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FUNCTIONALLY COMPACT SPACES

R. F. DICKMAN, JR., AND A. ZAME

The purpose of this note is to introduce a property which
is weaker than compactness but stronger than minimality
which closely relates to some filter properties and some map-
ping properties of compact spaces. We also indicate some
procedures for constructing absolutely closed and minimal
spaces.

All of the definitions used but not given in this paper may be
found in [2].

DEFINITION. An open filter base on a topological space X is a
filter base consisting of open subsets of X.

A Hausdorίf topological space X is called functionally compact
if whenever ^ is an open filter base on X such that the intersection
A of the elements of ^ is equal to the intersection of the closures
of the elements of ^ , then ^ is a base for the neighborhoods of A.

THEOREM 1. There exists a noncompact Hausdorff space which
is functionally compact.

Proof. Let Z+ = positive integers, / = [0,1]. Let 0 < aι < α2 <
< α» < be an increasing sequence in I with lim an = α0. For each
ieZ+ let a\ be a strictly increasing sequence (in (α^, α*) for i ^ 2;
in (0, αj for i = 1) with limy a{ = a{. Let

C = U {α*} U U {a*} .
i>0 i>l

Let a0 — a0 and for i ^ 1 let

oii = {α{, αj-1, , αj, αj .

Let C* = {a{: i Ξ> 0} and put

F= (I\C)UC* .

Let _^~ be the topology on F such that ^ ^ | (I\C) is the usual to-
pology on I\C and a basic open neighborhood of an(n ^ 0) is a set of
the form N U {<*»}, where i\Γ = 0 Π (/\C), 0 open in I and {αf, , αι

%,

It is easy to see that (F, S~) is a Hausdorff space. It is not
compact, however, because C* is an infinite discrete closed set in F.
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In fact, if OlfO2e^~ and Ox Π C* Φ 0 , O2 Π C* Φ 0 then c Z ^ Π
clF02 Π C* is infinite, so that points in C* cannot be separated by
closed neighborhoods. We will now show that (F, J7~) is functionally
compact.

Define the set function ψ: F—+1 via

(a if aeI\C

a0 if a — a0

{a\, , αj, αj if α = aiy i ^ 1

and 'f(A) = Uα6^^({»}) for AQ F. ψ does not preserve openness or
closedness. However, if Aξ^Fis closed then there exists a set A%
closed in /, such that

( i ) ψ(A) n (AC) = AC n (AC)
and

(ii) ψ(A) 2 A%
namely,

AC = cij^ίii) n (AC).

Hence, if UQF is open there exists an open set U°ξΞzI such that
(iϋ) u° n (i\C) = ψ(U) n (i\C)
(iv) U°^ψ(U);

namely, the set U° = ((t/')T (where ' denotes complementation in either
F or I).

Now, suppose ^ is an open filter in F such that Π{U: Ue^} =
Π{clFU: Ue^} = A and that 7 3 A , F e ^ I We claim that there
exist Uu U2e^~ such that F 3 [7, n i72.

First of all, if O e ^ " and 0 Π C* is infinite, then clF0^C*.
Hence if 4 ί Ί C * is finite then there exists Ue^ such that Z7ίΊ C* =
An C*, while if A Π C* is infinite then 4 3 C * . Thus, in either case
there exists Γ7i e ^ such that F Π C* a t/i Π C*. Furthermore,

7 °2 f ( i l ) - Πf(clFU)^ Π (c^C7)c .

Hence, since V° is open in / and (clFU)e is closed in /the compactness
of / implies that there exists U2e^ such that V° 2 (clFU2)

c. But then

F ° n (/\C) = t ( τo n (AC) =vn (i\C) a (e^*72)c n (i\C)

= (ciFi72) n (AC) 2 ?72 n ( A C ) .

Hence

F = ( 7 n ( A C ) ) u ( V n c * ) 2 ( u 2 n ( / \ c » u ( ^ n c * ) 2 ^ n u2.

This proves the result.
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There are some obvious generalizations of this construction. The
above example F of a functionally compact space also shows that the
property of being functionally compact is not closed-hereditary or open-
hereditary or even regular-closed-hereditary.

THEOREM 2. A Hausdorff space X is minimal Hausdorff if and
only if for every point xe X and every open filter-base ^ on X
such that x = Π {U: Ue ^} and x = Π {clxU: Ue %f}, %r is a base for
the neighborhoods of x.

Proof of the necessity. Suppose that X is minimal Hausdorff and
that ^ is an open filter-base on X and xe X such that

x=Γ\{U:Ue^} and x = n {clxU: Ue ^}

and let R be any open set containing x. We note that x is the uni-
que cluster point of ^/. Thus by Theorem 1.3 of [1], ^/ converges
to x and so there exists U e ^/ such that '2S c R. Of course this
implies that ^ is a base for the neighborhoods of x.

Proof of the sufficiency. We need to show that every open filter-
base with a unique cluster point converges to that point. To this end
let 3̂ ~ be an open filter-base on X with a unique cluster point x and
let R be any open subset of X containing x. Let c//-'~ be the collec-
tion of all open subsets of X containing x and let

^/ = {VΠ W: VeT and

Then "2/ is an open filter-base on X,

x = ΓΊ {17: Ue <2f} and x = Π {clxU: Ue

Thus by our hypothesis there exists U e Ήf such that Ua R. Of course
this implies that Y* converges to x and this completes the proof.

COROLLARY 2.1. Every functionally compact Hausdorff space is
minimal Hausdorff.

Proof. This result is an immediate consequence of the definition
of functionally compact and Theorem 2.

The example due to Urysohn in Remark 1.5 of [1] is a minimal
Hausdorff space which is not functionally compact. In the next section
we indicate a method of constructing many such spaces.

COROLLARY 2.2. A functionally compact Hausdorff space is com-
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pact if and only if it is regular.

Proof. The proof follows immediately from the fact that a mini-
mal Hausdorff is compact if and only if it is regular.

DEFINITIONS. By a mapping we will always mean a continuous
function. A mapping from a space X to a space Y is closed provided
for every closed set C in X,f(C) is a closed set in Y.

THEOREM 3. A Hausdorff space X is functionally compact if
and only if every mapping of X into any Hausdorff space is closed.

Proof of the necessity. Suppose that X is functionally compact
and let / be a mapping of X into a Hausdorff space Y. Let C be a
closed set in X and suppose there exists a point y in clγf(C)\f(C).
Let °F be the collection of all open subsets of Y containing y and
let <2S = {f-\V)\ VeT}. By Theorem 2, X is minimal Hausdorff and
hence absolutely closed. Since continuous images of absolutely closed
spaces are absolutely closed, f(X) = clγf{X) and so yef(X). Thus
^ is a collection of nonempty open subsets of X and therefore is an
open filter-base on X. Furthermore since Y is a Hausdorff space,
f-\y) = n {U: Ue^} and f~\y) = n {clzU: Ue^}. Thus by our
hypothesis <2S is a base for the neighborhoods of f~ι{y) and so there
exists Ue^ such that UQX\C. But then f(U) is an open subset
of f(X) that contains y and misses f(C) (since U = f-ι{f{U)) if Ue %f)
and this is a contradiction. Thus f(C) is closed and this completes
the proof of the necessity.

Proof of the sufficiency. Suppose that every mapping of X into
a Hausdorff space is closed and let ^ be an open filter-base on X
such that the intersection A of the elements of ^ equals the inter-
section of the closures of the elements of <%s. Suppose further that
there exists an open set R of X containing A such that for every
Ue %S, (X\R) Π U ΦΦ. Let Y be the decomposition of X whose only
nondegenerate element is A and let / be the natural transformation
of X onto Y defined by xef(x). We topologize Y by defining a base
& for a topology as follows:

5 6 , ^ if and only if (i) f~x(β) is an open subset of X\A

or

(ii) f~\B) 6 <& .

Then Y with this topology is a Hausdorff space and / is a mapping
of X onto Y. By our hypothesis / must be a closed map however
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f(X\R) is not closed since f(A) is a limit point of f{X\R) and
f(A)£f(X\R). This is a contradiction and this completes the proof.

REMARK. The space F of Theorem 1 and Theorem 3 show that
the property of being functionally compact is not productive. In fact,
even if 2^ is compact Fx & will not usually be functionally compact
since the projection π: F x <& —> gp7 is not a closed map unless 2^ is
finite.

COROLLARY 3.1. Let X be a Hausdorff space, Z a functionally
compact Hausdorff space and h a mapping of Z onto X. Then X is
functionally compact.

Proof. Let / be a mapping of X into a Hausdorff space Y and
let C be a closed subset of X. Since Z is functionally compact, the
mapping foh is a closed map of Z into Y and so f(C) = (f°h){f~\C))
is a closed subset of F. Thus / is closed and X is functionally
compact.

COROLLARY 3.2. If a Hausdorff space X is the union of finitely
many functionally compact spaces Xu X21 , Xn, X is functionally
compact.

Proof. Let / be a mapping of X into a Hausdorff space Y and
let C be a closed subset of X. Then each of the restricted mappings
/ | X,, i - 1, 2, . , n, is closed and so f(C) = U {(f\Xi)(C Π X.): i -
1,2, •••,%} is closed in Y. Thus / is closed and X is functionally
compact.

DEFINITION. A closed subset C of a space X is said to be r-closed
if whenever B is closed in C, x$B there exist disjoint open sets in
X containing a? and B, respectively.

THEOREM 4. An r-closed subset C of a functionally compact
space X is functionally compact.

Proof. Let ^ be an open filter-base on C such that

Π {U: Ue ^} = {cleU:

Let 5^ be the open filter-base on X consisting of all open sets V of
X such that VΠCe^/.

Then since C is an r-closed subset of X, Π {V: VeT} = A =
{c^F: FeT 1} and since X is functionally compact, Γ is a base for
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the neighborhoods of A. Of course this implies that ^ is a base for
the neighborhoods of A relative to C Hence C is functionally com-
pact.

It is also easy to see that if C is an open and closed subset of
a functionally compact space X then C is functionally compact.

2* Some related examples* Urysohn has given an example of
an nonminimal absolutely closed space (Example 1.4 of [3]) and an
example of a noncompact minimal space (Remark 1.5 of [1]). We will
give here two general methods for constructing such spaces. In fact,
our minimal spaces will be nonfunctionally compact, as is Urysohn's.

EXAMPLE 1. Let (X, 3ίΓ) be a compact Hausdorff space such that
Γ g X i s an infinite closed subset, mt^Y — 0 . Let *f be any to-
pology on Y strictly stronger than Jst~ \ Y, e.g., the discrete topology,
and let ^ be the following topology on X: ^ \ (X\Y) = 3ίT \ (X\Y)
and a basic open set intersecting Y is of the form (<£? Π (X\Y)) U T,
where T S ^ Π Y, ^ eJΓ, Te^Z Then (X, <%s) is a nonminimal
Hausdorff space (since ^ is stronger than j?t~) and int^ Y — 0 .
However, we claim that (X, 1&) is absolutely closed.

Let ^ = {Ca: a e J%f] be a ^-open covering of X. Notice that
for each Ue %S there exists KeST such that KS U and K Π (X\Y) =
Uf] (X\Y). Thus, if Ka is such a set for Ca then {Ka:ae^f} is a

covering of X. Hence there exist ax , an such that

so that

and hence

cl^Cai U U clwca% = X .

This is a generalization of one of Urysohn's examples (Example
1.4 of [3]): Let ai—^ai be disjoint convergent sequences and let X—
Ui,iία0 U U Π α J U {°°} be the 1-point compactification of the union
of these sequences and their limit points. Let Y = {aly α2, •} U {°°}
and let <^~ be the discrete topology on Y. Then (X, ^ ) is Urysohn's
example.

EXAMPLE 2. Let (X, ^T) be a compact Hausdorff space, YQX
and φ a function from Y into the 2-element subsets of Y such that

( i ) Y is closed;
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(ii) inW Y = 0
(iii) t h e r e e x i s t xly x2 eY,xxΦ x2 s u c h t h a t x{ e cl^ (Y\{x19 x2})

(i = 1, 2);
(a) φ{z,) Π φ(z2) = 0 if zx =£ z2;
(θ) U β r ?>(»)= Γ;

(7) there exist ^ =£ #2 such that x{ e φ(yt)9 i = 1, 2;
(<?) for each ^ , <2?2 e J ί ^ such that a?f e ̂ , i = 1, 2 there exists

1/€ Y such that φ(ί/) Π & Φ 0,i = 1, 2.
[For instance, we could take X = [0,1], F = {a{: i = 1, , 4, ̂  ̂  1} U
{di, α2, α3, α4}, where the ê  are distinct and the {a{) are disjoint sequences
of distinct points with lim,- a\ — α, . We can let φ be a function which
"identifies" α{ and α|, a{ and α{, αx and α3, α2 and α4.]

Let Y* = {φ(y): y e Y} and denote <?(#) by y*. Let X* =
(X\Γ) U Y*. Let . ^ be the topology on X* defined as follows:
Ue ^ <=> there exists & e SΓ such that

(2) for each y*eϋn Γ* there exists Ve^φ(y)^V, VS^
such that if <p(z) S F then z* e U.

It is to check that ^ is actually a topology and that ά?~ is
Hausdorff. However, if <?» έ7z€ ^7y* e ̂ , i/? G ̂ 2 then (d) implies
that cljrέ?i Π cl^^2 Φ 0 . In particular, ^ ~ is not compact.

Notice that if C £ X * is closed then there exists a closed set
C c g l such that

- cn(x*\r*)
and

CcS(Cf) (X*\Y*)) U (Uvec φ(y)),

namely,

cc - ^ ( c n (-r*\^*))

PROPOSITION 1. (X*, J7~) is minimal.

Proof. Let ̂  be an open filter such that

n {U: Ue ̂ } = n {c^ϊJ: C7G ^} - {x}

and let F G ^ ^ G F We claim that there exists Ue^f such that

Case 1. Suppose x = p* e Γ*. Then there exists We^T with
5T~ such that r n ( I \ Γ ) S 7 n ( I \ F ) and such that if

y* € Γ*, 9>(|/) ε ^ " then y* e F. Then
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so there exists Z7e^< such that 2 ^ 3 (c£^£7)c. In particular,

wn(X\Y)^un(X*\Y*) .

However, if z* e(Uf] Y*)\V then <p(z) g; W but φ(z)Q(ch-Uy since
Ue^Z Thus if 2;* e (U Π Γ*)\ V then there exists y e (cl^-U)c\ Ύ/^, a
contradiction. Thus 7 3 (U Π (X*\Y*)) U (17(1 Γ*) = 17.

2. Suppose xeX*\Y*. We may suppose that F g Γ \ F *
and in fact that cl^VQX^Y* since Γ is ^-closed in X. Then,
again, there exists Ue^r such that FΠ (X*\Y*) 2 £7ίΊ (X*\Γ*).
Since f f e j ^ and c ί x F g I * \ P we must have that UQX*\Y* so
that again 7 2 £7.

PROPOSITION 2. (X*, j^~) is wo£ functionally compact.

Proof. Let A = {#?, τ/2*}. Suppose £>(#,) = {̂ , &{}, <p(?/2) = {#2, x'2).
If ^ 1 , <£?/, £?2> έ?i e J ^ are sets containing â , a f, a;2, ίi?2, respectively
then there are ! 7 e y containing all f e 7 * with

9(1/) gΛU ^1' U^U ίY ,

and if ^ is the filter base of all such U then Π U = Π cẐ - U = A.
However, there exist ^ G ^ 7 AQ ^ such that ^ does not contain
any points f e P unless φ(y) is contained in a set of the form
^1 U έ?ι or one of the form ^ 2 U ̂ 2 ' Thus the filter generated by
*%S does not contain all neighborhoods of A.

In [4] G. Viglino studies a property similar to functional com-
pactness. X is C-compact if for each closed set A S X and each open
cover ^ = {Ua} of A there exist alf , an: clz(Uai U U UaJ ^A.
It is easy to see that if X is C-compact then X is functionally com-
pact. We do not know whether the two properties are equivalent.

Urysohn's two examples to which we have referred can both be
embedded as (nondense) subsets of functionally compact spaces. The
one referred to in Example 1 can be embedded in F. If we let Q be
the quotient space obtained from two disjoint copies of F by identify-
ing the points α̂  in the first with α̂  in the second, i — 1, 2, , we
get a functionally compact space in which Urysohn's minimal, non-
compact space can be embedded, again as a nondense subset. This
is the best that can be expected, since an absolutely closed space C
embedded in a Hausdorff space H would have to be a closed subset
of H, and hence not dense in H is H is functionally compact unless
C = H. Also, since open and closed subsets of functionally compact
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.spaces are functionally compact a nonfunctionally compact absolutely
closed space can not be embedded as an open subset of a functionally
compact set. We do not know whether for each Hausdorff H there
exists a functionally compact X with H^X.
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