THE SCHWARZIAN DERIVATIVE AND MULTIVALENCE

W. J. KIM

A generalization of the Schwarzian derivative and a sufficient condition for disconjugacy of the *n*th-order differential equation with analytic coefficients are obtained. These results are then used to establish a multivalence criterion for a certain family of analytic functions.

Let y_1 and y_2 be linearly independent solutions of the differential equation

$$(1.1) y'' + p(z)y = 0$$

and let

$$(1.2) w = \frac{y_2}{y_1} .$$

Then, by a classical formula,

$$(1.3) p = \frac{1}{2} \{w, z\}$$

where $\{w, z\}$ is the Schwarzian derivative of w, i.e.,

$$\{w,z\}=\left(rac{w^{\prime\prime}}{w^{\prime}}
ight)^{\prime}-rac{1}{2}\left(rac{w^{\prime\prime}}{w^{\prime}}
ight)^{2}$$
 .

Conversely, the general solution w of (1.3) is of the form (1.2).

Utilizing the above relations, Nehari [5] proved that for an analytic function f to be univalent in the unit disk $D=\{z\colon |z|<1\}$ it is necessary that

$$|\{f,z\}| \le \frac{6}{(1-|z|^2)^2}, \qquad z \in D,$$

and sufficient that

$$|\{f,z\}| \leq rac{2}{(1-|z|^2)^2} \;, \qquad z \in D \;.$$

Generalizations of formula (1.3) for higher-order differential equations have recently been obtained. Vodička [9] considered the nth-order equation of the type

$$(1.4) y^{(n)} + p(z)y = 0$$

and derived a relation between the coefficient p and the function w =

 y_2/y_1 , where y_1 and y_2 are any two linearly independent solutions of (1.4). In a recent paper, Lavie [4] established relations between the coefficients of the differential equation

$$(1.5) y^{(n)} + p_{n-1}(z)y^{(n-1)} + \cdots + p_0(z)y = 0$$

and the function $w = y_2/y_1$, where y_1 and y_2 are certain linearly independent solutions of (1.5).

In § 2 we shall consider the *n*th-order differential equation (1.5) and derive relations in which each coefficient p_i is expressed as a function of the ratios y_i/y_i , $i = 1, 2, \dots, n-1$, where y_i, y_i, \dots, y_n are linearly independent solutions of (1.5).

In §3, using the relations derived in §2, we establish a sufficient condition for p-valence of a p-parameter family of analytic functions.

2. In this section we shall obtain some invariants which play a role in the study of differential equation

$$(2.1) y^{(n)} + p_{n-2}(z)y^{(n-2)} + \cdots + p_0(z)y = 0$$

which is analogous to that played by (1.3) in the study of (1.1). We remark that there is no loss of generality in considering (2.1) because any homogeneous nth-order linear differential equation can be put into the form (2.1) by a standard transformation.

Let $y_i, i = 1, 2, \dots, n$, be linearly independent solutions of (2.1) and set

$$f_1 = \frac{y_1}{y_n}, \, \cdots, f_{n-1} = \frac{y_{n-1}}{y_n}$$
.

We seek relations of the type

$$(2.2) p_i = \Phi_i(f_1, f_2, \dots, f_{n-1}), i = 0, 1, \dots, n-2.$$

Since the left-hand side in (2.2) is independent of the particular choice of n linearly independent solutions, the right-hand side must remain invariant under the transformation

$$f_i \longrightarrow rac{a_{i0} + a_{i1}f_1 + \cdots + a_{in-1}f_{n-1}}{b_0 + b_1f_1 + \cdots + b_{n-1}f_{n-1}}, \, i = 1, 2, \, \cdots, \, n-1 \; ,$$

where the a's and b's are constants.

THEOREM 2.1. Let y_i , $i = 1, 2, \dots, n$, be linearly independent solutions of (2.1), let

$$(2.3) f_1 = \frac{y_1}{y_n}, \dots, f_{n-1} = \frac{y_{n-1}}{y_n}$$

and let W_i be the determinant defined by

$$W_i = egin{array}{ccccc} f_1' & f_2' & \cdots & f_{n-1}' \ & \ddots & & & & \ f_1^{(i-1)} & f_2^{(i-1)} & \cdots & f_{n-1}^{(i-1)} \ f_1^{(i+1)} & f_2^{(i+1)} & \cdots & f_{n-1}^{(i+1)} \ & & \ddots & & \ f_1^{(n)} & f_2^{(n)} & \cdots & f_{n-1}^{(n)} \ \end{array}
ight],$$

 $i = 1, 2, \dots, n$. Then we have

$$(2.4) \quad p_i = \frac{1}{W_n \sqrt[n]{W_n}} \left[\sum_{j=0}^{n-i} (-1)^{2n-j} (1-\delta_{nj}) \binom{n-j}{n-j-i} W_{n-j} (\sqrt[n]{W_n})^{(n-j\to i)} \right],$$

 $i = 0, 1, \dots, n-2$, where $\delta_{nn} = 1$ and $\delta_{nj} = 0$ otherwise.

Conversely, the general solution $(f_1, f_2, \dots, f_{n-1})$ of the system (2.4) of differential equations is of the form (2.3).

Proof. It is easily confirmed that $1, f_1, \dots, f_{n-1}$ are linearly independent solutions of the differential equation

$$y^{(n)} - \frac{W_{n-1}}{W_n} y^{(n-1)} + \cdots + (-1)^{n+1} \frac{W_1}{W_n} y' = 0$$

and that $W_{n-1} = W'_n$. Put

$$y = Y \cdot \exp\left(\frac{1}{n} \int \frac{W_{n-1}}{W} dz\right) = Y \cdot \sqrt[n]{W_n}$$
.

Then the function Y satisfies the differential equation

$$(2.5) Y^{(n)} + q_{n-2}(z)Y^{(n-2)} + \cdots + q_0(z)Y = 0$$

where

$$q_i = rac{1}{W_n \sqrt[n]{W_n}} igg[\sum_{j=0}^{n-i} {(-1)^{2n-j}} (1-\delta_{nj}) igg(rac{n-j}{n-j-i} igg) W_{n-j} (\sqrt[n]{W_n})^{(n-j-i)} igg]$$
 ,

 $i = 0, 1, \dots, n - 2$. Furthermore, it is evident that

$$\frac{f_1}{\sqrt[n]{W_n}}, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_n}}, \frac{1}{\sqrt[n]{W_n}}$$

are linearly independent solutions of (2.5).

We now assert that

(2.6)
$$\frac{f_1}{\sqrt[n]{W_n}} = Ky_1, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_n}} = Ky_{n-1}, \frac{1}{\sqrt[n]{W_n}} = Ky_n$$

for some constant K. But, if this assertion is true, it would imply that the differential equations (2.1) and (2.5) have the same set of linearly independent solutions y_1, \dots, y_n . In other words, (2.1) and (2.5) are identical, i.e., $p_i = q_i$, $i = 0, 1, \dots, n-2$, which proves the theorem. To prove the equalities in (2.6), it suffices to prove only the last equality. It is easily confirmed that

$$(-1)^{n-1}W_n=rac{W}{y_n^n}$$
 ,

where W is the Wronskian of y_1, \dots, y_n (see, e.g., [7]). Since the Wronskian W is constant, we may set $K = -1/\sqrt[n]{W}$ to obtain the last equality in (2.6).

The converse is easy to prove; it follows from the fact that

$$\frac{f_1}{\sqrt[n]{W_n}}, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_n}}, \frac{1}{\sqrt[n]{W_n}}$$

are linearly independent solutions of (2.1).

For the second-order equation (1.1), the formulas in (2.4) yield the familiar relation (1.3); and for the third-order equation $y''' + p_1(z)y' + p_0(z)y = 0$,

$$\begin{split} p_{\scriptscriptstyle 0} &= \frac{-1}{3} \bigg[\frac{2}{9} \Big(\frac{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'} \Big)^{\scriptscriptstyle 3} - \Big(\frac{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'} \Big)'' \\ &- \Big(\frac{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'} \Big) \Big(\frac{f_{\scriptscriptstyle 1}'' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 2}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'} \Big) \bigg] \,, \\ p_{\scriptscriptstyle 1} &= \frac{f_{\scriptscriptstyle 1}'' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}'' f_{\scriptscriptstyle 2}'} + \Big(\frac{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}'' f_{\scriptscriptstyle 2}'} \Big)' - \frac{1}{3} \Big(\frac{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}''' - f_{\scriptscriptstyle 1}''' f_{\scriptscriptstyle 2}'}{f_{\scriptscriptstyle 1}' f_{\scriptscriptstyle 2}'' - f_{\scriptscriptstyle 1}'' f_{\scriptscriptstyle 2}'} \Big)^{\scriptscriptstyle 2} \,. \end{split}$$

3. Let p_0, \dots, p_{n-2} in (2.1) be analytic functions which are regular in a domain D of the complex plane. The differential equation (2.1) is said to be disconjugate in D if no nontrivial solution of (2.1) has more than n-1 zeros (where the zeros are counted with their multiplicities) in D. We now state an elementary principle which relates disconjugacy with a certain function-theoretic aspect of (2.1), as a theorem for convenient reference.

THEOREM 3.1. Let y_1, y_2, \dots, y_n be linearly independent solutions of (2.1), and let $f_i = y_i/y_n$, $i = 1, 2, \dots, n-1$. Then the differential equation (2.1) is disconjugate in D if and only if every nontrivial linear combination of f_1, f_2, \dots, f_{n-1} is (n-1)-valent in D, i.e., it does not take on any one value more than n-1 times in D.

Proof. If (2.1) is not disconjugate in D, then there exists a

nontrivial solution $y = \sum_{i=1}^n a_i y_i$, for some constants $a_i \neq 0$, $i = 1, 2, \dots, n$, which has more than n-1 zeros in D. Without loss of generality, we may assume that none of the zeros of y_n coincide with the zeros of y. Thus, we find that $a_n + \sum_{i=1}^{n-1} a_i f_i$ has more than n-1 zeros in D, i.e., the linear combination $\sum_{i=1}^{n-1} a_i f_i$ assumes the value $-a_n$ more than n-1 times in D. Conversely, if some nontrivial linear combination $\sum_{i=1}^{n-1} a_i f_i$ takes on the value $-a_n$ more than n-1 times in D, the nontrivial solution $y = \sum_{i=1}^n a_i y_i$ has more than n-1 zeros in D.

Next we shall establish a sufficient condition for disconjugacy of (2.1). We first require the following lemma.

LEMMA 3.1. Let y be analytic in a region R. If $y(a_i) = 0$, $a_i \in R$, $i = 1, 2, \dots, n$, then

$$(3.1) y^{(k)}(z) = \sum_{j=1}^{k+1} {k \choose j-1} P_{n-j}^{(k+1-j)}(z) I_j(z) (a_j-z)^{-j+1},$$

 $k=0,1,\cdots,n-1, where$

$$I_n(z)=\int_{a_n}^z (a_n-\zeta)^{n-1}y^{(n)}(\zeta)d\zeta$$
 , $I_j(z)=\int_{a_j}^z rac{(a_j-\zeta)^{j-1}}{(a_{j+1}-\zeta)^{j+1}}I_{j+1}(\zeta)d\zeta$, $j=1,2,\cdots,n-1$,

and

$$P_{n-j}(z) = \prod_{i=j+1}^{n} (a_i - z)$$
.

Proof. It is easily confirmed that $y = P_{n-1}I_1$, which proves (3.1) for k = 0[1, 3]. The rest follows from induction on k.

We remark that the a_i 's in the above lemma are not necessarily distinct; we may put $a_k = a_{k+1} = \cdots = a_{k+m-1}$ if the y has a zero of order m at a_k .

THEOREM 3.2. Let p_0, \dots, p_{n-1} be analytic in the unit disk $D = \{z: |z| < 1\}$. If

$$(3.2) \quad \sum_{k=1}^{n-1} \frac{(1+|z|)^{n-k}}{(n-k)!} |p_k(z)| + \frac{(1-|z|)(1+|z|)^{n-1}}{n!} |p_0(z)| \leq 1,$$

then the differential equation

$$(3.3) y^{(n)} + p_{n-1}(z)y^{(n-1)} + \cdots + p_0(z)y = 0$$

is disconjugate in D.

Proof. Suppose that (3.3) has a nontrivial solution y with n zeros, i.e., $y(a_i) = 0$, $a_i \in D$, $i = 1, 2, \dots, n$. Then from Lemma 3.1 we have

$$y(z) = (a_{n} - z) \cdots (a_{2} - z) \int_{a_{1}}^{z} \frac{1}{(a_{2} - \zeta_{1})^{2}} \int_{a_{2}}^{\zeta_{1}} \frac{a_{2} - \zeta_{2}}{(a_{3} - \zeta_{2})^{3}} \cdot \cdot \cdot \int_{a_{n-1}}^{\zeta_{n-2}} \frac{(a_{n-1} - \zeta_{n-1})^{n-2}}{(a_{n} - \zeta_{n-1})^{n}} \int_{a_{n}}^{\zeta_{n-1}} (a_{n} - \zeta_{n})^{n-1} y^{(n)}(\zeta_{n}) d\zeta_{n} \cdots d\zeta_{1}.$$

Let H be the convex hull of a_1, \dots, a_n . Since $|y^{(n)}(z)|$ is continuous in H, it attains its maximum in H at some point $z = z_0 \in H$. Taking the absolute values in (3.4) and performing the n-fold integration along the straight line segments connecting a_k and ζ_{k-1} , we arrive at

$$egin{align} |y(z)| & \leq rac{1}{n!} \, |y^{(n)}(z_{\scriptscriptstyle 0})| \prod\limits_{i=1}^{n} |a_i-z| \ & < rac{1}{n!} \, |y^{(n)}(z_{\scriptscriptstyle 0})| \, (1+|z|)^n, \, z \in H \; . \end{align}$$

Similarly,

$$|y^{(k)}(z)| < \frac{(1+|z|)^{n-k}}{(n-k)!} |y^{(n)}(z_0)|, z \in H,$$

 $k = 1, 2, \dots, n - 1$. It is easily confirmed that

$$|I_j| \leq rac{(j-1)!}{n!} \, |y^{\scriptscriptstyle(n)}(z_{\scriptscriptstyle 0})| \, |a_j-z|^j$$
 ,

and that $P_{n-j}^{(k+1-j)}(z)$ is the sum of (n-j)!/(n-k-1)! terms of the form $\prod_{i=1}^{n-k-1} (a_{ii}-z)$. Therefore, we obtain from (3.1)

$$egin{split} |y^{(k)}(z)| &< |y^{(n)}(z_0)| \sum\limits_{j=1}^{k+1} inom{k}{j-1} rac{(n-j)!}{(n-k-1)!} rac{(j-1)!}{n!} (1+|z|)^{n-k} \ &= rac{(1+|z|)^{n-k}}{(n-k)!} \, |y^{(n)}(z_0)|, \, z \in H \; , \end{split}$$

which proves (3.6).

We remark that the second inequality in (3.5) may be improved; by a result of Schwarz [8],

$$\prod_{i=1}^n |a_i-z| < (1-|z|)(1+|z|)^{n-1}, \, z \in H \; ,$$

and therefore

$$|y(z)| < \frac{1}{n!} (1 - |z|)(1 + |z|)^{n-1} |y^{(n)}(z_0)|, z \in H.$$

Finally, we deduce from (3.3), (3.6), and (3.7) that

$$egin{align} |y^{(n)}(z)| &< |y^{(n)}(z_0)| igg[\sum_{k=1}^{n-1} rac{(1+|z|)^{n-k}}{(n-k)!} \, |\, p_k(z)| \ &+ rac{1}{n!} \, (1-|z|) (1+|z|)^{n-1} \, |\, p_0(z)| igg], \, z \in H \; , \end{split}$$

which, for $z = z_0 \in H$, yields

$$1 < \sum_{k=1}^{n-1} rac{(1+|z_0|)^{n-k}}{(n-k)!} \left| \, p_k(z_0) \,
ight| + rac{1}{n!} (1-|z_0|) (1+|z_0|)^{n-1} \left| \, p_0(z_0) \,
ight| \, ,$$

contrary to (3.2). This contradiction proves the theorem.

We add two remarks. A slight modification of the above proof will establish the following statements: Let R be a convex region with diameter δ . If

$$\sum_{k=0}^{n-1}rac{\delta^{n-k}}{(n-k)!}\,|\,p_{\scriptscriptstyle k}(z)\,|\,\leqq 1,\,z\in R$$
 ,

then (3.3) is disconjugate in R. Theorem 3.2 generalizes a result recently obtained by Hadass [2, Th. 2].

There are known to the author a few other disconjugacy criteria for higher-order equations with analytic coefficients [4, 6].

We are now ready to state the disconjugacy condition (Theorem 3.2) as a multivalence criterion. From Theorems 2.1 and 3.1 we see that every nontrivial linear combination of f_1, f_2, \dots, f_{n-1} is (n-1)-valent if the equation

$$y^{(n)} + p_{n-2}(z)y^{(n-2)} + \cdots + p_0(z)y = 0$$

where p_0, \dots, p_{n-2} are defined as in (2.4), is disconjugate. In view of this relation and Theorem 3.2, we have the following theorem.

THEOREM 3.3. Let f_1, f_2, \dots, f_{n-1} be analytic in the unit disk $D = \{z: |z| < 1\}$. Define p_0, p_1, \dots, p_{n-2} as in (2.4). If $\det(f_j^{(i)})_{i,j=1}^{n-1}$ does not vanish in D, and if

$$egin{align} \sum_{k=1}^{n-2} rac{(1\,+\,|z\,|)^{n-k}}{(n\,-\,k)!}\,|\,p_{\,k}(z)\,| \ &+rac{1}{n!}(1\,-\,|z\,|)(1\,+\,|z\,|)^{n-1}\,|\,p_{\,0}(z)\,|\,\leqq 1,\,z\,\in D \;, \end{gathered}$$

then every nontrivial linear combination of f_1, f_2, \dots, f_{n-1} is (n-1)-valent in D.

REFERENCES

- 1. G. A. Bessmertnyh and A. Yu. Levin, Some inequalities satisfied by differentiable functions of one variable, Dokl. Akad. Nauk SSSR **144** (1962), 471-474. (Translation: Soviet Math. Dokl. **3** (1962), 737-740).
- 2. R. Hadass, On the zeros of the solutions of the differential equation $y^{(n)}(z) + p(z)y(z) = 0$, (to appear in the Pacific J. Math.)
- 3. W. J. Kim, On a theorem of Pokornyi, (to appear in the Proc. Amer. Math. Soc.)
- 4. M. Lavie, The Schwarzian derivative and disconjugacy of nth-order linear differential equations, Canad. J. Math. **21** (1969), 235-249.
- 5. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
- 6. ——, On the zeros of solutions of n-th order linear differential equations J. London Math. Soc. **39** (1964), 327-332.
- 7. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II, Springer-Verlag, Belrin, 1964, p. 113.
- 8. B. Schwarz, On the product of the distance of a point from the vertices of a polytope, Israel J. Math. 3 (1965), 29-38.
- 9. V. Vodička, Verallgemeinerung einer Schwarzschen Differentialgleichung, Monatsh. Math. 67 (1963), 137-141.

Received May 28, 1969.

STATE UNIVERSITY OF NEW YORK STONY BROOK, NEW YORK