained in Ωh,(A) Q E, and (&]/)*' = 1. This proves

that xy is restrained by h' and hence that Ωh^G(E^ is restrained by
Λ' ^ /, if h(2) = 1; again a contradiction.

THEOREM 2.2. If f is a function in X, if G is a hypercylic
group, and if E is maximal among its άbelian, normal subgroups
restrained by /, then Ω/S,G(E) = £7, provided that f(2) Φ 1 and that

( * ) there exists an abelian, normal torsion subgroup A^E of
G such that Ωf&G{E)' Π &G(A) S A and Ωd(A) = Ωd(E).

Proof. We have to establish the hypotheses of Proposition 2.1.
Without loss of generality / >̂ 0. Let Eγ — E. Assume by way of
contradiction that (2) is not satisfied, so that EΩh&G(E)z)E for some
h in / with 0 ^ h ^ / such that Ωh&G(E) is restrained by /. Then by
hypercylicity, EΩh&G(E)/E contains a cyclic, normal subgroup H/E Φ 1
of G/E. But £?£3(ff), hence H=3(H). Furthermore EΩh&G(E) is
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restrained by /, and so is H. This contradicts the maximality of E.
Hence (2) is satisfied. Put A, = A. By maximality of E, Ωf(A) = E.
So (3α, 6, c) are satisfied. Now let x e &GΩf(A) be restrained by /.
Then x centralizes E and Ωd(E) = 42d(A), so that Theorem 1.11 is
applicable, x centralizes A/Ωf(A). By Proposition 2.1, Ωf&G(E) = .57.

REMARK 2.3. The condition (*) in Theorem 2.2 may not be dropped
as shown by the following example of [2, p. 19, Example 1]. Let A
be a torsionfree, abelian group and x the automorphism of A that
sends every element onto its inverse. Then G = Aζx) is hypercylic
and every element in the coset Ax is of order 2. Let / = oo. Then
E — 1 is a maximal abelian, normal subgroup of (? restrained by /,
but Ωf^G(E) = Gφ E.

REMARK 2.4. As already indicated by J. L. Alperin the condition
/(2) Φ 1 in Theorem 2.2 may not be dropped. If G is a dihedral group
of order 2n+ί ^ 16, then G has no elementary abelian, normal subgroups
of index 2, since G contains elements of order 8. Therefore it follows
from [8, Lemma 1] that a maximal elementary abelian, normal sub-
group E of G has order 2 and as such lies in the center of G. But at
least half of the elements of G have order 2. This proves Ω1&G(E)Z)E.
This question has been investigated further by G. Tani Corsi [7].

COROLLARY 2.5. If f ^ 0 is a function in /^ if G is a hyper-
cylic group, and if E is maximal among its abelian, normal subgroups
restrained by f, then Ωf&G{E) = E provided that one of the following
holds:

(1) /(2) Φ 1 and Ωf(G) is restrained by f where f(p) = 0 if
f(p) ^ 0 and f(p) = oo if f(p) > 0.

(2 ) / ^ d and Ωf{G) is a torsion group.
(3) There exists a prime q such that f(p) = 0 for p ^ q and

f(p) ^ 1 for p>q.
(4) /(2) Φ 1 and the set of p-elements of G is a subgroup for

every prime p.
( 5) /(2) Φ 1 and G is hyper central.

Proof. Assume (1). It will suffice to show that condition (*) of
Theorem 2.2 is satisfied. Let A be maximal among the abelian, normal
subgroups of G containing E and restrained by /; such a subgroup
exists by the maximum principle of set theory. F — Ωf{G) Π &G(A)
is restrained by /. Therefore, since G is hypercylic, a similar argu-
ment as used in the proof of Theorem 2.2 shows that F is contained
in A. In particular, Ωf{G)r Π &G(A) S F ξ^ A. If for some prime p
the component Ap of A is not 1, then f(p) = oo and f(p) > 0, hence
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f(p) ^ d(p). Therefore, Ωd(A) £ Ωf(A). By the maximality of E,
Ωf(A) = E. This implies Ωd(A) = fld(£?), and Theorem 2.2 is applicable.

(2) is a special case of (1).
In any hypercylic group G the torsion elements of an order divisible

by primes p > q only form a subgroup G(q); cf. [2, p. 21, Proposition
1], Therefore (3) is also a special case of (1).

Clearly (4) implies (1).
Every hypercentral group is locally nilpotent [5, p. 223] and every

locally nilpotent group has a unique p-Sylow subgroup for every prime
p [5, p. 229]. Hence (5) is a special case of (4).

COROLLARY 2.6. For a p-Sylow subgroup P of a finite group G
let E be maximal among the abelian, normal subgroups of P of ex-
ponent dividing pn, n^ d(p). Then &0(E) has a normal p-complement
and E is the set of all elements in &G(E) of order dividing pn.

Proof. Since P normalizes C = &G(E), S = &P(E) *s a P-Sylow-
subgroup of C. Moreover, Ωd(S) = Ωd^P{E) £ E by Corollary 2.5 (5),
hence Corollary 1.5 yields the existence of a normal p-complement in
C. An arbitrary p-Sylow subgroup SQ of C is conjugate to S in C —
&G(E). Therefore E = Ωn(S) = Ωn(S0). This completes the proof.

DEFINITION 2.7. (a) For fe/ define / ' e / b y f'(p) = Q if
/(p) ^ 0 and f'(p) = 1 if f(p) > 0.

(b) For an abelian normal subgroup E of a group G such that
i? is restrained by fe/* define Hf

G(E) by

THEOREM 2.8. If f is a function in / with /(2) Φl, if G is a
hypercentral group, and if E is maximal among its abelian charac-
teristic subgroups restrained by /, then Ωf&GTίf

G(E) = E.

Proof. (1) Let U be a normal subgroup of G contained in
&GTίf

G{E) and restrained by /, and assume by way of contradiction that
U£ E. Then UE/EΦI, whence UE/Ef]Q(G/E) Φ1 by hypercentrality.
Since UE is restrained by / we see that ΩX{S) — Ωf,(S) for every sub-
group S of UE/E, in particular

1 Φ Ωf\UEIE n 3(G/E)] ^[UEΠ %f

G(E)]/E .

But UE Π U(E) = [UΠ ϊf

G(E)]E, where U n *£(#) £ fl/3^(^) C ̂  by
the maximality of E. This contradiction shows that U £ E.

(2) Consider first the case where / assumes only the values 0
and oo. Since G is hypercentral, Ωf(G) is restrained by / (cf. proof
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of Corollary 2.5 (5)) and so is U = Ωf^GH
f

G{E). Therefore (1) implies
Ωf&0U(E) S E. Clearly E £ Ω/£,oty(E), and the theorem is proved
in this case.

( 3 ) Now consider the general case and put Eι = Ίίf

G(E). Then
condition (2) of Proposition 2.1 follows from (1) above. Let A be
maximal among the abelian, characteristic subgroups of G containing
E and restrained by /, where / is defined as in Corollary 2.5 (1). Put
A, = U(A). Then Ωf{A) = E by the maximality of E and Ω?&G?ίf

G(A) =
A by (2) above. In particular since Ωf&G(ELy gΞ flj(G) is restrained
by/,

ΦMΛ) = A

proving (3c) of Proposition 2.1. Clearly AJA is centralized by every
element in G. As in the proof of Corollary 2.5 (1), Ωd(A) = Ωd(E).
Therefore (3d) follows from Theorem 1.11, and Proposition 2.1 yields
ΩfeaiEd = E.

COROLLARY 2.9. For a p-Sylow subgroup P of a finite group G
let E be maximal among the abelian, characteristic subgroups of P
of exponent dividing pn, n ^ d(p). Then &G%p(E) has a normal p-
complement and E is the set of all elements in &GΊίn

P(E) of order
dividing pn.

Proof. Use Theorem 2.8 in the proof of Corollary 2.6.
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