THE SCHWARZIAN DERIVATIVE AND MULTIVALENCE

W. J. Kim

Abstract

A generalization of the Schwarzian derivative and a sufficient condition for disconjugacy of the n th-order differential equation with analytic coefficients are obtained. These results are then used to establish a multivalence criterion for a certain family of analytic functions.

Let y_{1} and y_{2} be linearly independent solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(z) y=0 \tag{1.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
w=\frac{y_{2}}{y_{1}} \tag{1.2}
\end{equation*}
$$

Then, by a classical formula,

$$
\begin{equation*}
p=\frac{1}{2}\{w, z\} \tag{1.3}
\end{equation*}
$$

where $\{w, z\}$ is the Schwarzian derivative of w, i.e.,

$$
\{w, z\}=\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{2}
$$

Conversely, the general solution w of (1.3) is of the form (1.2).
Utilizing the above relations, Nehari [5] proved that for an analytic function f to be univalent in the unit disk $D=\{z:|z|<1\}$ it is necessary that

$$
|\{f, z\}| \leqq \frac{6}{\left(1-|z|^{2}\right)^{2}}, \quad z \in D
$$

and sufficient that

$$
|\{f, z\}| \leqq \frac{2}{\left(1-|z|^{2}\right)^{2}}, \quad z \in D
$$

Generalizations of formula (1.3) for higher-order differential equations have recently been obtained. Vodička [9] considered the n thorder equation of the type

$$
\begin{equation*}
y^{(n)}+p(z) y=0 \tag{1.4}
\end{equation*}
$$

and derived a relation between the coefficient p and the function $w=$
y_{2} / y_{1}, where y_{1} and y_{2} are any two linearly independent solutions of (1.4). In a recent paper, Lavie [4] established relations between the coefficients of the differential equation

$$
\begin{equation*}
y^{(n)}+p_{n-1}(z) y^{(n-1)}+\cdots+p_{0}(z) y=0 \tag{1.5}
\end{equation*}
$$

and the function $w=y_{2} / y_{1}$, where y_{1} and y_{2} are certain linearly independent solutions of (1.5).

In $\S 2$ we shall consider the n th-order differential equation (1.5) and derive relations in which each coefficient p_{i} is expressed as a function of the ratios $y_{i} / y_{n}, i=1,2, \cdots, n-1$, where $y_{1}, y_{2}, \cdots, y_{n}$ are linearly independent solutions of (1.5).

In § 3, using the relations derived in § 2, we establish a sufficient condition for p-valence of a p-parameter family of analytic functions.
2. In this section we shall obtain some invariants which play a role in the study of differential equation

$$
\begin{equation*}
y^{(n)}+p_{n-2}(z) y^{(n-2)}+\cdots+p_{0}(z) y=0 \tag{2.1}
\end{equation*}
$$

which is analogous to that played by (1.3) in the study of (1.1). We remark that there is no loss of generality in considering (2.1) because any homogeneous n th-order linear differential equation can be put into the form (2.1) by a standard transformation.

Let $y_{i}, i=1,2, \cdots, n$, be linearly independent solutions of (2.1) and set

$$
f_{1}=\frac{y_{1}}{y_{n}}, \cdots, f_{n-1}=\frac{y_{n-1}}{y_{n}}
$$

We seek relations of the type

$$
\begin{equation*}
p_{i}=\Phi_{i}\left(f_{1}, f_{2}, \cdots, f_{n-1}\right), i=0,1, \cdots, n-2 \tag{2.2}
\end{equation*}
$$

Since the left-hand side in (2.2) is independent of the particular choice of n linearly independent solutions, the right-hand side must remain invariant under the transformation

$$
f_{i} \longrightarrow \frac{a_{i 0}+a_{i 1} f_{1}+\cdots+a_{i n-1} f_{n-1}}{b_{0}+b_{1} f_{1}+\cdots+b_{n-1} f_{n-1}}, i=1,2, \cdots, n-1
$$

where the a 's and b 's are constants.
Theorem 2.1. Let $y_{i}, i=1,2, \cdots, n$, be linearly independent solutions of (2.1), let

$$
\begin{equation*}
f_{1}=\frac{y_{1}}{y_{n}}, \cdots, f_{n-1}=\frac{y_{n-1}}{y_{n}} \tag{2.3}
\end{equation*}
$$

and let W_{i} be the determinant defined by

$$
W_{i}=\left|\begin{array}{llll}
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n-1}^{\prime} \\
& \cdots & \\
f_{1}^{(i-1)} & f_{2}^{(i-1)} & \cdots & f_{n-1}^{(i-1)} \\
f_{1}^{(i+1)} & f_{2}^{(i+1)} & \cdots & f_{n-1}^{(i+1)} \\
& \cdots & & \\
f_{1}^{(n)} & f_{2}^{(n)} & \cdots & f_{n-1}^{(n)}
\end{array}\right|
$$

$i=1,2, \cdots, n$. Then we have

$$
\begin{equation*}
p_{i}=\frac{1}{W_{n} \sqrt[n]{W_{n}}}\left[\sum_{j=0}^{n-i}(-1)^{2 n-j}\left(1-\delta_{n j}\right)\binom{n-j}{n-j-i} W_{n-j}\left(\sqrt[n]{W_{n}}\right)^{(n-j \rightarrow i)}\right], \tag{2.4}
\end{equation*}
$$ $i=0,1, \cdots, n-2$, where $\delta_{n n}=1$ and $\delta_{n j}=0$ otherwise.

Conversely, the general solution $\left(f_{1}, f_{2}, \cdots, f_{n-1}\right)$ of the system (2.4) of differential equations is of the form (2.3).

Proof. It is easily confirmed that $1, f_{1}, \cdots, f_{n-1}$ are linearly independent solutions of the differential equation

$$
y^{(n)}-\frac{W_{n-1}}{W_{n}} y^{(n-1)}+\cdots+(-1)^{n+1} \frac{W_{1}}{W_{n}} y^{\prime}=0
$$

and that $W_{n-1}=W_{n}^{\prime}$. Put

$$
y=Y \cdot \exp \left(\frac{1}{n} \int \frac{W_{n-1}}{W_{n}} d z\right)=Y \cdot \sqrt[n]{W_{n}}
$$

Then the function Y satisfies the differential equation

$$
\begin{equation*}
Y^{(n)}+q_{n-2}(z) Y^{(n-2)}+\cdots+q_{0}(z) Y=0 \tag{2.5}
\end{equation*}
$$

where

$$
q_{i}=\frac{1}{W_{n} \sqrt[n]{W_{n}}}\left[\sum_{j=0}^{n-i}(-1)^{2 n-j}\left(1-\delta_{n j}\right)\binom{n-j}{n-j-i} W_{n-j}\left(\sqrt[n]{W_{n}}\right)^{(n-j-i)}\right]
$$

$i=0,1, \cdots, n-2$. Furthermore, it is evident that

$$
\frac{f_{1}}{\sqrt[n]{W_{n}}}, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_{n}}}, \frac{1}{\sqrt[n]{W_{n}}}
$$

are linearly independent solutions of (2.5).
We now assert that

$$
\begin{equation*}
\frac{f_{1}}{\sqrt[n]{W_{n}}}=K y_{1}, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_{n}}}=K y_{n-1}, \frac{1}{\sqrt[n]{W_{n}}}=K y_{n} \tag{2.6}
\end{equation*}
$$

for some constant K. But, if this assertion is true, it would imply that the differential equations (2.1) and (2.5) have the same set of linearly independent solutions y_{1}, \cdots, y_{n}. In other words, (2.1) and (2.5) are identical, i.e., $p_{i}=q_{i}, i=0,1, \cdots, n-2$, which proves the theorem. To prove the equalities in (2.6), it suffices to prove only the last equality. It is easily confirmed that

$$
(-1)^{n-1} W_{n}=\frac{W}{y_{n}^{n}}
$$

where W is the Wronskian of y_{1}, \cdots, y_{n} (see, e.g., [7]). Since the Wronskian W is constant, we may set $K=-1 / \sqrt[n]{W}$ to obtain the last equality in (2.6).

The converse is easy to prove; it follows from the fact that

$$
\frac{f_{1}}{\sqrt[n]{W_{n}}}, \cdots, \frac{f_{n-1}}{\sqrt[n]{W_{n}}}, \frac{1}{\sqrt[n]{W_{n}}}
$$

are linearly independent solutions of (2.1).
For the second-order equation (1.1), the formulas in (2.4) yield the familiar relation (1.3); and for the third-order equation $y^{\prime \prime \prime}+p_{1}(z) y^{\prime}+$ $p_{0}(z) y=0$,

$$
\begin{gathered}
p_{0}=\frac{-1}{3}\left[\frac{2}{9}\left(\frac{f_{1}^{\prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)^{3}-\left(\frac{f_{1}^{\prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)^{\prime \prime}\right. \\
\\
\left.-\left(\frac{f_{1}^{\prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)\left(\frac{f_{1}^{\prime \prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime \prime}}{f_{2}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)\right] \\
p_{1}=\frac{f_{1}^{\prime \prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime \prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}+\left(\frac{f_{1}^{\prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)^{\prime}-\frac{1}{3}\left(\frac{f_{1}^{\prime} f_{2}^{\prime \prime \prime}-f_{1}^{\prime \prime \prime} f_{2}^{\prime}}{f_{1}^{\prime} f_{2}^{\prime \prime}-f_{1}^{\prime \prime} f_{2}^{\prime}}\right)^{2}
\end{gathered}
$$

3. Let p_{0}, \cdots, p_{n-2} in (2.1) be analytic functions which are regular in a domain D of the complex plane. The differential equation (2.1) is said to be disconjugate in D if no nontrivial solution of (2.1) has more than $n-1$ zeros (where the zeros are counted with their multiplicities) in D. We now state an elementary principle which relates disconjugacy with a certain function-theoretic aspect of (2.1), as a theorem for convenient reference.

Theorem 3.1. Let $y_{1}, y_{2}, \cdots, y_{n}$ be linearly independent solutions of (2.1), and let $f_{i}=y_{i} / y_{n}, i=1,2, \cdots, n-1$. Then the differential equation (2.1) is disconjugate in D if and only if every nontrivial linear combination of $f_{1}, f_{2}, \cdots, f_{n-1}$ is $(n-1)$-valent in D, i.e., it does not take on any one value more than $n-1$ times in D.

Proof. If (2.1) is not disconjugate in D, then there exists a
nontrivial solution $y=\sum_{i=1}^{n} a_{i} y_{i}$, for some constants $a_{i} \neq 0, i=1,2, \cdots, n$, which has more than $n-1$ zeros in D. Without loss of generality, we may assume that none of the zeros of y_{n} coincide with the zeros of y. Thus, we find that $a_{n}+\sum_{i=1}^{n-1} a_{i} f_{i}$ has more than $n-1$ zeros in D, i.e., the linear combination $\sum_{i=1}^{n-1} a_{i} f_{i}$ assumes the value $-a_{n}$ more than $n-1$ times in D. Conversely, if some nontrivial linear combination $\sum_{i=1}^{n-1} a_{i} f_{i}$ takes on the value $-a_{n}$ more than $n-1$ times in D, the nontrivial solution $y=\sum_{i=1}^{n} \alpha_{i} y_{i}$ has more than $n-1$ zeros in D.

Next we shall establish a sufficient condition for disconjugacy of (2.1). We first require the following lemma.

Lemma 3.1. Let y be analytic in a region R. If $y\left(a_{i}\right)=0, a_{i} \in R$, $i=1,2, \cdots, n$, then

$$
\begin{equation*}
y^{(k)}(z)=\sum_{j=1}^{k+1}\binom{k}{j-1} P_{n-j)}^{(k+1-j)}(z) I_{j}(z)\left(a_{j}-z\right)^{-j+1} \tag{3.1}
\end{equation*}
$$

$k=0,1, \cdots, n-1$, where

$$
\begin{gathered}
I_{n}(z)=\int_{a_{n}}^{z}\left(a_{n}-\zeta\right)^{n-1} y^{(n)}(\zeta) d \zeta, \\
I_{j}(z)=\int_{a_{j}}^{z} \frac{\left(a_{j}-\zeta\right)^{j-1}}{\left(a_{j+1}-\zeta\right)^{j+1}} I_{j+1}(\zeta) d \zeta, j=1,2, \cdots, n-1,
\end{gathered}
$$

and

$$
P_{n-j}(z)=\prod_{i=j+1}^{n}\left(a_{i}-z\right)
$$

Proof. It is easily confirmed that $y=P_{n-1} I_{1}$, which proves (3.1) for $k=0[1,3]$. The rest follows from induction on k.

We remark that the a_{i} 's in the above lemma are not necessarily distinct; we may put $a_{k}=a_{k+1}=\cdots=a_{k+m-1}$ if the y has a zero of order m at a_{k}.

THEOREM 3.2. Let p_{0}, \cdots, p_{n-1} be analytic in the unit disk $D=$ $\{z:|z|<1\}$. If

$$
\begin{equation*}
\sum_{k=1}^{n-1} \frac{(1+|z|)^{n-k}}{(n-k)!}\left|p_{k}(z)\right|+\frac{(1-|z|)(1+|z|)^{n-1}}{n!}\left|p_{0}(z)\right| \leqq 1 \tag{3.2}
\end{equation*}
$$

then the differential equation

$$
\begin{equation*}
y^{(n)}+p_{n-1}(z) y^{(n-1)}+\cdots+p_{0}(z) y=0 \tag{3.3}
\end{equation*}
$$

is disconjugate in D.

Proof. Suppose that (3.3) has a nontrivial solution y with n zeros, i.e., $y\left(a_{i}\right)=0, a_{i} \in D, i=1,2, \cdots, n$. Then from Lemma 3.1 we have

$$
\begin{align*}
& y(z)=\left(a_{n}-z\right) \cdots\left(a_{2}-z\right) \int_{a_{1}}^{z} \frac{1}{\left(a_{2}-\zeta_{1}\right)^{2}} \int_{a_{2}}^{\zeta_{1}} \frac{a_{2}-\zeta_{2}}{\left(a_{3}-\zeta_{2}\right)^{3}} \\
& \cdots \int_{a_{n-1}}^{\zeta_{n-2}} \frac{\left(a_{n-1}-\zeta_{n-1}\right)^{n-2}}{\left(a_{n}-\zeta_{n-1}\right)^{n}} \int_{a_{n}}^{\zeta_{n-1}}\left(a_{n}-\zeta_{n}\right)^{n-1} y^{(n)}\left(\zeta_{n}\right) d \zeta_{n} \cdots d \zeta_{1} \tag{3.4}
\end{align*}
$$

Let H be the convex hull of a_{1}, \cdots, a_{n}. Since $\left|y^{(n)}(z)\right|$ is continuous in H, it attains its maximum in H at some point $z=z_{0} \in H$. Taking the absolute values in (3.4) and performing the n-fold integration along the straight line segments connecting α_{k} and ζ_{k-1}, we arrive at

$$
\begin{align*}
|y(z)| & \leqq \frac{1}{n!}\left|y^{(n)}\left(z_{0}\right)\right| \prod_{i=1}^{n}\left|a_{i}-z\right| \\
& <\frac{1}{n!}\left|y^{(n)}\left(z_{0}\right)\right|(1+|z|)^{n}, z \in H \tag{3.5}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|y^{(k)}(z)\right|<\frac{(1+|z|)^{n-k}}{(n-k)!}\left|y^{(n)}\left(z_{0}\right)\right|, z \in H, \tag{3.6}
\end{equation*}
$$

$k=1,2, \cdots, n-1$. It is easily confirmed that

$$
\left|I_{j}\right| \leqq \frac{(j-1)!}{n!}\left|y^{(n)}\left(z_{0}\right)\right|\left|a_{j}-z\right|^{j}
$$

and that $P_{n-j}^{(k+1-j)}(z)$ is the sum of $(n-j)!/(n-k-1)$! terms of the form $\prod_{l=1}^{n-k-1}\left(a_{i l}-z\right)$. Therefore, we obtain from (3.1)

$$
\begin{aligned}
\left|y^{(k)}(z)\right| & <\left|y^{(n)}\left(z_{0}\right)\right| \sum_{j=1}^{k+1}\binom{k}{j-1} \frac{(n-j)!}{(n-k-1)!} \frac{(j-1)!}{n!}(1+|z|)^{n-k} \\
& =\frac{(1+|z|)^{n-k}}{(n-k)!}\left|y^{(n)}\left(z_{0}\right)\right|, z \in H,
\end{aligned}
$$

which proves (3.6).
We remark that the second inequality in (3.5) may be improved; by a result of Schwarz [8],

$$
\prod_{i=1}^{n}\left|a_{i}-z\right|<(1-|z|)(1+|z|)^{n-1}, z \in H
$$

and therefore

$$
\begin{equation*}
|y(z)|<\frac{1}{n!}(1-|z|)(1+|z|)^{n-1}\left|y^{(n)}\left(z_{0}\right)\right|, z \in H \tag{3.7}
\end{equation*}
$$

Finally, we deduce from (3.3), (3.6), and (3.7) that

$$
\begin{aligned}
\left|y^{(n)}(z)\right|<\left|y^{(n)}\left(z_{0}\right)\right| & {\left[\sum_{k=1}^{n-1} \frac{(1+|z|)^{n-k}}{(n-k)!}\left|p_{k}(z)\right|\right.} \\
& \left.+\frac{1}{n!}(1-|z|)(1+|z|)^{n-1}\left|p_{0}(z)\right|\right], z \in H,
\end{aligned}
$$

which, for $z=z_{0} \in H$, yields

$$
1<\sum_{k=1}^{n-1} \frac{\left(1+\left|z_{0}\right|\right)^{n-k}}{(n-k)!}\left|p_{k}\left(z_{0}\right)\right|+\frac{1}{n!}\left(1-\left|z_{0}\right|\right)\left(1+\left|z_{0}\right|\right)^{n-1}\left|p_{0}\left(z_{0}\right)\right|,
$$

contrary to (3.2). This contradiction proves the theorem.
We add two remarks. A slight modification of the above proof will establish the following statements: Let R be a convex region with diameter δ. If

$$
\sum_{k=0}^{n-1} \frac{\delta^{n-k}}{(n-k)!}\left|p_{k}(z)\right| \leqq 1, z \in R
$$

then (3.3) is disconjugate in R. Theorem 3.2 generalizes a result recently obtained by Hadass [2, Th. 2].

There are known to the author a few other disconjugacy criteria for higher-order equations with analytic coefficients [4, 6].

We are now ready to state the disconjugacy condition (Theorem 3.2) as a multivalence criterion. From Theorems 2.1 and 3.1 we see that every nontrivial linear combination of $f_{1}, f_{2}, \cdots, f_{n-1}$ is $(n-1)$ valent if the equation

$$
y^{(n)}+p_{n-2}(z) y^{(n-2)}+\cdots+p_{0}(z) y=0,
$$

where p_{0}, \cdots, p_{n-2} are defined as in (2.4), is disconjugate. In view of this relation and Theorem 3.2, we have the following theorem.

Theorem 3.3. Let $f_{1}, f_{2}, \cdots, f_{n-1}$ be analytic in the unit disk $D=\{z:|z|<1\}$. Define $p_{0}, p_{1}, \cdots, p_{n-2}$ as in (2.4). If $\operatorname{det}\left(f_{j}^{(i)}\right)_{i, j=1}^{n-1}$ does not vanish in D, and if

$$
\begin{aligned}
& \sum_{k=1}^{n-2} \frac{(1+|z|)^{n-k}}{(n-k)!}\left|p_{k}(z)\right| \\
& \quad \quad+\frac{1}{n!}(1-|z|)(1+|z|)^{n-1}\left|p_{0}(z)\right| \leqq 1, z \in D,
\end{aligned}
$$

then every nontrivial linear combination of $f_{1}, f_{2}, \cdots, f_{n-1}$ is $(n-1)$ valent in D.

W. J. KIM

References

1. G. A. Bessmertnyh and A. Yu. Levin, Some inequalities satisfied by differentiable functions of one variable, Dokl. Akad. Nauk SSSR 144 (1962), 471-474. (Translation: Soviet Math. Dokl. 3 (1962), 737-740).
2. R. Hadass, On the zeros of the solutions of the differential equation $y^{(n)}(z)+p(z) y(z)=$ 0 , (to appear in the Pacific J. Math.)
3. W. J. Kim, On a theorem of Pokornyi, (to appear in the Proc. Amer. Math. Soc.)
4. M. Lavie, The Schwarzian derivative and disconjugacy of $n^{t h}$-order linear differential equations, Canad. J. Math. 21 (1969), 235-249.
5. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
6. -, On the zeros of solutions of n-th order linear differential equations J. London Math. Soc. 39 (1964), 327-332.
7. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II, SpringerVerlag, Belrin, 1964, p. 113.
8. B. Schwarz, On the product of the distance of a point from the vertices of a polytope, Israel J. Math. 3 (1965), 29-38.
9. V. Vodička, Verallgemeinerung einer Schwarzschen Differentialgleichung, Monatsh. Math. 67 (1963), 137-141.

Received May 28, 1969.
State University of New York
Stony Brook, New York

