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ON A BOUNDARY PROPERTY OF PRINCIPAL FUNCTIONS

MINEKO WATANABE

A behavior of (PjLi-principal functions on some com-
pactifications of a Riemann surface is studied. The main
result in this paper is that a (P)Li-principal function is ex-
tended almost everywhere continuously to some compactifica-
tions and the extention is almost everywhere constant on each
part of P. If the genus of the surface is finite and P is
the canonical P, (P)Li-principal function can be extended
continuously to the Kerekjartό-Stoilow compactification.

The method of normal operators on open Riemann surfaces was
developed by Sario [10] and others, and they established the existence
theorems of harmonic functions with given singularities and prescribed
modes of behavior near the ideal boundary. Especially, principal
functions constructed by principal operators have been taken up by
several authors, and many interesting results have been proved.
Kusunoki [4] introduced the notion of canonical potentials and
canonical differentials, and developed the theory of Abelian integrals
on open Riemann surfaces. This canonical potential is readily shown
to be (P)Li-principal function corresponding to the canonical partition
of the boundary, if it is single-valued (paragraph 3). On a compact
bordered surface, a (P)Lrprincipal function is defined by the property
that it is constant on each part of partition P of the boundary and
has zero flux over each P-dividing cycle. The main purpose of the
present paper is to study such property of (P)Li-principal functions
on the boundary of arbitrary open Riemann surfaces.

Nakai and Sario [8] showed that, in the case of identity parti-
tion, corresponding Li-principal function can be extended finitely
continuously and it is almost everywhere constant on the Royden
boundary, and this property and vanishing of flux over the boundary
characterize Li-principal functions corresponding to the identity parti-
tion. Kusunoki [5] proved that a canonical potential on a Riemann
surface has a constant value quasi-everywhere on each connected
component of the Kuramochi boundary. We shall show in the present
paper that a (P)Li-principal function can be extended almost every-
where continuously so that the extention is almost everywhere con-
stant on each part of a given regular partition P of the boundary,
where compactification of the Riemann surface may be of Martin,
Kuramochi, Royden, Wiener, or a Q-compactifieation, denoting by Q
any sublattice of HP which contains constant (Theorem 1). In the
case of Martin compactification, each polar set on the boundary is
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also of harmonic measure zero. In the case of Kuramochi compacti-
fication, the condition 'almost everywhere' can be strengthened to
'quasi-everywhere'. Further, if the set of constant values of the
extended function on the parts of P satisfies a certain condition, this
property, vanihing of the flux over any P-dividing cycle and Dirichlet
integrability on a boundary neighborhood characterize the (P)Lr

principal functions (Theorem 2).
In the case of Riemann surfaces of finite genus, a (P^-principal

function corresponding to the canonical partition P is everywhere
constant on each part of P (Theorem 3). However, we can show by
an example that this condition is not sufficient to characterize the
(^Li-principal functions on Riemann surfaces of finite genus.

1. Let R be an open Riemann surface and let us denote by P
a regular partition of the ideal boundary of R (Ahlfors-Sario [1]) and
by / the identity partition. Let U be a boundary neighborhood such
that R — U is a regular region, and Ω a canonical region containing
R — U. Let us also denote by the same P the partition of the
boundary dΩ of Ω which is induced by the original P. For given
singularities s in R — U with vanishing flux on R, there corresponds
a (P)L^principal function fPΩ on Ω. This fPΩ is defined by the
following conditions:

( i ) fPΩ has the singularities s.
(ii) fpQ is constant on each part of P on dΩ.
(iii) the flux of fPΩ vanishes over any part of P. By (ii) and

(iii), we have

(iv) || dfPΩ lUruf = - ϊ fpodf$Ω <
JdU

According to Rodin-Sario [9], the suitably normalized family
{fpoio converges uniformly on a compact set to a (P)Lrprincipal
function fP on R with the singularities s.

Let G be a regular region containing all singular points of fPf

then

\\dfP\\R-G = - \ fpdfP < co

(Ahlfors-Sario [1]). Therefore, for an arbitrary given positive ε, we
can choose a sufficiently large compact set K with a smooth boundary
so that

\\dfP\\R-.κ < e ,

and we can find Ω so large that
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dfP - dfPΩ\\κ < e and ί frdfί - \ fFΩdfP%
JdK JdK

Then we have

d(fP - fP0) \\Q = II d(fP - fPΩ) \\κ

^ II d(fP - fPΩ) \\κ

< 4 ε ,

| d(fP - fPΩ) \\Q_K

| dfP \\E_K + || dfPΩ |

because

\ fidf?
JdK

Thus we get

LEMMA 1. A (P)Lί-pτincipal function fP can be approximated
in norm by principal functions {fPΩ}Ω on canonical regions Ω.

The same assertion can be proved quite analogously for an
L0-principal function too.

2. By Lemma 1 we readily see

LEMMA 2. For any regular partition P of the ideal boundary,
we have

fp=fi + hP

on R, where dhPe(P)Γhm.
Here (P)Γhm is the Hubert space spanned by the differentials of

harmonic measures associated with P-dividing cycles. If 7P is a
P-dividing cycle, ΎP divides a sufficiently large Ω into two regions
Ωx and Ω2. Let wΩ be a harmonic measure which is 1 on 3ΩX — j P

and 0 on dΩ2 — yP. Then wr — lim^^ wΩ is a harmonic measure
associated with γP.

On a compact bordered surface Ω, it is obvious that

d(fPΩ - flQ) = dhPΩ e {P)Γhmψ)

We have

II d(hP - h P 0 ) \\Ω ^ || d(fP - fPQ) \\Q fIΩ) \ 0 as Ω - R .

Therefore dhP e {P)Γhm.
Let us remark that if Rζf)HDi (P)ΓhmaΓhβ = {0}, and therefore

(P)Lrprincipal functions coincide each other for all P.
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LEMMA 3. An (I)LL-principal function f1 has the following
representation on a boundary neighborhood U.

fj = ro + cu ,

ivhere c is a constant, u is a harmonic measure of the ideal boundary
with respect to [7, and r0 is a harmonic function on U satisfying

c^l — u) ^rQ<L c2(l — u)

with suitable constants ct and c2.

Proof. By the definition of (I)LL on R, f1 is a limit function of
gQ as Ω tends to R, where gΩ satisfies

( i ) Λ = 9Ω on dU.
(ii) gΩ is constant on dΩ.

(iii)

Let us denote by r0Q the harmonic function on Ω Π U which is

equal to f1 on d U and 0 on dΩ. Then lim^^ r0Ω = r0 exists and it is
harmonic on U. The function gQ — rQΩ is 0 on 3 U and constant, say
cΩ, on dΩ. Then it is equal to couΩ, where u0 is a harmonic measure
of dΩ with respect to Ω Π U. We have

l im (gQ - r0Ω) = fc - r0 = l im cΩuΩ
Ω->R Ω-+R

and

lim uΩ = u .

Hence c — limfl_^ cΩ exists and is equal to (lim c^)/l im uΩ. Further
we have

- u) ^ r0 ^ (max/ 7 )( l - w) on 17 .
\ άU /

3» Lemmas 2 and 3 show that in order to know the behavior
of (PJLi-principal functions on the boundary, it is enough to study
that of harmonic measures.

Let us remind that a Q-compactification of R, where Q is a
class of continuous functions, is a compactification R% of R, on which
all functions of Q can be extended continuously and the extended
functions separate the points on AQ — RQ — R. For each potential g,
let δp be the set of points b e Δq such that

lim q(a) — 0 ,
a-+b
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and let δQ — Π δq where q runs through the class of all potentials.
We call δQ a harmonic boundary of Rξ. If Rξ is a resolutive com-
pactification, δQ is a carrier of harmonic measure ω on Δq, and
therefore ω(ΔQ — δQ) = 0 (p. 92, Constantinescu-Cornea [2]).

Let us denote by D and W the class of Dirichlet functions and
Wiener functions respectively, then by definition R% is a Royden
compactification and Rfv is a Wiener compactification. Of course, we
have Da W. Let Y be a sublattice of HP which contains constant,
then 7 c W. If YaW, R} is resolutive (p. 99, Constantinescu-
Cornea [2]). Further all points of δD, δw and δγ are regular (p. 101,

[2]).
Let RQ be a resolutive compactification. A P-dividing cycle 7 P

divides R into two parts Rt and R2. Let Δx = ΔQ Π Rι and Δ2 = ΔQ Π R2,
then harmonic measure associated with j P are given by

wΐp — I hdω , wϊp =

where M s a function on JQ which is 1 on J1 and 0 on zί2. Hence,
if all points of δQ are regular, wϊp — 1 on δQ D Λ and 0 on ^ Π z/2.

LEMMA 4. An integral of any element of (P)Γhm is constant
almost everywhere on each part of partition P, if the compactifica-
tion is resolutive and all points of harmonic boundary are regular.

For the harmonic measure u of the ideal boundary with respect
to U, it is easily seen that u — 1 on δQ under the same conditions.

In the case of Martin compactification, the set of points b on
the boundary such that

lim g(a, a0) > 0
a-*b

is polar, where g(a, α0) is a Green function on the Riemann surface
with a pole at α0. Comparing with this Green function in a boundary
neighborhood, we can show that limα_& wΐp(a) — 0 or 1 and limα_^ u(a) —
1 quasi-every where on the boundary.

If R is hyperbolic, a function / which is equal to 1 — u on U
and = 1 on R — U is a Dirichlet potential on R, which is seen by
the fact that the greatest harmonic minorant of / vanishes identically.
There is also a Dirichlet potential on R, which is equal to w7p on R2

and = 0 in a neighborhood of Aλ. On a Kuramochi compactification
a Dirichlet function is a Dirichlet potential if and only if whose
quasi-continuous extention vanishes quasi-every where on the boundary
Δ (p. 193, Constantinescu-Cornea [2]). Hence we obtain the fact that
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an integral of any element of (P)Γhm has a constant value quasi-
everywhere on each part of P on J, and u — 1 quasi-everywhere on Δ+

Thus by Lemmas 2 and 3, we get

THEOREM 1. Suppose that a compactification R* of R is any-
one of Royden, Wiener or a Q-compactification where Q is a sub-
lattice of HP which contains constant. Then a (P)L1-pincipal func-
tion can be extended almost everywhere continuously on R* so that
the extention is constant almost everywhere on each part of partition P.
In the case of Martin or Kuramochi compactification, the condition,
'almost everywhere' can be replaced more restrictive 'quasi-every-
where'.

Let us notice that if the partition P is canonical P, a (P)Lι-
principal function is a single-valued canonical potential and vice
versa. Indeed, if f is a (P ̂ -principal function with canonical P,
there is a single-valued canonical potential g with the same singu-
larities as f. On a sufficiently large Ω there are a (P)L1-principal func-
tion fΩ and a single-valued potential g0 which satisfy

\\df - dfQ\\o = 0 , \\m\\dg - dgΩ\\Q = 0 .

On Ω we have

dfΩ - dgΩ e Γhm(Ω) n ΠM = {0} ,

and therefore we get

df -dge Γhm n Γf;se = {0}

on R.

4. Any principal function /, of Lι or Lo, has a finite Dirichlet
integral on a boundary neighborhood and satisfies

lim ( fdf* = 0 .
Ω-+R J Θ Ω

Further, by Theorem 1, we know that a (P)L1-principal function fP

has a following property (a).
(a) fP can be extended on iϋ* almost everywhere continuously

so that it is constant almost everywhere on each part of P.
Now we consider under what restriction, the condition (a) and

the following (β) and (7) characterize (P)L1-principal functions.
(β) The Dirichlet integral taken over a boundary neighborhood

is finite.
(7) The flux over each P-dividing cycle vanishes.
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If Re OKD, every real function h which is harmonic except
polar singularities and has the properties (β) and (7) with canonical
P, is nothing but a (P)Lrprincipal function corresponding to the
canonical P. Indeed, if fx is a (P ̂ -principal function with the
same singularities as h, then

d(f~h)eΓhef]Γte = {0}.

As a sufficient condition for that the three conditions (a), (β)
and (7) characterize (P)Lrprincipal functions, we can prove

THEOREM 2. Suppose that a compactification R* is one of
Royden, Wiener, Martin, Kuramochi or a Q-compactification with
a sublattice Q of HP containing constant, and a function g which
is harmonic except polar singularities, satisfies (a), (β) and (7). If
the set of constant values which are taken by g on parts of P is
discrete except the supremum and infimum, then g is a {P)Lι-
principal function.

Proof. Let g be a function satisfying the assumption in the
theorem, and fτ a (I)L1-principal function with the same singularities
as g. Let h — fτ — g, then dh e Γh0 Π (P)Γ$8e and h has the property
(a). Let cQ be one constant value of A o n a part of P which is not
the supremum nor infimum. We put the constant values of h on
the boundary in line as follows.

• < c(¥) < < c(2) < c(1) < c0 < c, < c2 < . . . < cΛ < . . . .

Let h V (c(¥)) = hM, then we have hM ^ hM+1 and

(1) \\dhM\\^\\dh\\h^M)^\\dh\\ .

L e t hM A cy = hMN, t h e n hMN ^ hMN+1, and

( 2 ) \\dhMN\\ ^ \ \ d h M \ \ h M , c ^ \\dhM\\ ,

and it is readily seen that dhMN e (P)Γhm. By (2), a proper subsequence
of {hMN}N converges to hM in norm sense and therefore dhM e (P)Γhm.
By (1), a proper subsequence of {hM}M converges to h in norm sense,
and therefore dhe (P)Γhm. Hence we get that g(=fz + h) is a (P)Lr

principal function.

5* Now we restrict R to be of finite genus and the partition P
to be canonical, and consider a compactification R* of type S. We
say a compactification R* is of type S, if for any region G* e R*
whose boundary is in R, G* — Δ is connected (Constantinescu-Cornea
[2]). Let f be a (P)L1-principal function. // a boundary component
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Δe of R is weak, ft + iff and hence ft has a limit at Δe, which is
shown as Lemma 2 in Mori [7]. Though the ft is single-valued on
R, the /i + iff may not be single-valued. But this function is
semi-exact, and we can choose a boundary neighborhood on which a
branch of /x + if* is single-valued. If Δe is not weak, we can show
that a harmonic measure u of the ideal boundary with respect to a
boundary neighborhood can be extended continuously so that u = 1 on
Δe. A harmonic measure wr associated with a dividing 7 is also
identically 1 or 0 on Δe.

A dividing cycle 7 divides the boundary Δ into two parts Δγ and
Δ2y and a canonical region Ω into Ωx and Ω2 if Ω is sufficiently large.
Let wΩ be a harmonic function on Ω which is 1 on dΩx — 7 and 0 on
dΩ2 — 7, then lim^^ wΩ = wγ. Since the genus of R is finite, there
is a planar neighborhood Ue of ΔeJ and a conformal mapping φ of Ue

by which z/e corresponds to a continuum λ* on a plane. Then by a
properly normalized slit mapping ψ of the complement of λ*, the
image of Ue can be mapped conformally on a region on a £-plane so
that λ* corresponds to a segment λ on the real axis which contains
the origin as an interior point. Let r be a positive number on λ,
and denote by Kr the disk | z \ ̂  r. Take a parameter t = log z and
consider a harmonic measure μ(t) of the image of the circle \z\ — r,
0 ^ arg # < 2π with respect to the half plane Re t ^ log r. The func-
tion μ(logz) is harmonic in 0 <\z\ <. r and single-valued if 0 ^
arg z < 2π, and

2 ί r \~ι

μ(log z) ^ — t a n " 1 (log -—Γ) .
π V \z\J

Further, for a sufficiently large £?, we have

μ(\θgz)

which is seen by the maximum principle. Combining these two in-
equalities we get the above result.

Thus, by the use of Lemmas 2 and 3 we obtain that a (P)Lr

principal function has a limit on each boundary component. There-
fore we can extend the function to a Kerekjartό-Stoilow compactifica-
tion. The fact that the extended function fx is continuous on R* is
readily seen because each boundary component has a planar neighbor-
hood and the /x + if* is conformal on the neighborhood.

THEOREM 3. // a Riemann surface is of finite genus, a (P)Lr

principal function associated with the canonical partition P has a
continuous extention on a Kerekjάrtό-Stoilow compactification.
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6* The converse of the theorem is not true, that is, there is a
Riemann surface of finite genus with a function defined on it which
can be extended continuously on a KerekjάrtόStoilow compactifica-
tion, but is not a (P)L ̂ principal function.

Let us consider a Riemann surface R of finite genus which is
not of class OKD but whose all boundary components are weak. The
existence of such a Riemann surface was proved in Jurchescu [3]
An I/o-principal function /0 is a limit of properly normalized family
{/oβ}ί2> where each f0Ω is defined by the property that the normal
derivative vanishes along dΩ (Rodin-Sario [9]). Obviously /0 satisfies
the conditions (β) and (7). Moreover, /0 has a limit at any boundary
component of R. This fact can be proved in the quite same way
as for a (P)LrPrincipal function f. But all the functions f0 — fu

where f0 and f have the same singularities, are constant if and
only if R e OKD (Ahlfors-Sario [1]). Therefore there is a function f0

on R which is not a (P)LΓprincipal function, but can be extended
continuously on a Kerekjartό-Stoilow compactification.
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