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VARIOUS m-REPRESENTATIVE DOMAINS IN
SEVERAL COMPLEX VARIABLES

KE1z0 KIikucHI

Our main purpose is to introduce several functions which
map a bounded domain D onto m-representative domain in
several complex variables without the help of the minimum
problems or the use of determinantal expressions. We use
constructive methods to obtain m-representative functions.

S. Bergman introduced two kinds of canonical domains, minimal
domains and representative domains, by using the mapping functions
which were expressed in terms of the Bergman kernel function and its
derivatives (see [1], [2]). Further, M. Maschler introduced two types
of canonical domains named m-minimal and m-representative domains
in one variable by using minimum problems. Now, we consider a
bounded univalent domain D in C”, and a vector function w(z) = (w,
(2), wy(7), +++, w,(?)) in D. If each component w;(z) is holomorphic,
then the function w(z) defines a holomorphic mapping of the domain
Dc C" onto the domain 4c C", and if the mapping w(z) is both
holomorphic and locally one-to-one, i.e., detdw/dz == 0 (see § 1 and [4],
[6]), it is pseudo-conformal.

By means of some matrix derivative formulas, the author obtains

pseudo-conformal relative invariant matrix systems' , T,(Z, 2) and matrix
) (v)
system T,(t,; 2), Sp(ts; 2). Thus we shall arrive at several types of

m-representative functions of D which are constructed by the operators
o’ and d5 (see §3,84). In general, it is not known if the m-represen-
tative functions of a bounded domain are holomorphic or even exist, but
we have a holomorphic m-representative function under the condition
K,(t, 2) # 0 in D (see Theorem 3.2).

1. Preliminaries. Let <% D) be a class of holomorphic functions
f(z) integrable square in the sense of Lebesque in D, namely

|, @ v, < oo

where dv, is the volume element in D, and let @(z) = (¢, (2), Px(z), *+*)’
be a closed system of orthonormal functions in D. The Bergman kernel
function of the system @(2) is given by K,(f, 2) = o*(¢)p(2), 2, t€ D
where the marks ' and * denote the transposed and transposed conjugate

1 Utilizing this matrix, Riemann curvatures were formed in our Seminar, (see Sci.
Rep. Tokydo Kyodiku D. Sec. A, No. 182, 188).
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678 K. KIKUCHI

matrices respectively. This function K,(Z, z) is characterized by the
domain D, and if D be a domain equivalent pseudo-conformally to a
bounded domain the Bergman kernel function K,(%,#) exists in D and
Ky(z,2) >0 for any point ze D. If { = {(2) is a pseudo-conformal
mapping of a domain D onto a domain 4, then we have

1.1) Ky(2, 2) = (det dz(8)/dt) K,(T, {)(det d{(2)/d2) ,
1.2) Ty(t, 2) = (dr(8)/dt)* TuT, {)(dL(2)/dz) ,

and we have T,(t, 2) = KT, 2)(Kp(t, 2)Kp(T, 2) — Kpu(t, 2) Kp,(E, 2)).

Next, we define a pseudo-conformal equivalence class of D with
respect to a fixed point t,(€ D), that is, each domain 4 that belongs
to the class is the image of D by a pseudo-conformal transformation
{(2) satisfying

(1.3) C(to) = 0, di(t)/dz = E,, d*C(t)/dz" = - -+ = d"C(t,)/dz™ =0 .

An invariant function of the pseudo-conformal equivalence class satisfy-
ing (1.3) is called m-representative function of the class, and the image
domain by it is called m-representative domain of the class with center
at the origin. And we define the power of z as follows:

(1.4) E=(RE, e, Rk e 2in, cee, 20)

where (k, k,, - -+, k,) range over all the nonnegative integers such that
ky +ky+ «-+ + k, =k and ,H, monomials of degree k with respect to
2, %5+, 2, are arranged by a certain rule. We define the kth partial
derivative of matrix function with respect to z and z* as

o*w(t, 2)[0zF = 0%[0z" - w(t, 2)
( o* k! 0*
(1.5) TNozt T kMK ek, 0202k -« 02k

o -
] azk> X ’Z/U(t,Z) ’

n

’

where 0%/0z" will be arranged in the same rule as z*, and the sign X
designates the Kronecker product. If w(z) is a function of z only the
kth derivative is denoted by d*w(z)/dz*, moreover we define

*w[ot*0z = 0[dt* x 0/0z x w = (3/0t)* X (0/0z) X w
0*w,[0t,02,, 0*w,[0t,02,, « « -, 0°w,[0t,0%,
0*W,/0T,02,, 0°W,/0T,0%,, ««+, 0°W,/0T,0%,

ooooooooooo

0*w, [0t ,02,, 0*w, [0t ,02,, + ++, 0°w, [0t ,02,

(1.6) -

We denote the following formulas with respect to the matrix
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derivatives which will be of use in calculation for demonstration
hereafter:

0F [0z = — F~'0F|o2(E, x F-), F-'0F/oz

(1.7)
= —0FJox(E, x F),

(F' is a regular k x k matrix function, z = (2, -+, 2,)’, and E, is an
% X 1 unit matrix)

(1.8) 0(FG)/oz = 0F[0z(E, x G) + FoG/oz ,

(F, G are k x [, 1 x m matrices respectively)

(1.9) oF/oz = oF[ol(dl/dz x E;) + (dC*/dz x E.)(E, X 0F[0C*)

(F' is a k x | matrix)

(1.10) O(F x G))3z = (3F/3z x G) + (F x 8G/oz)(E,, x E,),

(F, G are k x I, ¢ X v matrices respectively, and

€1y *y e
] €5y y €12
In — ’
.....
Ciny *° %y eln

where ¢;; are | X n matrices in which there is only (7, j) element equal
1, and others 0.)

2. Relative invariant matrix system. The Riemann mapping
theorem does not hold for more than one complex variable, instead
various canonical domains have been introduced. In this section, we
shall introduce a relative invariant matrix system which is connected
with the construction of m-representative functions.

We can easily calculate by virtue of the formulas (1.7), (1.8), and
(A x B)* = A* X B*, (A x B)(C x D) = AC x BD, as follows:

(B, x Tp(t, 2))0/ot*(T5'(¢, 2)0T5(1, 2)/0z)

@1 = 0*Tp(t, #)/0t*0z — 0T y(t, 2)/ot* T5'(T, 2)0TH(1, 2)/0z .

Therefore, we introduce

wTp(t, 2) = 6, Tp(, 2)/0t* 0z

2.2 _ _ _
&2 — 0 Th(2, 2)[0t* o T5'(2, 2)0, . Th(2, 2)/02, (m = 2) ,

where E, denotes an n X » unit matrix, and ,T,(%, 2) = Th(Z, ?) =
0*log K,(t, 2)/ot*oz.



680 K. KIKUCHI

THEOREM 2.1. The square matriz system ,To(%, 2) is a relative
invariant with respect to any pseudo-conformal mapping € = {(2),
that 1s,

(2.3) nTo(t, 2) = (dr(8)/dt)*", TT, O)(dC(2)/d2)"

where T = {(t), 4 = {(D), and the mth power (dl/dz)™ of dl/dz denotes
a suitably contracted matrix of n times Kronecker product.

Proof. If we suppose that the relations (2.3) is established, we
may calculate as follows by formulas (1.7) ~ (1.9) and Cauchy-Riemann
differential equation dw/0z* = 0 for the holomorphic mapping,

0, Tp/0z = (dz[dt)*™{0,, T,JoL(E, X (dl/dz)™)

2-4) + W T,d(dC/d2)" d2(dz/dC X E, )N dC/dz x B,,) ,

OnTplot*,, T50,, Th/oz
= (dz/dt)*™*5,,T,Joc*,, T3, T,/0L(dL/dz)™ "
(2.5) + d(dz/dt)*™/dt*d,, T,/oC(dl/d=)™ "
+ (dz/dt)*™*+0,, T,/oc*d(dL/dz)™/dz
+ d(dz/dty*™/dt*,, T,d(dC/dz)™/dz ,
0*, Tplot*0z
= (dz/dt)*™+'6%, T,/ot*0l(dL/dz)™*"
(2.6) + d(dz/dt)*™/dt*0,, T,/0l(dL/d=z)™+*
+ (dz/dt)*™*3,,T,/ot*d(dl/dz)™/dz
+ d(dz/dty*™/dt*, T,d(dC/dz)"[dz ,

whence we have (2.3) with m replaced by m + 1.

Now, we may derive some positive definite Hermitian form utilized
this result.

LEMMA 2.1.> For the kernel function Ky(T,2) and T,(t,2) of any
domain D, we have

(2.7 T:o(t, 2) = Ki(t, 2) Tn(2, 2) = 1 (D)%) »

where %(2) = 1)V 2 (p(2) X 0p(2)/0z — 0p(2)/02 X @(2)).

Here, we shall obtain the relation between T,,(Z, 2) and the author’s
matrix ,T,(t, 2) proceeding with our calculations of the matrix deriva-
tives

2 This lemma is due to S. Katd [7].
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2T,y (t, 2)[0t*0z — 0 T,p(T, 2)/0t* Tsi(E, 2)0 Typ(t, 2)/02

(2.8) — K3(F, ) To(F, 2) + 2Ty(F, 2) x To(F, 2)) -

In fact, we can derive the following relation by the formula (1.8)
and the rule (4 x B)(C x D) = AC x BD,
2.9) o0T,p/0t* = K0T,/ot* + oK}jot* x T, ,
similarly for 07T,,/02,

0*Typ)ot*oz = K}0*T,[0t*0z + 0K} jot* x dTp/oz

2.10
(2.10) + K30t 0z x T, -+ 0K3/02 x 0T,/ot* .

Then (2.8) follows. If we call the matrix expression (2.8) ,T.,(%, 2),
we can verify that ,7,,(Z, ?) is positive definite.
THEOREM 2.1. The matrix function
:Tp(t, 2) + mTu(t, 2) X Tp(t,, 2), (m > 2)
1s relative imvariant under any pseudo-conformal mapping { = {(z),

and positive definite for t = z.

Proof. By using y(2) in Lemma 2.1, we have
:Tep(®, 2) = Y2@)x.(2) — XER)(R) T (7, 2)X* (2)1.(2) ,
therefore we obtain for any #»*-dimensional column vector wu,

E, y Top?0 T,y 07w
(u*a T,p/0z* Tsp%, w*o? TZD/az*azu)

= (x() T3, oy (2)/ozw)* (1(2) Tsr'"?, ox(z)/0zu) .
Then we have

det (x T:p'"%, oy/ozuw)*(x Tip'", oy /0zw)
= w*0* Typ/02* 02U — u*0T,,/02* T5;'0 Toplozu = w*, Top = 0 .

2.11)

Therefore, ,T, + 2- T, x T, is nonnegative definite, then ,T, + m-
T, x T, (m > 2) is positive definite.
Next, we state the following symbol,

(2.12) T Fo(E, 2) = 6F,[ot*0z — 0F,[ot* F'0F »/oz

then we have ,T,(%, 2) = (T,)" " TH(t, 2).

THEOREM 2.2. For any matriz function F(t, 2) which transforms
by wrelation F,(t, 2) = (dr(t)/dt)*F (T, O)(dl(z)/dz) under pseudo-con-
formal mapping = {(z), we have
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(2.13)  (2)"Fp(t, 2) = (dr(8)/dt)* ™ (T )"F (T, {)(dl(2)/d2)™*" .

COROLLARY 2.1. If we construct the matrix functions
(2.14) Fy(t, z) = 0*log det (K5(T, 2) To(t, 2))/0t*0z ,
we obtain the following transformation expression

KGoo(T, 2) = (o)™ FU(E, 2)

2.15
219 — (de()dty* ()™ FUE, O™ |

where p is an arbitrary real number.

3. m-representative domains derived by operators ‘oj. First,
we define matrix functions ,T,(%, 2) (not ,Ty(%, 2)) with respect to
both z and ¢*(z, t ¢ D) with a fixed point ¢, of D as follows.

3.1) w To(t, 2) = 0%y, Tn(t, 2)/0t*02
' — 0ty Tn(%, 1)/08* (60my To) ™00y Tt o, 2)/02, (v = 2)
where ,T5(f, 2) = Th(Z, 2), oy To = 1 Tw(%o t), and by putting ¢ = £,
we have
w To(to, 2) = 0%y, To(To, 2)/0t*02
— 04y T/0t* (e T) 00—y Tn(Eoy 2)/0%

where 0,_,,Tp/0t* = [0(,_y, Tn(t, 2)/0t*],—,,,.~,,» The definite integral of
a matrix A(?) is

(3.2)

3.3) S A(z)dz = B(z) — B(t,) ,
where dB(z)/dz = A(z), then we have

(3.4) S @ To(to, 2)dz = 0Tn(t,, 2)/0t* — 0T5/0t*(Tp) " Tp(to, 2)
to

§ | o To(E, 22
t0J to

3.5 = St (O To(toy 2)/08" — 010y T/0t* (1) Tp) ™2y Ty 2))d2

= 0"T'p(to, 2)/0** — 6*Tp/0t™*(Tp) ™ T'n(%s, 2)
— 0 Tp/0t* (0 To) (@ Tn(t oy 2)/0t* — 0Tp/0t*(Tp) ™ T(ter 2))

Therefore, if we introduce a matrix function as follows
(2) —
Mp(te; 2) = '0pTH(t0, 2)
(3.6) B : _
= TD(tO’ z) - aTz)/az(z) Tglgt (2) TD(to, z)dz )
0
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(2)
we have an invariant holomorphic function (2;¢,) under any pseudo-
conformal mapping { = {(z) which satisfies the conditions

3.7 C(t) = 0, di(t)/dz = E, d*{(t,)/dz* = 0,

and the invariant function also satisfies (3.7):
(2) z (2)
(3.8) Cotes ) = Tt it 9
to

Because, in general, for any pseudo-conformal mapping { = {(z) satisfying
(1.8) we have 01T (%,, t,)/0t*?02 = 97+1T',(0, 0)/07*?0¢%, (0 < p,q < m — 1),
and we have 0?T,(%, 2)/0t*® = 6°T,(0, £)/oc**d{(z)/dz only if q = 0.
(See (2.4), (2.6) and [7]).

(2)
By this function {3, D and 4(= {(D)) generate the some domain
R. We call this unique domain R 2-representative domain of the
pseudo-conformal equivalence class of D with center at the origim,

(2)
and the function {5 (2; t,) will be called 2-representative function. More-
over if we define a matrix

(3) _ _ (2)
M3(to; 2) = 105105 Tp(t0, 2) = '05(05To(t0, 2)) = Mp(ts; 2)

3.9 ® y s ~
— #My/o7 o T5| || o TolE 2(d2),
0J %0

we obtain a 3-representative function (&)(z; t,) of the pseudo-conformal
equivalence class of D which satisfies the conditions {(¢,) = 0, d{(t,)/dz =
E, &*¢(t,)/dz* = d’C(t,)/dz* = 0:
(3) z (3)
(3.10) Co(z; &) = glgt Mi(t; 2)dz .
0
Now, we have the following relation:

( TD Tz T22 - TD(ZO! z)
3) —
N(to: z) = (E, O, O) Tt* Tt*z Tt*ﬂ) (aTD(tOs z)/at* )

T T, Teepl \*Ty(ty, 2)[0t*
(3)  _
= TBLMJB(to; Z) ’

i

(3.11)

where Typ,e = 0271 Tp(E,, t,)/0t*?027. It is proved by means of the well-
known formula

K L\*
o )

(3.12) (K7 + K'L(N — MK-'L)"MK™, —K"'L(N — MK—'L)™*
B (—(N — MK-L)y"MK-, (N — MK—iL)—l) ’

(see [5]) .
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In general, if we introduce the matrix functions as follows

(13) (D) = o en e 0L To(E, 2, (m 2 2)
where
‘05 Bt 2) = Flts; )
(3.14) — Pty D02 ) T, -+ | Tl )
(@,

for any matrix function F({;z2), then we have an m-representative
function of the pseudo-conformal equivalence class of D with respect
to a fixed point %,

(m) z (m)
(3.15) B t) = 157 it e
to
Similarly, if we construct the matrix functions

(m) —_
(3.16) M5 (b 2) = Vo3 Vo3 - s Yop Th(to, 2), (m = 2)
by Yo% replaced ,T,(%,, 2) with ., Tp(%,, 2), i.e.,
(v)’TD(EOa Z) = o*» " TD(EO, z)/at*”—laz”“l
- (Ttw—l, Tt*v-—lz, ey Ttw—lzu—z)
Ty T. ++v Tos T (B, 2)
Tt* Tt*z e Tt*z"—z Tt*z”—l(for z)

.
Ttw—ZTtw—Zz s Tt*u—zz»—z T,*»—zzvﬂ(—t—o, Z)

(3.17)

then we have another m-representative function
(m) z (m) z
@18 Gt = 15| My ade = | Neoote, e
to to
where
TD ce sz"l -t TD(i_o: z)
NEO Yz, b)) = (B, 0, «++, 0)|  ceevveers ,
Tt*m—l e Tt*m-—lzm—l Tt*m—l(z:o, Z)

because we can compute

TD A sz—z sz—l —t TD(Z)

.................

N@) = (B, 0, ---, 0)

Tt*m—z Tt*m—zzm—z Tt*m—zzm—l

(3-19) Tt*m—l e Tt*m—lzm—z trm—lym—1 Tt*m—l(Z)
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= "N — am~l”"1§f’/azm—l<m),T,;1§’

to

A Tl 2@
—vgn'N'(@) .  (See [7]) .

THEOREM 3.1. If det ., Tph(Zo &) 0, and det ,,, Th(to &) 0, 2 <
v < m) at a fized point t, of D, then we have m-representative domains
of the pseudo-conformal equivalence class of D mapped by the m-
representative (holomorphic) functions (3.15) and (3.18) respectively.

Next, by the property of Kronecker product we can calculate
formally

(T(%,, 2))*(d2)* = (To(To 2)d2)* ,
therefore we define
(3.20) [ oo | ot oy
to to
= (S T, (., z)dz)” :
to
Then we have the following m-representative function
Bt = 12| M3 20
to
(3.21) = B (i t) — Yml d*T Jdem(T5)
(| 7ot 2d2)" = 9,
to
where
(1) z _
(e t) = —S Ty(% 2)dz ,
and
iyt 2) = 2057 - 203 (B, 2) = *o3~ M3t 2)
= W2t 2) — 1ym) 97 13 Joam—( T3
[ oo [ o .
to tg

Firstly, we introduce a 2-representative domain of the pseudo-
conformal equivalence class of a domain D in this case. We can
compute as follows by the above-mentioned formulas (1.7) ~ (1.10):

Tx( )+ )x T)E,x1)
Tx()+()xT,

Il

d/dz(S:oTD(fo, z)dz>2

I
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dz/dzZ(S: T, (%, z)dz>2 —Tx( )+ (Tx T)YE, x1)+ Tx T

+ () x T)E, x E)
=T, x( )+ TE,, +T+( )xT,,

where
()= St To(For 2)dz, T = To(Fo 2), T, = 0Tp(Fo, 2)/0 .
0

Then we have
(3.22) (B )/d2),—,, = TiE,, + E? .

Further, we have following results.

LEMMA 3.1. For any n row vector x = (&, %y * -+, &,), We have
(8.23) 2B, =a*,
and, in general, for arbitrary positive integers p, q

(3.24) REaR] § TE D E‘nn + E9) = g¥tete
Thus we have
d%%/dzz(E’m, + E? = 2d2%)§,/dz2 ,

(1)
for any n column vector (3.
Therefore we have a 2-representative function

(2) z (m)

Sty = T3 Bty 9z

(3'25) (1) ' (1) z 2

= & t) — 20 a1 (| T 9de)
0

where

Mt 2) = °05To(Fn 2) = To(For 2)
—1/2! aTD/az<T;1>2§’ (Ty(F 2))dz .
to

(2) <1y
In fact, Ch(t; t) = 0, dCh(ts; to)/dz = B, diCh(te; t)/de* = a2y /dz —1/2!
~ 2
dz(g“;,/dzz(E,m + E? = 0, and clearly (C)%(z; t,) is invariant under any pseudo-
conformal mapping { = {(2) which satisfies the normalization conditions
3.7).
Similarly, we have a 3-representative function



VARIOUS m-REPRESENTATIVE DOMAINS IN SEVERAL 687

(3) z (3)
(e t) = g Mi(ty; 2)dz
(3.26) fo

Siest) — 1312l/a (|| 7o, 2dz)

to
where
Mt 2) = *o5M3(ts; 2) = Mt 2)
- 1/3:32}%@2@;)38" S (To(F, 2))(d2)" .
toJty
Clearly it is invariant and
(3 3 (3)
Tyt t) = 0, Al (t; t)/dz = B, d'Co(ts; t)/det = 0,
(3) 2 (2 ~
Bt t)d2* = BCyjdz — 13! dCo/de (T3 TYE % (B, + E?)
- ((E,, x EXE x E,,) + (E,, x E) + E
— @Az — 1/3) (3! L3 /d) = 0 .
This result from the following calculation:
ld2( ¥ = Te x () + (T, x d/dz( WE,z,
+{T, x djdz( )*+ (T x d*dz*( Y)NE,, x E)E x E.,,)
+ T, x djdz( )* + (T x &/dz( Y)E,, x E)
4+ T x d*dz*( )+ () x d¥/dz*( ).

In general, we have

THEOREM 3.2. If K,(t, 2) # 0 in a bounded domain D, we have

(m)
an m-representative (holomorphic) function (%(2;t,) (see (3.21)) of the
pseudo-conformal equivalence class of D with respect to a point t,.

REMARK 1. %)%(z; t) = TFSZ Tp(to, 2)dz = MyFn(t,, 2)/mp(t,, 2), (1 =
to

1, 1’, 2), because d(M3F(t,, z)/mb(ty, 2))/dz = T3 TH(to 2), where

K, K. )“I(Ko(fo, 2) )

MEna(t,, = (0, F _
(b 2) = )(Kﬂ k..) ok, 2ot

m(t, 2) = Ky(t,, 2)/Kp(to, t,). (This result was obtained by Tsuboi [5]).

REMARK 2. In the case of one variable, our 2-representative func-

(2)
tions of an unit disk with respect to t, become E"D(z; t) =1 — [t
(1 — tawu, (t = 1,1, 2), where u = (z — t,)/(1 — t:2).

(m)
REMARK 3. The funection (3(z; t,) is expressed as follows:
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(m) (1) m (v—1) (1)
(3.27) b(z; t) = Ch(zity) — 3 1/l d G5 [dz*(C5(2; &))"

4. m-representative domain by the operator 5. As §3, we
shall start with the case m = 2. We construct the matrix function

T (t; 2) = 84 T,(%,, 2), (see (4.6)) as follows:

@ _
Tyo(ty; 2) = Ty(te, 2)

4.1) "~ o _
— 0Tp(to, £)/02(0" T(Lo, £)/08*02) "0 T(t,y 2)/0L .

Under any pseudo-conformal mapping which satisfies the normalization
conditions (3.7) at a point ¢, of D, we have

2) (2)
(4.2) To(te; 2) = T4(0; C)dl/dz .
Then we have an invariant function which satisfies (3.7):
t

(2) (2) (2)
4.3) o2 1) = (Tolts tO»-lS To(ts; 2)dz .

This function is a 2-representative function of the pseudo-conformal
equivalence class of D.
In general, we define as follows:

(m) —
4.9 Tp(ty; 2) = 037" ++ - 0, Tp(l, 2), (M = 2) ,

A.5) Shlt 2) = 05+ -+ 353 To(F 2)/38%, Splts; 2) = 3 To(Ew 2)/3E ,
where

(v) (v)
(4.6) 35F(t; 2) = Flty; 2) — (0" F(ty; 2)/02)se1y(0*Solt; )/02) St 2) »
.7 5y ++e O5F(th; 2) = (- - (0505 F(t; 2)) +++) »

for any matrix function F(t; 2). Then we have

4.8) To(ts; 2) = TA0; O)d(@)dz ,
(4.9) St 2) = 8,(0; O)dL(2)/dz, < m — 1),
because

(4.10) 3y v e 8504 Tp(Es, 2)/0L*"
= 0y +++ 0;0° T (0, §)/oc*(dL(2)/d?) ,

under any pseudo-conformal mapping { = {(z) which satisfies (1.3).
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On the other hand, we can calculate instantly

(4'11) a{gv)D(to; to)/az =t = am—l(;jgb(to; to)/azm—l =0 ’
(4.12) 08, (t t)fo7 = -+ = 0" 8, (ty; t))0z"* = 0,

because (d*(65F (t,; 2))/dz*).—,, = O.

(m) m
THEOREM 4.1. If T,(t; 2) exists and det (T)D(to; t) = 0 at a fixed
point t, of D, then we have an m-representative (holomorphic) function
of the pseudo-conformal equivalence class of D:
(m) (m) z (m)
“.13) 7oz t) = (Fotts; t)~]] Tt 21
0

Further, we have

THEOREM 4.2. We obtain several m-representative fumctions of
the pseudo-conformal equivalence class of D with respect to the fixed
point t, of D:

@14 phe t) = @37 Mt 0] 03 Mt )dz, (= 1,17,
@15)  Zieit) = (Tt t ‘05T, (1 20, (1 = 1,1,
@16) et = T3 tos Myt 2z,

@1 ) = 17 or Mie 2z,

(m) (m—1) (m—1) (1)
(4.18) (25 8) = &p (25 8) — 1/mlo™ e, [02™(C5(2; L))"

(m—1)
where ¢, (z;t) is an arbitrary holomorphic (m — 1)-representative
function.

REMARK 1. We can obtain other m-representative functions

(m) z
Vo(z; t) = O3 N7z (b to))—lgt 03" N72"(2, tydz ,
(4.19) 0

(m)

Dhiest) = | o3 Nz (e, )z, (i = 1,1)
0

where
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N,zEngmo(z’ to) = (Em 07 Tty 0)
T.“D! R am—zTﬂD/azmq -
Ot 0L ™, + e e, BUMD T, [5¥m—25m"
T,.n(20, t)
. , (see [7]) .

0" Tup(2, t,)/0T*™*

(’”L; . . .
REMARK 2. 7),(2;t,) was published temporarily in Mathematical
Seminar of Tokyo University of Education [8], and the author showed

oz ) = (L — | 8D (1 — Tayw where w = (2 — t)/(1 — ), and D is
an unit disk in one variable.

We shall further proceed with our studies. First, we shall sub-
stitute the auxiliary conditions
E(t) = 0, dL(t,)/dzA = A, d*C(t,)/dz*A?

= oo = dm{(t,)/dzmA™ = 0,
for the normalization conditions (1.3), where A is an % X vy matrix
(v £n). (The case of conditions {(¢,) = 0, dl(t,)/dzA = A was first
studied by Y. Michiwaki, Nagaoka Technical College.)

In the case of m = 2, we construct the following matrix function

(4.20)

(2) _ _
4Tp(to; 2) = 405, Tp(to, 2) = Th(ts, 2)
— 0T (T, t,)/02ANA** T, (T,, t,)/0t* 0z A%
A*%TyH(t,, z)/ot* ,

then we can calculate easily

(4.21)

(4.22) JTo(ts; 2) = (de(t)/dt)* , T0; ON(dC()/dz) ,

under any pseudo-conformal mapping { = {(z) which satisfies the con-
ditions

(4.23) L) = 0, dl(t,)/dzA = A, d*C(t)/dz*A* = 0,
because, from (2.4) and (2.6) we have

OT(E, 2)/02A* = (dz(t)/dt)*d T,/o0(dL(2)/dzA)

(4.24) - (de(ydty T @) A
A*zazTD(E, 2)/0t*0zA* = (dz(t)/dtA)**0*T,/oc*0l(dL(z)/d=zA)*
w5 - (de(t)|dtA) T oA (2)|d A®

1 (dPe(t)/di2 A%< T, /aC(dC () /dz A)*
1 (dPr(t))dE AN * T,d¥(z)/dz2 A% .
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Therefore, we have an invariant (holomorphic) function which satisfies
the conditions (4.23):

(2) 2) z 2
(4.26) Ao(2; &) = A(A*, (TD(to; to)A)_lg A*A(I)’D(to; R)dz .
to
We shall call this function an A — 2-representative function of the

pseudo-conformal equivalence class of D with respect to t,e D.
Next, we shall define as follows:

(m) —
(4.27) aTo(te; 2) = 057" +ov 05 Th(ty, 2) ,

(2)
(4.28) BSollo; 2) = 057" =+ 0507 Tp(t, 2)/0t*",
where

10pF (to; 2) = Fl(to; 2)
— (O F(ty; 9/02). (A (A58, (1 1)/32 A7)
c AP S (s 2)
Then we have

(4.29) Tt 2) = (de(ty)/dt)* . TA0; 0)(dC(2)/d?) ,

W)

(4.30) Syt 2) = (de(ty)/dt),S,p(0; O(dL(2)/dz), (L < m — 1),
because
AFengre Ty 4)[08% 1922 A+ = A*rri9r+> T (0, 0)/ac*ral A+

under any pseudo-conformal mapping { = {(z) which satisfies (4.20).

THEOREM 4.3. We have an tnvariant function which satisfies
(4.20):

(4.31) sty = A(A* T (ty; to>A>—*§’ A%, Tyt 2)dz .

We call this function an A — m-representative function of the
pseudo-conformal equivalence class of D, and the image domain by
it is called an A — m-representative domain of the class with senter
at the origin.

Next, we shall substitute the auxiliary conditions

(4.32) L(t,) = 0, det dl(t,)/dz = 0, d°C(t,)/d=* = « -+ = d"L(t,)/dz™ =0,

for the normalization conditions (1.3).
Then, we can easily verify the following relation
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dz* %%(to; ?) TD_I(EM to)(%)p(to; 2)dz

(4.33) ) )
= dC*T;0; O)T;(0, 0) T,(0; O)dl ,

under any pseudo-conformal mapping { = {(z) which satisfies (4.32).
Therefore, we have

(4.34) T3 (F, t) Tolty; 2)dz = UT;2(0, 0)T,(0; 0)dC .

THEOREM 4.4. We have a following function which is invariant
except only unitary transformation under any pseudo-conformal map-
ping £ = L(z) satisfying (4.32):

(4.35) ol t) = T5(E,, t0>§ Tt 2)dz .

to
We call this function an m-normal function of the pseudo-conformal
equivalence class with the conditions (4.32).

The author wishes to express here his hearty gratitude to Prof.
S. Ozaki for his kind guidance during his research.
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