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SOME MATRIX FACTORIZATION THEOREMS, II

ROBERT C. THOMPSON

In the first part of this paper a thorough analysis was
made of the matrix equation C = ABA^B'1 when C, A, B are
normal matrices. Not included, however, was the discussion
of this equation when A and B are real skew-symmetric ma-
trices. In the present paper we complete the investigation by
giving this discussion.

Throughout this paper we adopt the notation and terminology of
part I. We also continue the convention that all matrices appearing
in this paper, except the zero matrix, are to be nonsingular. We
always let J£i, K2 denote real skew symmetric matrices.

LEMMA 1. Let M be a matrix with linear elementary divisors,
and let M = KXK2 be a product of two real skew-symmetric matrices
K19 K2. Then each eigenvalue of M has even multiplicity.

Proof. This is a special case of a result of H. Freudenthal [1].
Using the idea of [1], we give a short proof of the lemma. From
M = KXK2 we get XI — M = (XK^1 — K^K2. For any (real or complex)
eigenvalue λ of M, the matrix XKς1 — Kγ is (real or complex) skew
symmetric and therefore has even rank. Because K2 is nonsingular,
it follows that XI — M has even rank for each λ. Since degree M is
even and M has linear elementary divisors, it follows that the mul-
tiplicity of λ as an eigenvalue of M is even.

We are now ready to state our main result.

THEOREM 1. Let N be real and normal. Then N is a commutator

(1) N= K^KT'KT1

of two real skew-symmetric matrices Kίy K2 if and only if N is
orthogonally similar to a direct sum of the following five types of
real normal matrices:

( 2 ) diag (rx, rr\ r2, r,1) , n > 0, r2 > 0;

(3 ) diag ( - n , -rr\ - r 2 , -r2

ι) , r, > 0, r2 > 0;

(4) F(φ) + F(φ);

( 5 ) R.Fiφ) + RτιF(φ) + R2F(φ) + R^Fiφ) , R, > 0, R2 > 0;

( 6 ) diag (1,1) .
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We remind the reader that

COS φ Sin φ

— sin φ COS φ

THEOREM 2. If real normal N is a commutator (1) with

( 7 ) NK, = K,N

then N is symmetric and orthogonally similar to a direct sum of
the types (6), (8), (9):

( 8 ) diag (r, r, r~\ r~x) , r > 0

(9) diag(-r, -r, -r~ι, -r~ι) , r > 0 .

Conversely, if symmetric N is orthogonally similar to a direct sum
of types (6), (8), (9) then N is a commutator (1) of two skew matrices
such that (7) holds, and such that K2 is also orthogonal. We may,
in addition, choose Kγ orthogonal if N is also orthogonal.

THEOREM 3. If real normal N is a commutator (1) of two skew
matrices K19 K2 such that

(10) NK, = K,N, NK2 = K2N

then N Symmetric is orthogonal and satisfies the condition

(multiplicity of eigenvalue — 1) = 0 (mod 4) .

(That is, N is orthogonally similar to a direct sum of the types (6)
and (11):

(11) d iag(- l , - 1 , - 1 , - 1 ) .

Conversely, if N satisfies these conditions then N can be represented
as a commutator (1) satisfying (10) such that Kγ and K2 are both
skew orthogonal.

Proof of Theorem 1. We use the notation in the proof of Theorem
5.7 of [2], As in that proof, we agree that subscripts attached to a
matrix indicate the degree of the matrix. The only exceptions to
this rule are K, and K2. From (1) we get N~1T = (K^^N^K,).
Hence the eigenvalues of N occur in reciprocal pairs. Thus after an
orthogonal similarity of (1) we may assume N is given by (61) of [2]
and that the agreement about the eigenvalues of the direct summands
of N explained below (61) of (2) is in force. Then we derive [2, (62)],
and hence from (K2Kλ)N~ιτ = N(K2K,) we get
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= Aa + Bf

(12)

where we also have

(13)

(14)

(15)

v Γ°
2«ί

0

p. = E2p.Φzp.(φi) , ^ i ^ w ,

1 < t < ί .

Taking the transpose of each side of (12) yields an expression for
KtK2, which when substituted into N(K2Kύ = K& produces the fol-
lowing formulas:

(16)
Φ2p.(φi)E2p. = El.,

From these formulas (16) we get by Lemmas 3.4 and 3.5 of [2]
that the following direct summand of KXK2 is similar to a diagonal
matrix and has real eigenvalues:

(17) "o rtcm:
Cl. 0

Similarly the following direct summand of KJί2 is also similar to a
diagonal matrix and its eigenvalues are all pure imaginaries:

(18)
0

0

Now by (13) and the fifth of equations (16), we find as in the
descussion between equations (70) and (75) of [2] that E2Pj is similar
to a diagonal matrix and that the eigenvalues of E2p. are of the form

where each ε is ± 1 and each p > 0. Since the eigenvalues of E2Pj

appear in conjugate pairs and e*V2 is not real, we may arrange the
notation so that the eigenvalues of E2P. are

(19)

where each ε is ± 1 and each p > 0. Thus the direct summand Eξpj
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of KXK<2. contributes the eigenvalues (19) to KXK2. The eigenvalues
(19) are not real and not pure imaginary.

Now we examine the eigenvalues and elementary divisors of the
direct summand

(20)
Γ0 RjΦ^iθjW^Ί

LFίqj 0 J

in KJί^ The matrix (20) is similar to

0 Γ
^ ' I T"» TΓ7T T—T ^#1 / /"» \ /\

Because of (14), when we make the unitary similarity that converts
Φ2qj(βό) to eioaqj + erioaqp we convert F2qj to F'qj + F'q'.. Thus (21) is
similar to

0

0

which in turn is similar to

o n v o /
(22)

' R.eiθi'F'*F' Ol ' I R eriθ5F"*F" 0

As in Lemmas 3.4 and 3.5 of [2], we find that the direct summands
in (22) are each similar to diagonal matrices and that the eigenvalues
of (20) have the form

(23)

where each g > 0. Since β*̂ /a is not real or pure imaginary, and since
the eigenvalues of (20) appear in conjugate pairs, we can arrange the
notation in (23) so that the eigenvalues of (20) are

(24)

where each g > 0.
We can now classify the eigenvalues of KγK2 into three types: (i)

the real eigenvalues, arising from the direct summand (17); (ii) the
pure imaginary eigenvalues, arising from the direct summand (18);
(iii) the not real, not pure imaginary eigenvalues (19) and (24), which
arise, respectively from the direct summands E[Pj and
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0 ^ C Γ

Since each direct summand of KγK2 is similar to a diagonal matrix,
so is KJί^ By Lemma 1, we see that each distinct eigenvalue of
KγK2 must have even multiplicity.

Let us first consider the real eigenvalues of KγK2. We study (17).
Let #+ be the number of positive eigenvalues of the symmetric matrix
Aa and #~ be the number of negative eigenvalues of Aa. Then by
Lemma 3.5 of [2], the number of positive eigenvalues of (17) is

(25) r + Σm,,

and the number of negative eigenvalues is

(26) #- + Σ m, .

Each of (25), (26) has to be an even integer. If Σ?=i mi i s even, then
both #+ and #~ are even and hence a = #+ + #~ is even. In this event
the direct summands of all the β2m (r*), 1 ^ i ^ u, of N can be brought
together in pairs and so classified into (Σ?=i m*)/2 replicas of type (2),
and as a is even, the direct summand Ia classifies into a/2 copies of
type (6). If Σ?=i mi is °dd, then both #+ and #~ are odd, hence α is
even again. By classifying the direct summand Ia into (a — 2)/2 copies,
of type (6), and reclassifying one copy of J2 as ί22(l), we can now
group together the direct summands of the £2m.(n) in pairs and so
obtain (1 + Σ?=i mi)β sets of type (2). Thus the real eigenvalues of
KJί2 give rise to types (2), (6).

Now let us consider the pure imaginary eigenvalues of KγK2. We
study (18). The eigenvalues of (18) are pure imaginaries of total
number

β + Σ 2ki .

Since the eigenvalues must appear in conjugate pairs, we may count
only the eigenvalue of each pair in the upper half plane, and hence
conclude that (18) has

(27) β/2 + ±k,

eigenvalues in the upper half plane, each of which must therefore
have even multiplicity. (Note that β is even since Bβ is a nonsingular
skew matrix.) Let us reclassify the direct summand —Iβ of N as
the direct sum of β/2 copies of Ω2( — 1). Then N has an even number
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of blocks of the type Ω2( — r), r > 0; hence we may group these blocks
into pairs of type (3). Thus the type (3) blocks in N arise from the
pure imaginary eigenvalues of KίK2.

We now study the eigenvalues of K1K2 not on the real or imagin-
ary axes. These are given by (19), where 1 ^ j ^ w, and (24), where
1 <L j ^ t. Each eigenvalue in the union of these sets must appear
with even multiplicity. To simplify the discussion, we now change
notation somewhat. We now assume the not real, not pure imaginary,
eigenvalues of N on the unit circle arise from blocks Φ2(φd — F(φ^),
1 ^ i <̂  w, and that the eigenvalues of N not on the real or imaginary
axes nor the unit circle arise from blocks ΨA{Rir 0<), 1 ^ i <̂  t. Now,
of course Φ2(φi) and Φ2(φ3) may have a common eigenvalue if i Φ j ,
but if this happens we arrange matters such that φ{ — φ3. Also
Ψ4(Ri, θi) and ΨA{R3, θ3) may have a common eigenvalue if i Φ j , but
if this happens then the four eigenvalues of Ψ4(Rίy #*) coincide in some
order with the four eigenvalues of Ψ4(R3, θ3). Then in place of (19)
we get the pair of eigenvalues

(28) βyft-β-^2, esPjβW*, a, - ± 1 , ps > 0 ,

as the eigenvalues of K1K2 associated with the direct summand Φ2(φ5)
of N, 1 ^ j ^ w, and we get the set of four eigenvalues,

(29) ±g5e
i9>l%, ±gse~iθ>lz , gό > 0 ,

as the set of eigenvalues of KιK2 associated with the direct summand
Ψ4(Rj, θό) of N, 1 ^ j ^ t. Then in the union of the sets (28), (29),
each eigenvalue appears with even multiplicity.

Note that if the two sets

have a common eigenvalue, then all four of the eigenvalues in one of
these sets appear in the other set. This situation gives rise in N to
the pairing of the blocks Ψ4(Rly θ,), Ψ4(R2, θ2) and so leads to the block

R.Fiθ,) + R^Fiθ,) 4 R2F(Θ2) + RiιF{θ2) ,

of type (5) as a direct summand of N. (A change of notation brings
θ2 to equal θλ.) Deleting such pairings from the sets (29), we obtain
a new smaller collection of sets (26), (29) of eigenvalues such that
each eigenvalue appears with even multiplicity in the union of these
sets and such that no common eigenvalue appears in two of the sets
<29).

Now the eigenvalue equal to
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may appear in some other set (28). (We don't have expxe
iq>llz — ε^e

So assume that s1/01β*>l/2 is one of

s2ρ2e-iφ2l\ ε2p2e
iφ*12.

Then p, = ρ2. We can't have s ^ ' 2 = ε2e~^/2 since then F{φx), F(φ2)
have a common eigenvalue and ^ Φ φ2. So εφ^1'2 = e2p2e

i(f2'2, hence

e»vi _ βt>2> so that 9?! = φ2. Thus we get a direct summand F{φx) +
in N, and moreover after deleting

from the union of sets (28), the eigenvalues remaining in the sets
(28), (29) each appear with even multiplicity.

Thus we may reduce ourselves to the situation where different
sets (28) do not have a common eigenvalue, and different sets (29)
do not have a common eigenvalue. In this circumstance we must
have for a certain choice of the ± sign and perhaps after a nota-
tional change (including possibly the change of θι to —β^,

(30)

Then

(31)

and so Tg^1'2 must also appear in one of the sets (28), say

(32) Tg^12 = ε2p2e^12.

(It may be necessary to replace φ2 with — φ2 to achieve (32).) Then

(33)

In this case the four eigenvalues of the set (29) with j = 1 find their
partners in the sets j = 1, j = 2 of (28). After deleting from (28)
the pairs with j = 1, 2 and deleting from (29) the set with j = 1,
the eigenvalues in the remaining sets (28), (29) must still have even
multiplicity.

The equations (30), (32) imply gι = pL = ρ21 and eiθι = e?1 = e***
and so θλ = φλ = φ2. Thus, before we changed the signs of θ19 θ2, we
had θt — ±.φι — ύzφ2' Without loss of generality we may make a
diagonal similarity of N to achieve θγ — φ1 = φ2. We now group
together the following direct summands of N:
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(o^ί) ΣίγΓ Kyi) -j- Jtίi JΓ \"ι) -f~ J? \<pι) -f- -f \<p2)

This block (34) can be classified under the type (5) with R2 = 1.
Thus we have demonstrated that N is orthogonally similar to a

direct sum of types (2)-(6).
For the converse we express each of the types (2)-(6) in turn as

a commutator of two skew symmetric matrices.
Let N = diag (rί9 r~ι, r2, rj"

1). Put

(35)

(36)

Then

K1K2 —

~ 0
0

Λ^I/2ΛΛ1/

0

" 0

0

0 -

. - 1

"0 r~

_1 0_

0
0

! 0

1

0

0
_rj/2 f

0

-rψ'ϊ
0

0

0

r
.-1/1

2 ' 1

,1/2
1

0
/ 2 r

0

0

Ί

0"
- 1

0

0_

1

r1'2 o
0

0

0

Taking the transpose we obtain K2Kι and then we easily see that

LetNow let N — diag( — r19 — rf1, — τ2J —

(37)

and let K, be given by (36). Then N =
Now let N = diag (1, 1). Put

0
0

-rψrψ
0

0
0

0

1

rψrψ
0

0

0

0
- 1

0

0

y_ — K2 =
0 1

- 1 0

Then JV =
Next let N = F(φ) + F(φ). Let θu θ2 be any two angles with

θί-θi = φ/2. Put

0 Γ 0 G(θt)

0 } 2 ~ l-G(θt) 0 J
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(The matrix G(θ) is described in [2].) Using Lemma 3.3 of [2], we
see that N = KJC^K^KςK Clearly K» K2 are skew orthogonal.

Finally let N = RJF(φ) + RτyF(φ) + R2F(φ) + R2

ιF{φ). Let θu θ2, α l f

a2 be any four angles such that φ = θ1 + θ2 — ax — a2. Put

<38)

0

0

0

0

0

o (
0

0

-G(θ2)

0

0

-G(a2)

0

R^y^Giθ
0

0

0

0 (R

G(a2)

0

0

ι) 0

G{θ2)

0

0

0

0

0

(39)

Using Lemma 3.3 of [2],

0 -(R1R^IΨ(Θ1 - a2)

-(RJRd^FWt-a,) 0

0 -R2F(θι - a,)

-F{θ2-a2)

By taking transposes one finds K2KX. It is then a simple matter to
verify that NK2K, = K,K2.

The proof of Theorem 1 is now complete.

Proof of Theorem 2. From (1) and (7) we see that N is a com-
mutator of the Hermitian matrices ίK19 iK2, commuting with ίKx.
By [2, Th. 4.2] it follows that N is symmetric. The formula (61) of [2]
therefore simplifies to

(40) N =

where rt > 1, s< > 1, and distinct direct summands in (40) do not have
a common eigenvalue. Then, as in the proof of Theorem 1, we obtain

(41)
0 +

0 Dk

tic* 0

From NKX = KXN we see that Kx has the the form

(42) Γi= Ua+ Vβ + w
0

0

0

The direct summands in (42) must each be skew. Thus a, β, mit ki
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all must be even. Then each Ωim.(Ti) is the direct sum of m</2 copies
of type (8) and each Ω2k.{ — s<) is the direct sum of kJ2 copies of type
(9). Furthermore Ia is the direct sum of a/2 copies of (6). If we
can prove that β = 0 (mod 4) then we can classify — Iβ as the direct
sum of /3/4 copies of type (9).

From the forms (41) of K2Kt and (42) of K19 it follows that a
direct summand Yβ of K2 exists such that Bβ = YβVβ. We also have
(see (16)) Bβ — —Bβ; hence Bβ is a real skew matrix which is the
product of two other real skew matrices. By Lemma 1 we know that
each eigenvalue of Bβ has even multiplicity. Thus the eigenvalues
of Bβ come in sets of four of the form ri, ri, —ri, — ri, with r > 0.
This implies β = 0 (mod 4).

The conditions of Theorem 2 are therefore necessary. To prove
sufficiency, we examine types (8), (9), (6) in turn.

Let N = rl2 + r~ιI2. Set

(44) K,
Γ 0 IΛ

Λ-u oj
Plainly K2 is skew orthogonal. It is easy to see that N —
and NK1 = K^. This works whether r is positive or negative. Now
let N = /2. Here we may take

and again iΓ2 is skew orthogonal. The proof of Theorem 2 is complete.

Proof of Theorem 3. By [2, Th. 9.1], iV is unitary; hence in
types (8) and (9) we have r = 1; and so we obtain types (6) and (11).
Conversely, if N is given by (11), then let Kx be given by (43), with
r = - 1 in (43), and let K2 be given by (44). Then (1) and (10) are
satisfied.

THEOREM 4. Let N be positive definite symmetric and n-square.
Then N is a commutator (1) of two skew symmetric matrices Kίy K2

if and only if:
(i) for n = 0 (mod 4), N is orthogonally similar to a direct

sum of blocks of the type diag (r, r" 1), r > 0;
(ii) for n = 2 (mod 4), N is orthogonally similar to

diag (1,1) + ^ ,
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where N1 satisfies the condition (i).

THEOREM 5. Proper orthogonal & is a commutator

of two skew symmetric matrices if and only if:
(i) each eigenvalue J of ^ for which 7 Φ — 1 has even multi-

plicity;
(ii) the eigenvalue 7 = — 1 of έ? has multiplicity ΞO (mod 4).

// these conditions are satisfied, we may choose both Kγ and K2 to
be skew orthogonal.

Proofs. These results follow by observing what happens to types
<2)-(6) when N is positive definite or orthogonal. The proof of Theorem
1 showed how to choose Klf K2 to be skew orthogonal if N is orthogonal.

THEOREM 6. Let n = 0 (mod 4). Let S be positive definite sym-
metric and n-square and let det S = 1. Then

S =

is a product of two commutators of skew symmetric matrices.

Proof. By Fan's factorization applied to S, we write S = S&
where S, and S2 satisfy the conditions of Theorem 4.

THEOREM 6. Let n = 0 (mod 4). Let έ? be proper orthogonal
and n-square. Then

is a product of two commutators of skeτv orthogonal matrices Kγ, K21

Proof. Any proper orthogonal έ? is orthogonally similar to a
direct sum of blocks of type F{φ^ + F(φ2). But

γ) + F(φ2) = {F{a,) + F(aι))(F(a2) + F(~a2))

where a, = (φL + φ2)/2, a2 = (φι - φ2)/2. Each of

F(a,) + F(a^ F(a2) + F(-a2)

satisfies the conditions of Theorem 5.

THEOREM 7. Let n = 0 (mod 4). Let A be any real n-square
matrix with det A = 1. Then
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is a product of four commutators of real skew symmetric matrices,
with K5, KQ, K7, K8 all skew orthogonal.

Proof. Use the polar factorization theorem, as in [2], in com-
bination with Theorems 5 and 6.

THEOREM 8. Real normal N is a commutator (1) with K1 skew
and K2 skew orthogonal, if and only if N is orthogonally similar
to a direct sum of types

diag (r, r~\ r, r~ι) , r > 0 ,

diag (— r, — r~\ — r, — r~ι) , r > 0 ,

diag (1, 1) ,

F(φ) + F(φ) ,

RF{φ) + R-ιF{φ) + RF(φ) + R-ιF(φ) , R > 0 .

Proof. Sufficiency follows from sufficiency part of the proof of
Theorem 1. Necessity follows by using the condition (i) of Theorem
7.10 of [2] and reclassifying the types (2)-(6) of Theorem 1 above.

The author wishes to thank Mr. David Riley for his assistance
in the preparation of this paper.
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