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THE SCHWARZIAN DERIVATIVE AND MULTIVALENCE

W. J. KIM

A generalization of the Schwarzian derivative and a suf-
ficient condition for disconjugacy of the wth-order differential
equation with analytic coefficients are obtained. These results
are then used to establish a multivalence criterion for a certain
family of analytic functions.

Let y1 and y2 be linearly independent solutions of the differential
equation

(1.1) y" + p(z)y = 0

and let

(1.2) w = Jί*- .

Then, by a classical formula,

(1.3) V = \{™, A
Δ

where {w, z] is the Schwarzian derivative of w, i.e.,

2\wf

Conversely, the general solution w of (1.3) is of the form (1.2).
Utilizing the above relations, Nehari [5] proved that for an an-

alytic function / to be univalent in the unit disk D = {z: \z\ < 1} it
is necessary that

and sufficient that

Generalizations of formula (1.3) for higher-order differential equa-
tions have recently been obtained. Vodicka [9] considered the nth-
order equation of the type

(1.4) yw + p(z)y = 0

and derived a relation between the coefficient p and the function w =
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ii where yt and y2 are any two linearly independent solutions of
(1.4). In a recent paper, Lavie [4] established relations between the
coefficients of the differential equation

(1.5) y{n) + Ί>n-&)y{n~l) + + Po(z)y = 0

and the function w = yJVi, where y1 and y2 are certain linearly in-
dependent solutions of (1.5).

In §2 we shall consider the wth-order differential equation (1.5)
and derive relations in which each coefficient Vi is expressed as a
function of the ratios yi/yn, i = 1, 2, , n — 1, where y19 y2y , yn

are linearly independent solutions of (1.5).
In § 3, using the relations derived in § 2, we establish a sufficient

condition for ^-valence of a ^-parameter family of analytic functions.

2* In this section we shall obtain some invariants which play a
role in the study of differential equation

(2.1) y{n) + pn-2(z)y{n-2) + + po(z)y = 0

which is analogous to that played by (1.3) in the study of (1.1). We
remark that there is no loss of generality in considering (2.1) because
any homogeneous wth-order linear differential equation can be put into
the form (2.1) by a standard transformation.

Let yif i = 1, 2, , n, be linearly independent solutions of (2.1)
and set

f __ Vl f _ Vn-l
Jl f yJn~1 —

Vn Vn

We seek relations of the type

(2.2) Pi = Φiifvft, •• ,Λ_1),ί = 0, 1, . . . , ^ - 2 .

Since the left-hand side in (2.2) is independent of the particular choice
of n linearly independent solutions, the right-hand side must remain
invariant under the transformation

/ . &io + UjiJi "i" + ain_ιJn^ι _ -j o „ I

where the α's and δ's are constants.

THEOREM 2.1. Let yiy i = 1, 2, , n, be linearly independent
solutions of (2.1), let

(2.3) /i = - ^ - , • • - , / . - ! = -̂ = -̂
Vn Vn
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and let Wι be the determinant defined by

ft ft ••' fLl

[rί] ff1' - - flt»
f(ί + l) fii + l) fii + l)

/ l J2 * * Jn-l

719

fln) ftn)

i = 1, 2, , n. Then we have

fin)
J n—l

\" ( — l ) 2 n - j ( l — <5 Λι \w .(ϋ
W | i o \ n j τ j

i — 0, 1, , n — 2, where dnn = 1 απd δnj = 0 otherwise.

Conversely, the general solution (f19 /2, , fn_λ) of the system
{2.4) of differential equations is of the form (2.3).

Proof. It is easily confirmed that 1, fίf •• ,/%_i are linearly in-
dependent solutions of the differential equation

y i n ) _

and that Wn^ = W'n. Put

y = Y expί—I—^^—dz) — Y VWn .

Then the function Y satisfies the differential equation

{2.5) Y^ + qn^)Y{n-2) + + Qo(z)Y= 0

where

n — j

n - j -

i = 0, 1, , n — 2. Furthermore, it is evident that

= 0

are linearly independent solutions of (2.5).
We now assert that

< 2 - 6 > r = Kv =w
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for some constant K. But, if this assertion is true, it would imply
that the differential equations (2.1) and (2.5) have the same set of
linearly independent solutions yί9 *',yn. In other words, (2.1) and
(2.5) are identical, i.e., p{ — qi9 i = 0, 1, , n — 2, which proves the
theorem. To prove the equalities in (2.6), it suffices to prove only
the last equality. It is easily confirmed that

where W is the Wronskian of yί9 -—,yn (see, e.g., [7]). Since the
Wronskian W is constant, we may set K = —Ijtyw to obtain the last
equality in (2.6).

The converse is easy to prove; it follows from the fact that

are linearly independent solutions of (2.1).
For the second-order equation (1.1), the formulas in (2.4) yield the

familiar relation (1.3); and for the third-order equation ym + Pι{z)yr +

Po = ~ l -=-1[( (
3 L 9 V nn - fui ) v fj % - f»f>/ ftfttt ftttpt \f ptt frtt fttt ptt \η

— ( J1*2 ~ Jl J2 \ί Jl J2 "~ Jl Jz \
N Jljz / l j 2 7 X /2/2 / 1 / 2 J Λ

nj __ J l J2 J l J2 1 / J1J2 Jl J2 \ j W J iji J \ J2 \

JiJi ~ Ji J2
 x

 J1J2 Ji J2
 y
 o

 x
 /1/2 ~ Ji J2

 /

3. Let p0, , pw_2 in (2.1) be analytic functions which are regular
in a domain D of the complex plane. The differential equation (2.1)
is said to be disconjugate in D if no nontrivial solution of (2.1) has
more than n — 1 zeros (where the zeros are counted with their
multiplicities) in D. We now state an elementary principle which
relates disconjugacy with a certain function-theoretic aspect of (2.1),
as a theorem for convenient reference.

THEOREM 3.1. Let y19 y29 , yn be linearly independent solutions
of (2.1), and let f = yjyn, i — 1, 2, , n — 1. Then the differential
equation (2.1) is disconjugate in D if and only if every nontrivial
linear combination of f, f2, — ,fn^ is (n — l)-valent in D, i.e., it
does not take on any one value more than n — 1 times in D.

Proof. If (2.1) is not disconjugate in D, then there exists a
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nontrivial solution y = Σ?=i aiVn for some constants α̂  =£ 0, i = 1, 2, , w,
which has more than w — 1 zeros in D. Without loss of generality, we
may assume that none of the zeros of yn coincide with the zeros of y.
Thus, we find that an + Σ?^ 1 aifi has more than n — 1 zeros in D,
i.e., the linear combination Σ Γ ί 1 ^ / * assumes the value — an more than
n — 1 times in D. Conversely, if some nontrivial linear combination
Σ?ί . l α i/ ί takes on the value — an more than n — 1 times in D, the
nontrivial solution y = Σ?=i α ^ has more than w — 1 zeros in D.

Next we shall establish a sufficient condition for disconjugacy of
(2.1). We first require the following lemma.

LEMMA 3.1. Let y be analytic in a region R. If ^(α^) = 0, α̂  e R,
i = 1, 2, , n, then

(3.1) yM(z) = Σ (y * ^Pίkj i

k = 0, 1, , n — 1, where

= Π

Proof. It is easily confirmed that 7/ = Pn^J19 which proves (3.1)
for k = 0[l, 3]. The rest follows from induction on k.

We remark that the α/s in the above lemma are not necessarily
distinct; we may put ak — ak+1 = = akΛ.m_x if the y has a zero of
order m at ak.

THEOREM 3.2. Let p0, , pn_y be analytic in the unit disk D =
{z:\z\<l}. If

(3.2) Σ(1 + y ^^Y^Ί

then the differential equation

(3.3) yw + Pn^^)!/^-^ + + po(z)y - 0

is disconjugate in D.
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Proof. Suppose that (3.3) has a nontrivial solution y with n
zeros, i.e., y{aι) — 0, a{ e D, i = 1, 2, , n. Then from Lemma 3.1 we
have

y(z) = (an - z) (α2 -

(3.4)
"i (α2 - d ) 2 J«2 (α8 - ζ 2 ) 3

Let H be the convex hull of αx, •• ,α % . Since [i/Cw)(^) I is continuous
in Hy it attains its maximum in H at some point z = zQeH. Taking
the absolute values in (3.4) and performing the w-fold integration along
the straight line segments connecting ak and ζ ^ , we arrive at

(3.5)

Similarly,

(3.6)

A; = 1, 2, , n — 1. It is easily confirmed that

and that PifL+ 1"5''^) is the sum of (n — j)l/(n — k — 1)1 terms of the
form ΠΓ^Ί*"1 (au — z) Therefore, we obtain from (3.1)

(n - j)\ (j - 1)!
f^Ί \j — 1/ (n — k — 1)! ^ !

( 1 + 2; | ) % - f e , , w My-1- î  ^ 1/ v Hz ^ 2̂  G J ?
(TO - A;)! ° '

z\y

which proves (3.6).
We remark that the second inequality in (3.5) may be improved;

by a result of Schwarz [8],

and therefore

(3.7)
nl

z\y~\zeH,

rwι.26£.
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Finally, we deduce from (3.3), (3.6), and (3.7) that

I yin)(z) i < I y^(z0) I Γ Σ ( 1 + Wχ~k I Pk(z) I
L*=i (n — k)\

which, for z = zoeH, yields

Σ1 < Σ ( 1 + | g ° P I pk(Zo) I + - ^ - ( 1 - I z01)(1 + I z 0 1 ) - 1 I pQ(z0) I ,
A=I (w — A:)! w!

contrary to (3.2). This contradiction proves the theorem.

We add two remarks. A slight modification of the above proof
will establish the following statements: Let R be a convex region
with diameter δ. If

Λ=O (n — k)\

then (3.3) is disconjugate in R. Theorem 3.2 generalizes a result
recently obtained by Hadass [2, Th. 2],

There are known to the author a few other disconjugacy criteria
for higher-order equations with analytic coefficients [4, 6].

We are now ready to state the disconjugacy condition (Theorem
3.2) as a multivalence criterion. From Theorems 2.1 and 3.1 we see
that every nontrivial linear combination of f,f2, •• ,/w_i is (n — 1)-
valent if the equation

y{n) + Pn~2{z)y{n~2) + + po{z)y = 0 ,

where p0, * <,pn-2 are defined as in (2.4), is disconjugate. In view of
this relation and Theorem 3.2, we have the following theorem.

THEOREM 3.3. Let f, /2, •• ,/%_1 be analytic in the unit disk
D = {z: \z\ < 1}. Define pQ, px, - , pn^2 as in (2.4). If det (ff)ZjU
does not vanish in D, and if

(n — k)\

+ - V ( l - l*|)(l + \z\Y~'\po{z)

then every nontrivial linear combination of f, f2, , fn_γ is (n — 1)-
valent in D.
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