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RINGS IN WHICH MINIMAL LEFT
IDEALS ARE PROJECTIVE

ROBERT GORDON

Let R be an associative ring with identity. Then the left
socle of R is a direct summand of R as a right ϋNmodule if
and only if it is projective as a left jR-module and contains
no infinite sets of orthogonal idempotents. This implies, for
example, that a ring with finitely generated left socle and no
nilpotent minimal left ideals is a ring direct sum of a semi-
simple artinian ring and a ring with zero left socle.

A ring with projective, essential, finitely generated left socle has
maximal and minimal condition on annihilater left and right ideals.
A left or right perfect ring satisfying these hypotheses is semiprimary.
However, there are nonsemiprimary left perfect rings with projective,
finitely generated, nonzero left socle.

This paper has in part grown out of another paper in which the
author will characterize semiperfect rings with projective, essential
socle. Section 2 arose from attempts to find a simple proof that such
rings are ring direct sums of indecomposable rings sharing the same
properties (this is true). In Theorem 2.1, we show that any ring in
which the identity is a sum of primitive idempotents is a (necessarily
unique and finite) ring direct sum of indecomposable rings. Thus a
ring has projective (projective essential) socle and no infinite sets of
orthogonal idempotents if and only if it is a ring direct sum of inde-
composable rings satisfying the same hypotheses.

Theorem 3.1 gives a list of conditions which are equivalent to the
existence of a projective, essential left socle in an arbitrary ring.
With these equivalent definitions in mind, the reader may note that
Colby and Rutter [3, Th. 2.9] and Gordon [4, Th. 4.1] have charac-
terized left artinian rings R with projective (trivially essential) left
socle in which every indecomposable direct summand of RR has a uni-
que simple submodule. In a recent paper, Zaks has extended this re-
sult to semiprimary rings [7, Th. 1.4]. But in Theorem 3.4 we show
that a left (or right) perfect ring with finitely generated, projective
and essential left socle is semiprimary. So Zaks' characterization is
automatically pushed up to perfect rings-with one defect. There exist
left perfect rings with projective, nonessential left socle for which
every indecomposable left module direct summand of the ring contains
a unique simple (Example 4.4). (Such a ring obviously fails to be
semiprimary.) We cannot handle this situation.
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1* The case where the socle is protective* All rings in this
paper are assumed to have an identity. Furthermore, if / : R—> R' is
a ring homomorphism, then / maps the identity of R to the identity
of Rf. Thus, we are assuming in particular that all modules are uni-
tary.

Recall that if an iϋ-module is a direct sum of a family of sub-
modules, then it is projective if and only if every submodule in the
family is projective. We shall make repeated use of this fact. For
instance, if M is an i?-module, then the socle of M is projective if
and only if every simple submodule of M is projective.

Finally, an ideal is a two-sided ideal. We reserve the letter J for
the (Jacobson) radical and write J(R) when the context is not clear.

LEMMA 1.1. Suppose R is a ring with projective left socle S.
If T is a sum of homogeneous components1 of S, then T Γϊ I = TI for
any left ideal I. In particular, the socle of a left ideal K is SK.

Proof. According to Gordon [4, Lemma 1.3], it is sufficient to
show that T intersects its right annihilator trivially. Since T Π Tr is
a completely reducible left iϋ-module, we need only show that no sim-
ple submodule of T right annihilates T. Let Q be such a simple sub-
module. Since Q is projective, Q ~ Re, β2 = e. But Q and Re must
both belong to the same homogeneous component of the socle. In
particular, Re g T. But Re Q Φ 0 (since Re and Q have same left an-
nihilator in R). Therefore TQ Φ 0.

THEOREM 1.2. In any ring R, the following conditions are equi-
valent.

(1) The left socle of R is a projective left R-module and con-
tains no infinite sets of orthogonal idempotents2.

(2) The left socle of R is a direct summand of R as a right
R-module.

Futhermore, if either of these conditions hold, then R has only
finitely many isomorphism classes of minimal left ideals.

Proof. (1) implies (2). Let S be the left socle of R. Since S
has no infinite sets of orthogonal idempotents, S must contain a maxi-
mal set {#!, , en) of orthogonal idempotents. Then

S = Re © S Π R(l - e)

where e = eι + + en. Let / be an idempotent in S Π R(l — e) and
1 See Jacobson [5, p. 63] for the definition.
2 There are well known examples of semiprime rings in which the socle is not

finitely generated and thus contains an infinite set of orthogonal idempotents.
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set g = (1 — e)f. Then g is an idempotent in S orthogonal to every
et. The choice of the set {ex, , en} implies g = 0. Thus / = f2 =
/(e/) = (/β)/ = 0. It follows that S ΓΊ -8(1 - e) S J and hence that J?e
is isomorphic to S + /// as left 12-modules. So the hypothesis in
(1) implies that every minimal left ideal embeds in Re. Since
S Π 12(1 - e) S /, we have

S Π [12(1 - e)Re] = SR(1 - e)Re = [S n 12(1 - β)]Λe = 0

by Lemma 1.1. Thus (1 — e)Re = 0. This implies that e acts as a
left identity on every projective minimal left ideal. Since all minimal
left ideals are projective by hypothesis, S — eR follows.

(2) implies (1). We have S = fR, p = /. Since Rf is both pro-
jective and completely reducible, every homomorphic image of Rf is
isomorphic to a direct summand of Rf and thus projective. But, since
/ acts as a left identity on S, every minimal left ideal is clearly an
image of Rf. Hence RS is projective. If g = g2 e S Π 12(1 — / ) , then
g = g(fg) = (gf)g = 0. So S Π 12(1 - /) S J. Thus the existence of
an infinite set of orthogonal idempotents in S would contradict the
composition series length of S + J/J (which is just the length of 12/).

It is obvious from the proof of (1) < = > (2) that S has no infinite
sets of orthogonal idempotents if and only if S is finitely generated
modulo J. This implies both the last statement of the theorem and
the following corollary.

COROLLARY. If the socle of R/J is finitely generated, then the
left socle of R is projective as a left R-module if and only if it is
a direct summand of R as a right R-module.

2* Primitive idempotents and related subjects* By a primitive
idempotent, we mean a nonzero idempotent which cannot be written
as a sum of two nonzero orthogonal idempotents. We say that primi-
tive idempotents e and / in a ring R are linked if there exist finite
sequences e = e0, elf , en = / and f, f2, , fn of primitive idempo-
tents of 12 such that fiRe^ and fRβi are both nonzero for 1 ̂  ί ^ n.
Linking is obviously an equivalence relation on the set of all primitive
idempotents in 12. By a block of 12 we mean the sum of all principal
left ideals in 12 which are generated by primitive idempotents belong-
ing to the same equivalence class.

The following is a generalization of a theorem which appears in
Curtis and Reiner [3, p. 378, Th. 55.2],

THEOREM 2.1. Let R be a ring in which the identity is a sum
of primitive idempotents. Then R is a unique ring direct sum
(necessarily finite) of indecomposable rings. In fact, the indecom-
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posable ring direct summands of R are just the blocks of R.

Proof. According to [5, p. 42, Th. 1], it is enough to prove the
existence of such a decomposition.

The hypothesis of the theorem implies that R is the sum of its
blocks. Let B and Bf be distinct blocks. If e and ef are primitive
idempotents in B and B', respectively, then eRer must be zero. Other-
wise, we would have eRe Φ 0 and eRe1 Φ 0 against the assumption
that e and e' belong to different blocks and are therefore not linked.
Hence BBr = 0. Then, since any block B obviously satisfies 2?2gΞJ3
and R has an identity, it follows that R is a ring direct sum of its
blocks. In particular, the number of distinct blocks must be finite
(since leR).

To finish the proof, we must show that an arbitrary block B is
indecomposable. So, write B = PφQ where P and Q are ideals in
B (and thus in R). We show first that any primitive idempotent in
B belongs to either P or Q: Let β G ΰ b e a primitive idempotent. Since
B is a ring direct summand of R, Re = Be = Pe@ Qe. But, e is primi-
tive, so Re is indecomposable as a left lϋ-module. Hence Pe = 0 or
Qe = 0, so e e P or e e Q as was claimed.

Now let β, /, g be primitive idempotents in B such that gRe Φ 0
and gRfΦQ. Clearly, gReQgRf]Re and gRfQgRnRf so that
gR Π Re φ 0 and gR Π Rf Φ 0. Then, if eeP, we must have geP
which forces feP. So, by induction, no primitive idempotent in P
can be linked to one in Q and conversely. Since either P or Q con-
tains a primitive idempotent, B must be indecomposable.

We would like to give a nicer characterization of linking in general
rings. This seems to be very difficult. We do make a tenuous attempt:

LEMMA 2.2. Let M be an R-module and P a finitely generated,
projective R-module. Then Hom^ (P, M) Φ 0 if and only if there
exists a submodule K of M such that Ή.omR{PjJP, M/K) Φ 0 (here
J = J(R)).

Proof. Suppose f: P —+ M is nonzero and consider the composite
map

If this map were zero, we would have imfQJimf. But im/, as an
image of a finitely generated module, is finitely generated. Since
J i m / = im/, Nakayama's Lemma implies i m / = 0 against fφ 0. There-
fore, since the composite map above is obviously zero on JP, it induces
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a nonzero homomorphism from P/JP into M/Jimf.
For the converse, suppose that for some submodule K of M, we

have a nonzero map P/JP —* M/K. Thus we have a nonzero map P —-*
M/K. Since P is protective, this last map lifts to a nonzero map from
P into M.

REMARK. If ΠS=i J*M — 0> the proof of 2.2 shows that a nonzero
homomorphism from P into M induces a nonzero homomorphism from
P/JP into J{M/Ji+1M for some i.

We need the following folk lemma.

PROPOSITION 2.3. // e is an idempotent in a ring R, then the
following statements are equivalent.

(1) e is a local idempotenf.
(2) Re/Je is simple.
(3) Re has a unique maximal submodule.

Proof. (1) ( = y (2). For xeR, denote the canonical image of x
in R/J by x. Then eRe ~ eRe/eJe as rings and Re ~ Re/Je both as
J?-modules and as i2/J-modules. But R is a semiprime ring. There-
fore, Re is a minimal left ideal in R if and only if eRe is a division
ring [5, p. 65, Proposition]. Thus we need only recall that the ra-
dical of eRe is eJe.

(2) < = > (3). Since Re is projective, Je = JRe is the intersection
of the maximal submodules of Re [1, p. 474].

PROPOSITION 2.4. Let e and f be primitive idempotents in a ring
R and consider the condition: (C) There exists a finite sequence e =
e0, e19 - , en = f of primitive idempotents of R with the property
that some factor module of Re^ has a simple submodule isomorphic
to a simple submodule of a factor module of Re{ for 1 ^ i ^ n.

Then the following statements hold.
(1) // every primitive idempotent in R is local, then (C)- is- a

necessary condition for e and f to be linked.
(2) // R/J is artinian, then (C) is sufficient condition for e and

f to be linked.

Proof. We remark that if β2 = e e R and M is a left iϋ-module,.

then

^ (Re, M) ~ eM

3 A ring is local if it is a division ring modulo its radical. So, by a local idem-
potent, we mean an idempotent e in a ring R with the property that eRe is a local
ring.
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as left eiϋe-modules. In particular, Ή.omR(Re, M) Φ 0 if and only if
eMΦ 0.

(1) Assume every primitive idempotent of R is local and that e
and / are linked. Then there exist finite sequences e = e0, eίy , en =
f and f19 /2, •••,/» of primitive idempotents in R such that fRe^ Φ 0
and fiRβi Φ 0, 1 ̂  i <J n. By 2.3, Rf/Jf is simple for each i. So,
by 2.2 and the above remark, Rf/Jf embeds in a factor module of
Re{_x and in a factor module of Rβi for each i. Therefore (C) holds.

(2) Assume the hypothesis of (2) and that (C) holds. Then we
have a sequence e = β0, e19 , en = / of primitive idempotents such
that some factor module of ϋte^ has a simple in common with a
factor module of Re{ for 1 ̂  i ^ w. Since i?/J is artinian by hypo-
thesis, it is obvious that R has no infinite sets of orthogonal idempo-
tents. As we shall see later in this section (Theorem 2.6), this implies
the existence of orthogonal primitive idempotents gά such that R —
RQi® - ®Rgv- Hence R/J is isomorphic to RgJJg^ ®RgP/JgP*
Consequently, every simple iϋ-module embeds in some Rg^Jg^. But
each J?-module Rgά\Jg5 is completely reducible. Thus it follows from
2.2 that for some choice of indices j19 j21 •• ,jn, we have gj.Re^ Φ 0
and gj.Rβi Φ 0 for 1 ̂  i ^ n. Therefore, e and / are linked.

COROLLARY. If R is a semίperfect ring (in the sense of Bass
[1]), then a necessary and sufficient condition for two primitive idem-
potents e and f in R to be linked is that condition (C) of the pro-
position holds.

Proof. If R is semiperfect, then R/J is artinian and primitive
idempotent? are local ([6], p. 76, Proposition 2).

The next part of this section is devoted to establishing a sufficient
condition for the identity of a ring to be a sum of primitive orthogonal
idempotents. We omit the proof of the following well known lemma.

LEMMA 2.5. If R is a ring, then R has no infinite sets of or-
thogonal idempotents if and only if RR (RR) has maximal and minimal
condition on direct summands.

THEOREM 2.6. Any nonzero idempotent in a ring having no
infinite sets of orthogonal idempotents is a sum of orthogonal primi-
tive idempotents.

Proof. Let R be a ring with no infinite sets of orthogonal idem-
potents and let e be a nonzero idempotent in R. Lemma 2.5 implies
the existence of a primitive idempotent feRe. One checks that ef
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and e — ef are orthogonal idempotents. Hence Re = 2?e/φ R(e — ef).
But, since efeRf and / is primitive, it is easy to see that ef is
primitive. So all that is needed to finish the proof is a standard in-
duction argument using Lemma 2.5.

COROLLARY. A sufficient condition for the identity of a ring R
to be a sum of orthogonal primitive idempotents is for R to contain
no infinite sets of orthogonal idempotents.

REMARK. In a private communication, E. C. Dade has recently
provided the author with a counterexample to the converse of the
above corollary.

The local idempotent counterpart of the corollary is easily charac-
terized:

LEMMA 2.7. If R is a ring, then the following statements are
equivalent.

(1) R is semiperfect.
(2) The identity of R is a sum of orthogonal local idempotents.
(3) The identity of R is a sum of local idempotents.

Proof. (1) implies (2). This is [6, p. 76, Corollary 2]. (3) implies
<1). The hypothesis of (3) is inherited by R/J in the strong sense
that the identity of R/J is a sum of local idempotents of R/J each
of which is the canonical image of a local idempotent in R. That is,
since R/J is a semiprime ring, it follows that R/J is artinian and
that every simple left J?-module has the form Re/Je for some local
idempotent ee R. For the rest, we merely imitate the proof of a
lemma of Bass [1, Lemma 2.6].

Let M be a finitely generated left i2-module. The above analysis
shows that we may write M/JM = ReJJeί 0 Re2/Je2 0 0 Ren/Jen

where the e{ are idempotents in R. Since P = Re, 0 Re2 0 0 Ren

is projective, there exists a map P —>•M making the diagram

P

/ \nat
/ \

M >M/JM
nat

commutative. One shows easily that M — JM + im (P —>M). Also,
ker (P — M) S ker (P -* M/JM) = JP. But M and P are both finitely
generated. Thus a version of Nakayama's Lemma implies that JM
is small in M and JP is small in P. Therefore P —> M is a projective
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cover. So (1) follows by the definition of semiperfect.
Since (2) ==> (3) is trivial, we are done.

THEOREM 2.8. The following two conditions are equivalent in
any ring R.

(1) Every minimal left ideal in R is projective and R contains
no infinite sets of orthogonal idempotents.

(2) R is a ring direct sum of indecomposable rings satisfying
condition (1).

Proof. Suppose R is a ring direct sum, say

R = R, 0 R2 0 - - 0 Rn

where the R{ are rings. Then every left ideal in R is a direct sum
of left ideals in the R^ Furthermore, R{ as an J?rmodule is the "same"
as Ri as an ϋ?-module. In particular, the left socle of R is the direct
sum of the left socles of the R^ So, by the above argument, the left
socle of R is a projective J?-module if and only if the left socle of
each Ri is a projective i^-module.

Now each direct summand of R is a direct sum of direct sum-
mands of the R{. It follows that if R fails to satisfy the maximal
condition on direct summands, then some Rt must fail to satisfy that
condition. Then, by 2.5, R inherits the property of having no infinite
sets of orthogonal idempotents from the R{ (note the converse is trivial).
So 2.8 follows from 2.1 and 2.6.

3* The case where the socle is projective and essential* A
submodule E of an iϋ-module M is called essential if E intersects every
nonzero submodule of M nontrivially. (Note that every essential sub-
module of M contains the socle of M.) The left singular ideal of a
ring R is the set of all elements in R with essential left annihilator.
(These definitions are due to R. E. Johnson.)

In the sequel we denote the left annihilator of a subset X of a
ring by X1 and the right annihilator of X by Xr.

THEOREM 3.1. If R is a ring with left socle S, the following
are equivalent.

(1) S is a projective, essential submodule of RR.
(2) The right annihilator of S is zero.
(3) Some ideal of R contained in S has zero right annihilator.
(4) S is essential in R and R has zero left singular ideal.

Proof. (1) ==> (2). If RS is projective, Lemma 1.1 implies 0 —
SSr = S Π Sr. So, if S is also essential, then Sr = 0.
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(2) => (3). Trivial.
(3) => (4). Let T be an ideal contained in S satisfying Tr = 0.

If L is a nonzero left ideal, then 0 Φ TL^Tf) L. Therefore, T is
essential, implying T = S. But then, the left singular ideal of R is
clearly just Sr = 0.

(4) => (1). Let H be a homogeneous component of S. Obviously
H2 = SH. So, if (4) holds, then H2 Φ 0. This implies the projectivity
of S.

REMARK. If R happens to have no infinite sets of orthogonal
idempotents,4 then R satisfies (say) condition (1) of Theorem 3.1 if and
only if R is a ring direct sum of indecomposable rings each of which
satisfies condition (1) of the theorem (see Theorem 2.8).

THEOREM 3.2. Let R be a ring with protective left socle S. Then
there is a family {Ra}aeΩ of rings with protective, essential and
homogeneous left socle with the properties

(1) R is a subdirect sum of R/S and the Ra's;
(2) if S is essential in R, then R is a subdirect sum of the

R«s;
(3) if S has no infinite sets of orthogonal idempotents, then the

family {Ra}aeΩ is finite.

Proof. Write S = 0Σ«eβS f f where the Sa are the homogeneous
components of S. Let Pa = (Sa)

r and Ra = R/Pa. Since fl« Pa = Sr,
Lemma 1.1 implies that S Γ) Γ\aPa = 0. In particular, S is essential
if and only if f[aPa = 0.

If xeR is such that Sa + PJPa-(x + Pa) = 0, then Sa(Sax) = 0.
This implies Sax = 0 (for example by 1.1). That is, x + Pa = 0. It
follows from Theorem 3.1 that Sa + PJPa is the projective, essential,
homogeneous left socle of Ra.

The fact that (3) is immediate by Theorem 1.2 finishes the proof.

THEOREM 3.3. A ring with projective, essential, finitely generat-
ed left socle has maximal and minimal condition on annihilator left
and right ideals.

Proof. Let R be the ring, S its left socle and & a nonempty
set of annihilator right ideals. Since RS is finitely generated, it is
artinian. Hence the set {SQ^\Q e &} has a minimal element SQ^,
Q e &. If Q is not a maximal element of &, there exists a P e ^
such that QaP. So Q/^ P/ and, consequently, SQ^^ SP< The

4 Primitive rings with nonzero socle obviously satisfy (1) in 3.1. However, there
are such rings in which the socle has infinite sets of orthogonal idempotents.
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minimal property of SζK implies SQ'= SP/. But, since S* = 0 by
3.1, Of* = P A . So Q and P, being annihilator right ideals, are equal
against QaP.

The proof that R has minimal condition on annihilator right ideals
is entirely similar.

To finish, we observe that a strictly increasing (decreasing)
sequence of annihilator left ideals would lead to a strictly decreasing
(increasing) sequence of annihilator right ideals.

QUESTION. What are some natural conditions which force a ring
satisfying the hypothesis of Theorem 3.3 to be semiperfect? In § 4
(Example 4.6) we give an example of such a ring which is both left
noertherian and artinian modulo its radical; but which is not semiper-
fect.

THEOREM 3.4. A left or right perfect ring (in the sense of Bass
[1]) with finitely generated, protective and essential left socle is
semiprimary.

Proof. We assume first that the ring R is right perfect. By
Bass' Theorem P in [1], R/J is artinian. For rings with R/J artinian,
it is well known that the socle of the left jβ-module R/(J*Y is (Ji]ΛY/
(JιY. Again by Theorem P, nonzero left i?-modules have nonzero
socles. In particular, (Ji+1Y/(J{Y Φ 0. We have an ascending sequence
O c J ^ c (J2Y c c (Jψ c . Therefore, the hypothesis of the
theorem implies via 3.3 that (Jnγ = R for some n i.e., Jn = 0. So R
is semiprimary.

The proof in the left perfect case is analogous.

REMARK. Note that any ring with finitely generated essential
left socle trivially has no infinite sets of orthogonal idempotents.
Hence the hypothesis in 3.4 that R is left (right) perfect may be
weakened to nonzero left (right) i?-modules have nonzero socles.

We had originally used Theorem 3.4 to show that a left (or right)
perfect ring which embeds in a simple artinian ring must be semipri-
mary. However, thanks to A. W. Goldie (oral communication), we can
give an easy generalization of this result:

THEOREM 3.5. A necessary condition for a left perfect ring R
to embed in a ring with maximal condition on annihilator left ideals
is for R to be semiprimary.

Proof. If R embeds in a ring with maximal condition on annihi-
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lator left ideals, a simple argument shows that R must also have
maximal condition on annihilator left ideals. But then, the same tactic
as used in the proof of Theorem 3.4 shows that R is semiprimary.

4* Examples* On the basis of the foregoing material, one might
conjecture that the left socle of any ring with nonzero, protective
left socle is essential. Indeed, many familiar rings (such as primitive
rings with nonzero socle) do have this property. Of course, our "con-
jecture" is blatantly false. Any ring direct sum of a semisimple
artinian ring with a ring having zero left socle is a counterexample.
In fact, one may easily characterize such rings.

PROPOSITION 4.1.5 Let R be a ring with finitely generated left
socle and no nilpotent minimal left ideals. Then R is the ring direct
sum of a semisimple artinian ring and a ring with zero left socle.

Proof. Theorem 1.2 implies the existence of a right ideal H such
that R = S®H where S is the left socle. But HSSHn S = 0.
Therefore, (SH)2 = 0. Since R has no nilpotent minimal left ideals,
SH = 0. This implies that H is an ideal.

We would also like to point out that condition (4) of Theorem 3.1
cannot be weakened to read: "R has zero left singular ideal and
every minimal left ideal in R is projective." The ring of integers is
a counterexample. In fact, any nonartinian semiprime ring with maxi-
mal condition on annihilator left ideals has zero left singular ideal
and projective, nonessential socle. This follows from 2.5, 4.1 and the
fact that a semiprime ring with maximal condition on annihilator left
ideals has zero left singular ideal (see the proof in Lambek [6] of
Proposition 3, p. 107).

A more sensible conjecture would be that a left perfect ring with
nonzero projective left socle has essential left socle. But the ring
P®F where P is a left perfect ring with no minimal left ideals and
F is any field is a counterexample. Provided, of course, that we can
demonstrate the existence of such a perfect ring P. An elegant method
of doing this has been kindly donated to us by J. S. Alin: Define
inductively S° = 0, Sa+ί is such that Sa+1/Sa is the left socle of R/Sa,
and, if a is a limit ordinal, Sa = \Jβ<a S

β. In this notation, we have

PROPOSITION 4.2. Every nonzero left R-module has a nonzero
socle if and only if Sa = R for some ordinal a.

Proof. " only if". Since R is a set, Sa = Sa+1 for some a. Then

5 We owe the present form of this proposition to a comment of the referee's.
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0 = Sa+1/Sa = the socle of the left i2-module R/Sa. So R = S" if non-
zero modules have nonzero socles "if". Suppose Sa = R, some a, and
let M be a nonzero left i?-module. It is enough to show that Rx ~
Rjx/ has nonzero socle for 0 Φ x e Af.

Our hypothesis implies the existence of a smallest β such that
S^ <Ξ a/. Since &r C x^ for y < β, β cannot be a limit ordinal. Conse-
quently, there is a nonzero homomorphism from S^/S'3"1 into i2/aK
Since Sβ/Sβ~ι is the left socle of R/Sβ~\ Rx has nonzero socle.

COROLLARY. There exists a left perfect local ring with zero left
socle.

Proof. There are familiar examples of left perfect local rings
which are not right perfect. Such a ring must have a nonzero left
module with zero socle. But a factor ring of a left perfect local ring
is a left perfect local ring.

The counterexample above still leaves our "conjecture" open for
indecomposable left perfect rings. Suppose R is an indecomposable
left perfect ring with nonzero protective left socle. Then R has a
nonnilpotent minimal left ideal L. If R is not simple, the corollary
to Proposition 2.4 guarantees the existence of at least one principal
indecomposable6 of R which contains a copy of L but is not isomorphic
to L. In general, this is the most one can expect.

EXAMPLE 4.3. Let P be a left perfect local ring with zero left
socle and set D = P/J. Let R be the ring of all matrices of the form

" P O O "

J P 0

D 0 Dm

Then R has the following properties.
(1) R is an indecomposable left perfect ring with projective left

socle.
(2) R = M θ ^ θ ^ 3 where the ^ are nonisomorphic principal

indecomposables. ^ 2 has zero socle but ^ and ^ each have a uni-
que simple submodule (which is isomorphic to ^ 3 ) .

We leave to the reader the task of showing the example really
works.

If an J?-module is a finite direct sum of submodules, then it is
an essential extension of its socle if and only if the summands are
essential extensions of their respective socles (e.g., take injective hulls).

6 By a principal indecomposable left ideal in a ring R, we mean an indecomposa-
ble direct summand of RR.
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Thus the worst possible example of the failure (at least in left per-
fect rings) of our "conjecture" would be a left perfect ring with pro-
jective nonessential socle and the additional property that every prin-
cipal indecomposable has nonzero socle. Such an example follows.

EXAMPLE 4.4. An indecomposable left perfect ring R with pro-
jective, nonessential socle in which every principal indecomposable has
a unique simple submodule:

[ P 0 Ίjj JJ , the notation

being the same as in Example 4.3.

EXAMPLE 4.5. A semiperfect ring R with the properties:
(1) The left socle of R is projective and essential.
(2) Every principal indecomposable of R has a unique simple sub-

module (in particular, the left socle of R is finitely generated).
(3) R is neither left nor right perfect.
We take a local, commutative integral domain (not a field) L and

then take R to be the ring of all matrices of the form ^ ^ where

F is the quotient field of L. If R were left or right perfect, Theo-
rem 3.4 would imply that R is semiprimary. This is not so.

EXAMPLE 4.6. A ring R with the properties:
(a) The left socle of R is finitely generated, projective, and es-

sential.
(b) R/J is artinian.
(c) R is not semiperfect.

Let D be a (commutative) noertherian integral domain with only

a finite number (greater than one) of maximal ideals. Since D is a

Zariski ring with respect to its radical, D/J(D) is artinian [8, p. 264,

Th. 10]. Take R to be the ring of all matrices of the form ^ ^

and F is the quotient field of D. R is not semiperfect since Q Q

is a primitive, nonlocal idempotent of R.
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