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EXTENSION AND BEHAVIOR AT
INFINITY OF SOLUTIONS OF CERTAIN

LINEAR OPERATIONAL DIFFERENTIAL EQUATIONS

H. 0. FATTORINI

We consider the linear differential equation u" + Bu' +
Au = 0 with coefficients A, B unbounded operators in a Banach
space E. Under the assumption that the Cauchy problem for
it is well posed in a suitable sense, continuation and behavior
at infinity of solutions are studied.

Let E be a complex Banach space, A, B linear operators with
domains D(A), D(B) dense in E and range in E. An E-valued function
u( ) defined and twice continuously differentiate in t ^ 0 is said to
be a solution of the operational differential equation

(1.1) u"(t) + Bu'{t) + Au(t) = 0

in [0, co[ if u(t)eD(A),u'(t)eD(B),Au( ) and Bu'(-) are continuous
functions and (1.1) is satisfied everywhere in t ^ 0. We say that the
Cauchy problem for (1.1) is well posed in [0, oo[ if

(a) There exist dense subspaces Do, D± of E such that if uQ e D0J

uίeD1 then there is a solution u( ) of (1.1) with u(0) = u0, u'(0) — uγ

(obviously we must have Do S D(A), Dι C D(B)).
(b) For every t > 0 there exist constants KQ(t), K^t) < co such

that

(1.2) I u(s) I ̂  K0(t) I u(0) I + Ktf) I u'φ) \

for 0 ^ s ^ t. Clearly (b) implies uniqueness of solutions of (1.1) with
given initial data u(Q), u'(0).

We consider in this paper the problem of obtaining global estimates
for the solutions of (1.1) on the basis of the hypotheses just set forth.
We show that, under mild additional restrictions on the solutions of
(1.1) there exist constants Ko> Kly ωQy ω1 < oo such that

(1.3) I u(t) I ^ Koe^ I M'(O) | + KLe^ \ u'(0) \

in t ^ 0, i.e., the solutions of (1.1) increase (at most) exponentially
at infinity (Theorem 2.1). This result is analogous to the well known
one for first-order equations v! + Bu = 0 ([3], Chapter VIII, p. 615)
and a generalization of a similar property of the equation u" + Au —
0 ([8], p. 9 and [4], I, p. 90), although the method of proof is dif-
ferent. We next show that, under similar, but slightly stronger, re-
strictions on the solutions of (1.1) we only need to assume existence
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and continuous dependence in a finite interval [0, a], a > 0, that is
the solutions can be extended to the positive real axis and satisfy
there inequality (1.3) with convenient constants (Theorem 3.1). We
then examine, by means of counterexamples the role of the additional
assumptions on the results of Theorem 2.5 and 3.1. Finally, we sketch
the extension of the results to higher-order equations.

It should be noted that if the derivative u'(t) of each solution of
(1.1) is assumed to depend continuously on its initial data (i.e., if an
inequality of the type

(1.4) I vJ(t) I ̂  L0(t) I u(0) I + LL(ί) | u'(0) | ,

0 ^ s ^ t, L0(t), Lγ{t) < oo is assumed to hold for any t > 0) then the
equation (1.1) can be reduced to a first order equation

(u[(t) = u2(t), u'2{t) = - Au.it) - Bu2{t))

in the product space E x E to which semigroup theory can be applied
and all of the results in this paper can be readily obtained from the
corresponding ones for first order equations. However, (1.4) is not
satisfied for many of the equations that can be put in the form (1.1)
for instance the wave equation. (The author is indebted to the re-
feree for these observations.)

We shall not be concerned here with the problem of finding con-
ditions on the coefficients A, B of (1.1) in order that the Cauchy pro-
blem for (1.1) be well posed in some sense or another; for a view on
this subject the reader may consult [5], [6], [7] and bibliography
therein.

The Cauchy problem for the equation (1.1) has been studied in a
similar way but with somewhat different assumptions by M. Sova in
[9]; we indicate at several points in this paper the relations between
Sova's results and ours.

We hope to present in a forthcoming paper applications of the
present results to partial differential equations.

2. We denote by £?{E) the space of all linear bounded operators
from E to E, endowed with its customary topology (the "uniform
operator" topology). If J is an interval in ] — oo, oo[ and n a nonnega-
tive integer we denote by C{n)(J, E) (or simply Cin)(J)) the space of
all jE-valued functions defined and n times continuously differentiate
in J. It is assumed that A, B are such that the Cauchy problem for
(1.1) is well posed in [0, oo[; we also suppose that the operators A, B
are closed.

Let ueD0. By virtue of (a), §1, there exists a solution u{ ) of
(1.1) with initial data
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U(O) = U u'(0) = 0 .

Define

S(t)u = u(t) for t ^ 0 .

By virtue of (b), if t is any fixed element of [0, c [̂, S(t) is bounded.
Since Do is dense in E, we can extend S(t) to all of E by continuity
as a bounded operator (which we shall denote by the same symbol).
Because of the estimate (1.2), if ueE, {un} c Do, un —> u then (S(*)un

~^S(*)u uniformly on compacts of [0, <>o[. Accordingly S( ) is a
strongly continuous application of [0, oo[ into J*f(E); |S( )I is bounded
on compacts of [0, oo[ by virtue of (1.2). We define the ^f(E)-va\ued
function T( ) in the same way, but now in reference to the solution
u( ) of (1.1) with initial conditions

u(0) = 0, u'(0) = ueD,.

Clearly T( ) enjoys all of the properties just established for S»( ) By
definition, we have S(0) = /, the identity operator in E, Tφ) = 0. If
u(-) is any solution of (1.1) then

(2.1) u(t) = S(t)u(0) + T{t)u'φ) .

This follows from the very definition of S and T when u(0) e Do,
u'(0) e Dλ and it can be obtained from (1.2) and a passage to the limit
in the general case. Observe that if u e D0J S( )u e C(2)([0, oo[) and
S'(Q)u = 0, S/;(0) - -AS(0)u - BS'(0)u - -Au; similarly if

ueDl9 Γ(.)^eC(2)([0, co[)

and T'(0) = u, T"(0)u = -Bu. We shall call S, T the propagators of
(1.1).

The following well-known result will be constantly used in the
sequel.

LEMMA 2.0. Let Q be a closed operator in E with domain D(Q),
/(•) a function defined in the (finite or infinite) interval J, with
values in D(Q) and such that /(•)> Qf( ) ^re continuous and integrable

in J. Then f = \ f(t)dt e D{Q) and
JJ

(2.2) Qf = ^Qf(t)dt .

For a proof (of a more general theorem) see for instance [3],
Chapter III, p. 153. Our principal result is

THEOREM 2.1. Assume T( )u is continuously differentiate in
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[0, co[ for all ueE. Assume, further, that T(t)E S D(B) for all
t^O and that BT( )u is continuous in [0, oo[ for all ueE. Then
there exist constants Ko, K19 o)Q, co1 < co such that the estimate (1.3)
holds for every solution u( ) of (1.1).

Proof. It will be carried out by constructing an "approximate
resolvent" for the characteristic polynomial P(λ) = X2I + XB + A of
(1.1) by a technique not unlike those of [1], [2] and then by obtain-
ing, by inverse Laplace transform, a convenient functional equation
for T.

We examine first a few results that can be immediately drawn
from the assumptions in Theorem 2.1 (they will be assumed to hold
throughout this section). Let a > 0, and assign to the space
C(0)([0, a]) its usual supremum norm (which makes it a Banach space).
The operator u-+T\ )u from E to C(0)([0, a]) is easily seen to be
closed; since it is everywhere defined, by the closed graph theorem it
is as well bounded. But then T'(t) is a bounded operator for all t;
moreover, the map t —> T'(t) from [0, co [ to Sf(E) is strongly con-
tinuous. By the Banach-Steinhaus theorem | JΓ'( )I is bounded on com-
pacts of [0, co[. Consider next the operator BT(t), ί Ξ> 0 from E to
E. Again BT(t) is closed and everywhere defined; another application
of the closed graph theorem shows that it is bounded. Clearly B T( )
is strongly continuous, \BT( )\ is bounded on compacts of [0, oo[.

We will need later to solve the inhomogeneous equation

(2.3) u"{t) + Bv!(t) + Au(t) = f(t) .

Solutions of (2.3) are defined in the same way solutions of (1.1) are.

LEMMA 2.2. Let f belong to C(1)([0, oo[). Then (a)

u(t) = T(t)*f{t){i) = (*T(ί - s)f(s)ds

= [T^fit - s)ds, t ^ 0
Jo

is a solution of (2.3) in t ^ 0 with u(0) = π'(0) - O.(2) (b) If v(-) is
any solution of (2.3) then

(2.5) v(t) = S(t)v(0) + T(t)v'(0) + u(t), t ^ 0

where u is defined by (2.4).

Proof. Integrating (2.4) by parts we obtain
(1> We shall denote occasionally a function /, or /(•) in the same way we denote

one of its values (/(£)). This will cause no confusion.
(2> See [9], p. 99 for a related result.
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U(t) = [τ(s)f(0)ds + J^J^SΓ(r)dr)/'(s)ds .

Differentiating,

u'(t) = T(t)f(O) + \tT(t- s)f'(s)ds ,
Jo

u"(t) = T'(t)f(O) + [T(t - s)f'(s)ds
JO

(the foregoing steps can be easily justified). Let now u e A We
have

AT(s)u = -BT(s)u - T"(s)u

or, integrating between 0 and t,

A[T(s)uds = -BT(t)u - T'(t)u + u.
Jo

Since the right-hand side of the preceding equality depends continuously
on u and A is closed, it follows from denseness of D1 that

[*T(s)udseD(A)
Jo

for all ueE and that

(2.6) U(t) = A\tT(s)ds + BT(t) + T'(t) = I.
Jo

The preceding observations and Lemma 2.0 make clear that u(t) e D(A)
and that Au( ) is a continuous function. Similarly, the assumption
on BT(-) in Theorem 2.1 implies that u'(t)eD(B) and that Bu\ ) is
a continuous function. Finally, it is plain that

u"(t) + Bu\t) + Au(t) = U(t)f(0)

- 8)f'(8)d8 = f(t)

as claimed.
Observe, finally, that if v(-) is an arbitrary solution of (2.3), u( )

the solution provided by formula (2.4) then v( ) — u( ) is a solution
of (1.1). Making use of (2.1) we obtain the formula (2.5).

LEMMA 2.3. (a) Let ueD(A). Then

(2.7) S'(f)u = - T(t)Au

(b) Let ueDQΓ\ D(B). Then
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(2.8) T'(t)u = S(t)u - T(t)Bu .

S t
T(s)Auds is a

0

solution of the equation
u"(t) + Bvf(t) + Au(t) = -Au

with u(0) = u'(0) = 0. Consequently v(t) = u(t) + u satisfies (1.1) with
initial conditions v(0) = u, v'(0) = 0. By virtue of (2.1), v(t) = S(t)u,
that is

(2.9) S(t)u - u = -\tT(s)Auds
Jo

which is the integrated version of (2.7). As for (b), let now

u(t) = -\tT(s)Buds .
Jo

Applying again Lemma 2.2 we see that u(-) satisfies

(2.10) u"{t) + Bn\t) + Au(t) = -Bu

u(0) = u'(Q) = 0. On the other hand, let v(t) - [*S(s)uds. We have

v\t) = S(t)u = ΫS'φuds + u, v"(t) = S'(t)u = [S"(s)uds. Making use of
Jo Jo

Lemma 2.0 we easily see that v(-) satisfies as well (2.10)-but now
with initial conditions v(0) = 0, v'(0) = u. Accordingly w(t) = v(t) — u(t)
satisfies (1.1) with initial conditions w(0) — 0, w'(0) = u, that is, w(t) =
T(f)u, or

(2.11) T(t)u = Γ(iS(s)u - T(s)Bu)ds
Jo

from which (2.8) can be deduced by differentiation.

COROLLARY 2.4. (a) Do = D(A). (b) D = D(A) n D(B) is dense
in E. (c) D, a D(A) n D(By3). (d) If ue D(A) n

+ T(t)Bu + T(£)Au = 0, ί ^ 0 .

Proof. As a by-product of the proof of Lemma 2.3 (a) it was
established that S( )u is a solution of (1.1) for any ueD(A). Simil-
arly, one of the steps in the proof of (b) was to show that

T(-)u,ueD0Π D(B) = D(A) Π D(B)

is a solution of (1.1). To show (b), let Ψ be the subspace of E
generated by all elements of the form

(3) It is not true in general that Όι — D(B).
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[ψ(s)T'(s)uds

where Ψ is, say, any C°° function with compact support contained in
]0, oo[, u any element of E. Making use of the fact that T'(0) = I
it is simple to show that Ψ is dense in E (see [3], Chapter VIII,
Exercise 3.1 for a similar statement). On the other hand, we observe
that (integrating by parts) any element of Ψ can be written in the
form

-\ψf(s)T(s)uds = \ψ"(s)(\ST(r)udr)ds .
J J \Jo /

Applying Lemma 2.0 to the first of these expressions we obtain Ψ S
D(B); on the other hand, again by Lemma 2.0, equality (2.6) and the
comments preceding it, Ψ g D(A), which establishes (b). As for (d),
it immediately follows from differentiating (2.8) and then expressing
S'(t)u by means of (2.7).

We may remark at this point that, as a consequence of equality
(2.8) the operator T(t)B (with D(A) Π D(B) as domain) admits a bound-
ed extension to all of E, namely

(2.12) T(t)B = S(t) - T'(t) .

Since S( ), T"( ) are strongly continuous functions in ]0, oo[, so is
TU)B.

We consider in what follows the "characteristic polynomial"

P(λ) = λ2/ + XB + A

of (1.1); for each λ, P(λ) is a linear operator with domain

D = D(A)ΠD(B).

LEMMA 2.5. (a) P(λ) is pre-closed for all λ. (b) There exist
constants α, β ^ 0 such that P(λ) is one-to-one for

(2.13) R e λ ^ α + βlog(l + |λ|) .(4)

Proof. Assume (a) is false for some λ. Then there exists a
sequence {un} c D(P(λ)) such that un —> 0, vn = P(X)un —> v Φ 0. Let
un(t) = eλtun, t ^ 0. Clearly un( ) satisfies the inhomogeneous equation
(2.3) with f(t) = eλtvn. We get as a consequence of Lemma 2.2 (b)
that

ί4) P(λ) may not be closed or one-to-one for some values of λ.
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eλtun = S(t)un + \T(t)un

tT(s)eλ(t-s)vnds .
0

Letting now n -+ oo, we obtain

S e~XsT(s)vds — 0, t ^ 0 .
0

Differentiating twice

e~uT'(8)v - \e-)sT{s)v = 0 for s ^ 0

if we set s = 0 in this last expression we obtain v = 0, absurd.
As for (b), assume P(λ) is not one-to-one for some λ. Then there

exists u G Z)(P(λ)), % ̂  0 such that P(X)u = 0. Obviously u(t) = e;ίi6
is a solution of (1.1); making use of the estimate (1.2) for any fixed
t > 0 we see that there exists a constant K < oo such that

Taking logarithms we obtain the inequality opposite to (2.13) for a =
(log K)/t, β = 1/t.

We continue now the proof of Theorem 2.1. Let φ be a twice
continuously differentiate scalar valued function with compact support
and such that φ(0) = 1. Consider the (plainly bounded) operator in
E

(2.14) R(\ φ)u = [°e~λtφ(t)T(t)udt
Jo

defined for all complex λ. We easily obtain from Lemma 2.0 that
R(X, φ)E S D(B). Moreover, we can write integrating by parts

(2.15) JB(λ, φ)u = ^(e-λtφ{t))'[VT(s)uds)dt
Jo Vjo /

and then it follows (again from Lemma 2.0, equality (2.6) and the
comments preceding it) that i?(λ, φ)E C D(A). Hence

(2.16) R(\, φ)E g ΰ = D(A) Π -D(JB) = D(P(λ)) .

If u e D we easily obtain, after a few integrations by parts and using
the fact that T( )u is a solution of (1.1) (Corollary 2.4, (b))

P(λ)jR(λ, φ)u = U + (V^K^ΓJ^ίQw + B(φT)'u + A(φT)u]dt

= u + \ e-;iM(£, cp)udί = w + M(λ, φ)^
Jo

where M(t, φ) = 2^(ί)Γ'(ί) + φ"(t)T(t) + φ'(t)BT(t) is plainly a
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valued, strongly continuous function in [0, oo[ with compact support.
Let ω ^ 0 be such that

(2.18) [ ° e - ω t \ M ( t , φ ) \ d t = Ύ < l .
Jo

Plainly

(2.19) \M(\,φ) ^7

in Re λ ^ ω and thus / + M(X, φ) has a bounded inverse there. Define

R(X) = R(X, φ)(I + M(\, φ))~ι

(2.20)
R(\ )Σ(iΓM(λ, φγ .

We now write (2.17) in the form

(2.21) P(λ)jβ(λ, φ)u = u + M(λ, φ)u, ueD

where P(λ) denotes the closure of P(λ). It follows immediately from
the fact that P(λ) is closed that (2.21) must hold as well for all ueE.
Then

(2.22) P(X)R(X)u = u,ueE .

Observe now that, since R(X, φ)E £ D(P(λ)), JSίλ)^ £ D(P(X)); hence,
we may replace P(λ) by P(λ) in (2.22). The equality thus obtained
implies that R(X)E = D(P(λ)), at least for those values of λ for which
P(λ) is one-to-one. For, let v e D(P(X)), v $ R(X)E and let u = P(X)v.
Then

P(X)(v - R(X)u) = 0

which is impossible. We show next that P(λ) is actually one-to-one
in Reλ > ω. Observe first that i?( , φ), M( , φ) are entire functions,
as Laplace transforms of functions with compact support. But then,
by virtue of the estimate (2.19) the series in the right-hand side of
(2.20) converges uniformly in Re λ ^ ω, hence R(X) is analytic there.
Let now v e D(P(X)) = D, v Φ 0 and let X be, say, in the region de-
fined by (2.13). By the preceding comments, v = R(X)u(X)(u(X) some
element in E). Then

(2.23) R(X)P(X)v = R(X)P(X)R(X)u(X) = R(X)u(X) = v .

The left-hand side of (2.23) is analytic in Re X > ω. Since it equals
v in the region defined by (2.13) it must equal v as well in Reλ > ωy

which shows that P(X)v Φ 0 throughout Re X > ω as claimed. Collect-
ing all the observations made about P(λ) and R(X) we can write

(2.24) R(X) = P(λ)-1 in Reλ > ω .
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We obtain now some rough estimates for R, BR, AR in Re λ ̂  ω.
Plainly \R(X, φ)\, \BR(X, φ)\ are bounded there; on the other hand, it
follows from (2.15) that \AR(X; φ)\ ^ C |λ | . Finally, in view of (2.19)

(2.19) i (/

Accordingly,

(2.25) |iί(λ)|, \BR(X)\ ^ C, \AR(X)\ ^ C\X\

in Re λ > ft> for some convenient constant C. Let now ώ > ω and
let we 2?. Define

(2.26) u(t) = —ί— P " ^ R ( χ ) u d X .
2 π ΐ J i λ 4

It is clear that w( ) e C(2)([0, ^ [ ) , for differentiation under the integral
sign is permissible. More precisely, we have

(2.27) u{k)(t) = - L . [ω+t~J—R(χ)ud\
2πί Jω-ioo A,4-&

k = 1, 2. Using now the estimates (2.25) together with Lemma 2.0 we
see that u(t) e D(A), u'(t) e D(B)y Au(t) and Bu'(t) are continuous func-
tions in t Ξ> 0; we easily compute ^(0) = u'(0) — 0. In addition, we have,

u"(t) + Bu'(t) + Au(t) = [
2πi jΰ-i^X

(2.28) = ( — —dx)
J

3!

Expressing now the solution of (2.28) by means of Lemma 2.2 we
obtain

(2.29) —\\t- sfT(s)uds = —— [^~—R(X)udX
3! Jo 2πi jw-i^χ4

a formula that suggests-as will be proved later-that R(X) is the Laplace
transform of T.

We now try to find a new representation for R(X). Let ue D;
operating as in (2.17) and making use of Corollary 2.4 (d) we can
write

R(X; φ)P(X)u = u+ \°e-λt[(φT)"{t)u + (φT)'(t)Bu
\Δ,ό\J) Jo

+ (φT)(t)Au]dt
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e~uN(t; φ)udt = u + JV(λ; 9)%
0

where now N(t, φ) = 2φ'(t)T'(t) + φ"(t)T{t) + φ'(t)T(t)B. If α>' ̂  0 is
such that

<2.31) (V ω ' * I JSΓ(ί, 9>) I dt = 7 < 1
Jo

then I AΓ(λ, 9?) | ^ 7 in Re λ >̂ α>', I + N(X, φ) is invertible there. Let
Q(χ) = (J + JV(λ, cp))~1i2(λ, cp). It follows from (2.30) that

(2.32)

for ue D, which plainly shows that Q(λ) = S(λ) in

Re λ ^ ίϋi = max (ω, ω') .(5)

Accordingly,

R(X) = (I + iV(λ,

{2.33) / ^ \

Formula (2.33) suggests, by inversion of Laplace transforms (as yet
formally!) the equality

{2.34) T(t) = ( Σ (-l)n^(ί, φ)**)*(φT)(t)

where * denotes convolution, the exponent *n indicates the w-th con-
volution power. We attempt to justify now (2.34) directly. By
virtue of (2.31) and of Young's inequality

ί, φ)*2\dt ^ [\e-ω>tN{U φ)\*2dt ^ 72,
Jo

and in general

[°e~ωft\N(t, <p)*n\dt ^ 7% n ^ 1 .
Jo

If now if is a constant such that

\N(t,φ)\ ^Ke«'\t^0 ,

it is clear that

{2.35) \N(t, φTn\ = \N(t, ^)*(f|-1}*JSr(i, φ)\ ^ K-fn-ιeω'\ n
(5) We might set here ωι = min (ω, ω'); for if ωf < ω, it is not difficult to see that

#U)-that can be analytically continued to Re λ > ωf by means of QW)-still satisfies
M(λ) = P(λ)~ι there.
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Consequently, the series

(2.36) Σ (-l)nN(t, φTn

converges uniformly on compacts of [0, oo [ to a =S^(£r)-valued function
Λ^(t, φ) such that

(2.37) \^(t, φ) \^K(1 - ΊYλeω'\ t ^ 0

moreover, since each of the terms of the series is strongly continuous
in [0, oo[, so is ^K( , φ). By virtue of (2.37) and (2.35) the Laplace
transform of ^K( , φ) exists for Reλ > ωr and can be computed by
term-by-term integration of (2.36). Let now f be the
function defined by the right-hand side of (2.34), that is

T(t) = (δ®I+^T(t, φ))*(φT)(t)
(2.38) n

= (φT)(t) + Λ'(t - 8, φ)(φT)(s)ds .
Jo

Plainly
(2.39) \f(t)\ ^ K'eω'\ t ^ 0

for some constant K'. Computing the Laplace transform of T by
application of the convolution theorem, and likewise applying the
convolution theorem to each of the terms in the series of Λ^( fφ)
we easily see that it equals

(-l) n #(λ, φ)n)R(\ φ) = Λ(λ)
0 /

by (2.33). But then, by a well-known result on Laplace transforms,
of antiderivatives, we have

— \(t- syT(s)uds = -ϊ—\ —R(X)udX

for ώ > ω,, u e E. Comparing this with (2.29) and differentiating three
times the identity obtained therefrom by uniqueness of Laplace trans-
forms we obtain f = T. In view of (2.39),

(2.40) I T(t) I ̂  K'eω'\ t ^ 0

as we desired to show. Apply now both sides of (2.38) to an arbitr-
ary element of E and differentiate; taking into account that (φT)(0) =
0, we obtain

(2.41) T'(t) - (δ (g) / + ̂ 4^(t, <p))*(<pT)'(t) .(C)

w We are using here the differentiation formula

(f(t)*g(t))' = f'(fi)*g(t) + f(O)g(t) = Λt)*g'(t) + At)g(f» ,

valid when f on g are (say) continuously differentiate in t > 0, zero in t < 0.
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Similarly, applying both sides of (2.38) to all elements of E of the
form u = Bv and then making use of equality (2.12) and the com-
ments preceding it, we get

(2.42) S(t) - T'{t) = (δ®I+ ^T(t, φ))*((φS)(t) - (φT)(t)) .

Adding now the preceding inequality to (2.41), the equality

(2.43) S(t) = (δ ® I + ^T(t, φ))*((φS)(t) + (

follows. Equalities (2.41), (2.43) can now be used in conjunction with
(2.37) to prove that

(2.44) I S(t) I ̂  K"eω'*, \ T(t) \ ̂  K"eω'*

in t ^ 0, which ends the proof of Theorem 2.1. (Note that as a by-
product of the proof we have established exponential increase of T '(•))•

REMARK 2.6. There are "left-handed" analogues of identities
(2.38) and (2.41). They are

(2.45) T(t) = (9>Γ)(ί)*(δ®/+ ΛT(t, φ))

(2.46) T'(t) = (φTY(t)*(δ ® / +

where

(2.47) ^^( ί , φ) = Σi (-±)nM(U φ)*n .

These formulas can be justified along the lines the "right-handed"
formulas were. On the basis of (2.18) it can be shown that

\M(t, φ ) * n \ ^ L T ~ ι e ω \ n ^ l

for some L and thus that the series in (2.47) converges uniformly on
compacts of [0, oo[, its limit ^ # satisfying

, φ) I ̂  L(l - 7)-^^, t ^ 0

for some constant L. The equality of the left and right-hand side
of (2.45) can be eatablished, as in the case of (2.38) by taking the
Laplace transform of both sides and then using (2.20) and (2.29).
Formula (2.46) can be deduced by applying both sides of (2.45) to an
arbitrary element of E and then differentiating. Formulas (2.45) and
(2.46) can be used to show that

(2.48) I T(t) I ̂  Πeω\ \ T'(t) | ^ Z/eωί

for some constant I/, t >̂ 0, which may or may not be an (asymptotic)
improvement on inequalities (2.40), (2.44) for T, T according to whether
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or not a) > cof. We can, however, obtain a new result from (2.45);
pre-multiplying it by B, we get

(2.49) BT(t) = (<pBT)(t)*(δ <g) I + ^ ( ί , φ)) .

As a consequence,

(2.50) \BT(t)\ ^ L"eωί

in t ^ 0 and a convenient constant I/', an unscheduled result.

REMARK 2.7. As a by-product of the proof we have obtained
some information about the characteristic polynomial P(λ) of (1.1); P(λ)
is closable for all λ, closed in a half-plane Re λ > ωι and with a bounded
inverse R{X) there that depends analytically on λ, etc.

REMARK 2.8. Among all of M. Sova's results in [9] about the
equation (1.1) there is one that is closely related with ours. Roughly
speaking, Sova gives a necessary and sufficient condition on R{\) (of
the "Hille-Yosida-Phillips" type) for the Cauchy problem for (1.1) to
be well set in [0, oo[ and for an estimate of the type of (1.3) to hold.
(See [9], especially Theorems 6.1 and 6.2.) It might be remarked
that, although exponential increase of the solutions is assumed at the
outset, no condition of the type of ours (boundedness of T", BT, etc.)
is assumed.

REMARK 2.9. Using time independence of the coefficients of (1.1)
a number of identities concerning its propagators can be easily derived.
Although they will not be used in what follows (except in § 4) we
give two examples. Let t >̂ 0 fixed, ue DQ = D(A) and consider

u(s) = S(s + t)u, s ^ 0 .

Since u( ) is a solution of (1.1) we obtain, applying (2.1) and using
(2.7) to compute u'(0), that

(2.51) S(s + t)u = S(s)S(t)u - T(s)T(t)Au .

This shows, in particular, that T(s)T(t)A admits a bounded extension
to all of E (namely, S(s)S(t) — S(s + t)). Reasoning in the same way
with u(s) = T(s + t)u, s^0,ue D(A) Π D(B), we obtain

(2.52) T(s + t)u = S(s)T(t)u + T(s)S(t)u - T(s)T(t)Bu .

3* We examine here the case in which the Cauchy problem for

(3.1) u"(t) + Bu\t) + Au(t) = 0
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is well posed-but only in a finite interval [0, α], a > 0. Solutions of
(3.1) exist for initial data u01 uγ in dense subspaces Do> /^-although a
priori only for t in [0, α]-and an estimate of the form

\u(t)\ ^K0\u(0)\ +JBΓ11^(0)|, 0 ^ t Sa

is assumed to hold for all solutions. The operators S( ), T( ) of §2
are now only defined in [0, a], but all the results concerning them in
§ 2 are valid in this restricted range of t. The proofs are identical.

Throughout this section we write D — D(A) Π D(B); but now

A = {u e D; BueD} .

THEOREM 3.1. Let the Cauchy problem for 3.1 be well posed in
[0, α], a > 0, and let D2 be dense in E. Assume that T( )u is con-
tinuously differentiable in [0, a] for all ue E. Assume, further,
that T(t)E fi D(B) and that BT(t)u is continuous in [0, a] for all
ueE. Then the Cauchy problem for (3.1) is well posed in [0, °o[
and there exist constants Ko, Kιy α>0, ω1 < co such that

(3.2) I u(t) I ̂  Koe°^ I u(0) | + K ^ \ u'(0)

for all solutions u( ) of (3.1).

Proof. It will be carried out by slightly modifying that of
Theorem 2.1. (It should be pointed out that, due to the additional
hypothesis of denseness of D2 Theorem 3.1 does not generalize Theorem
2.1.) Observe first that the operator R(λ) = P(λ)~\ Reλ > ω was
constructed there making use of the values and properties of T only
in the support of φ; all the auxiliary results, like Lemmas 2.2, 2.3
and 2.5, Corollary 2.4, can be proved in these conditions. Hence the
first part of the proof of Theorem 3.1 can be mimicked here if only
we take supp (φ) £ [0, a]. The main difference consists in that we
will now use (some of) the identities (2.38), (2.41), (2.43) and their
"left-handed" analogues (2.45), (2.46) not to represent S, T in [0, °o[-
they are not a priori defined there-but to extend them. Because of
this, a somewhat more careful (and tedious) handling of these identi-
ties becomes necessary. We shall assume in what follows that the
auxiliary function φ used in the construction of R(X) is actually four
times continuously differentiable; in addition of the condition φ(0) = 1,
we shall also suppose that φ'(0) = φ"(0) = 0. This will simplify some
computations later on. Let

(3.3) ΐ{t) = (φτ)(t) + ^r( ί , φ)*(φT)(t)

where ^ 7 as in § 2, is defined by the series (2.36). Just as in that
section, it can be proved that T( ) is a strongly continuous
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valued function satisfying (2.39). T( ) can also be defined as

(3.4) T(t) = (φT)(t) + (φT)*^f(t, φ)

the identity between the functions defined by (3.3) and (3.4) being a
consequence of the fact that both have R(X) as Laplace transform.

Let now u e D2. By virtue of Corollary (2.4)

(3.5) T"(t)u = - T(t)Au - T'(t)Bu .

Since BueD g Dλ we can differentiate (3.5) once more, then T( )ue
C(3)([0, a]). On the other hand, BT'( )Bu is a continuous function-
again we are using the fact that BueD,; after (3.5) so is BT"(-)u.
An application of Lemma 2.0 yields

BT{t)u = \\t - s)BT"(s)uds + tBu
Jo

which plainly shows that BT( )u e C(2)([0, a]). Accordingly,

M(t, φ)u = 2(φ'T')(t)u + (φ"T)(t)u + (φ'BT){t)u

belongs to C(2)([0, a]) if ueD2. Evidently the same is true of

N(t, φ)U = 2(φ'T')(t)u + {φ"T)(t)u + {φf T)(t)Bu .

As a last preliminary step, we modify slightly (3.3) and (3.4).
Observe that we can write

(3.6) ^K(t, φ) = -N(t, φ) - ^Γ(t, φ)*N(t, φ)

(3.7) ^/S(U φ) = ~M(t, φ) - ^/S(t, φ)*M(t, φ)

the justification of (3.6) and (3.7) residing in the fact that the series
(2.36) defining Λ" and the series (2.47) defining ^ converge uniformly
on compacts of [0, ©o [ and can thus be "convoluted term by term" by
N and M respectively. Replacing (3.6) in (3.3) we obtain

g ) Άt) = (φT)(t) - N(t, φ)*(φT)(t)

-^r(t,φ)*N(t,φ)*(φT)(t).

We apply now both sides of (3.8) to an element u e D2. Making use
of the preceding remarks we obtain(7)

T'(t)u = (φTY(t)u - N(t, φ)*(φTY(t)u

- ^T(t, φ)*N(t, φ)*(φT)'(t)u

T"(t)u - (φT)"(f)U - N(t, φ)u - N(t, φ)*{φT)"{t)u

— *yV(t, φ)*N(t, φ)u

ί, φ)*N(t, φ)*(φT)"(t)u

<7> See Footnote (6), § 2.
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T'"(t)u = (φT)'"{t)u - N'(t, φ)u

+ N(t, φ)Bu - N(t, φ)*(φT)'"{t)u

- Λ"(t, φ)*N'(t, φ)u + ^Γ{t, <p)*N(t, φ)Bu

- ,yΓ{t, φ)*N(t, φ)*(φT)"'(t)u, t ^ 0

(we have used at various points the identities N(0y φ)u = (φT)(0)u =
0, (φTY(O)u = u, (φT)"(0)u — —Buy the last two being a consequence
of the fact that φ'(0) = 0). Consequently f( )ue C(3)([0, oo[) for u e D2.
We turn now to (3.4); replacing (3.7) in it we obtain

T(t) = (φT)(t) - (φT)(t)*M(t, φ)

(T)(t)^(t, φ)*M(t,φ).

Apply (3.9) to an element u e D2, differentiate the resulting identity
and then convolute both sides with the Heaviside function h(t) = 0
if t < 0, h(t) = 1 if t ^ 0 (that is, integrate both sides from 0 to t).
The final result is, taking into account that ikί(0, φ) = 0,

T(t)u = (φT)(t)u - (\\φT)(s)ds)*M'(t, φ)u
(3.10) ) J

Γ; (
t, φ)*M\t, φ)u{8) .

Differentiating (3.10) once more and observing that M'(0, φ)u — 0 we
obtain

f(t)u = (φTY(t)u - (\\φT)(8)ds)*M"(t, φ)u
<3.ii) : (

- (\(φT)(s)ds)*^f(t, φ)*M"(t, φ)u .

Differentiating still one more time,

T"(t)U - (φT)"(t)u - (φT)(8)*M"(t, φ)u

t, φ)*M"(t, φ)u .

Finally, we modify (3.10) and (3.11) by integrating by parts in
their right-hand sides. The result is

T(t)u = (φT)(t)u - φ(t)\ T(s)d8*M'(t, φ)n
Jo

+ \ φ'(s)( \ T(r)dr)ds*M'(t, φ)u

— φ(t)\ T(s)ds^^£r(t, φ)*M'(t, φ)u
Jo

ί, 9>)*ikf'(ί, φ) .

(8) In convoluting with the Heaviside function we make use of associativity of
the convolution product.
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T'(t)u = (φTY(t)u - φ(t)\tT(s)ds^Mn(t1 φ)
Jo

9T(r)dr)*M"(t, φ)u
(3.14)

- φ(t)\ T(s)ds*^€(t, φ)*M"(t, φ)U
Jo

ί, φ)*M"(t, φ)U .

Applying now Lemma 2.1 and the (already proven) fact that

A[tT(s)ds
Jo

is a strongly continuous function to (3.13), (3.14) we immediately see
that T(t)u, T\t)ueD(A) and that AT( )u, AT'(-)u are strongly con-
tinuous functions in [0, co[. Operating in the same way with (3.11),
(3.12) we can prove that T(t)u, f'\t)ue D(B) and BT'(-)u, BT"( )u
are as well strongly continuous functions in [0, oo[. Let now

u(t) = T(t)u, t ^ 0, u e D2 .

By looking at (3.10), (3.11) we deduce that

u(0) = 0, u'(0) = u .

We want to show now that u( ) is a solution of (3.1). Define, for ώ
large enough, ue D

v(t) = -J—[ϋ+iθα^R(χ)udX .

As in the proof of Theorem 2.5 it can be shown that v satisfies the
equation

(3.15) v"(t) + Bv'(t) + Av(t) = t3u .

Since R(X)u is the Laplace transform of T(t)u = u(f),

V(t) = l\\t - sfu{t)dt .
3! Jo

Replacing this expression for u( ) in (3.15) and differentiating three
times the resulting identity we obtain

u"(t) + Bv!{t) + Au(t) = 0

as desired. By differentiating once more we see that T'( )u, ueD2

is as well a solution of (3.1) (the fact that ?'(•) e C(2)([0, oo[), and
that Af'(-)u, β f " ( )eC(0)([0, oo[) have been already demonstrated);
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moreover, it follows from (3.11) that T'(0)u = u and from (3.12) that
ϊ"(0)u = (<pT)"(0)u = T"(O)u = - 5 % . If we now define

u(t) =

clearly u( ) is a solution of (3.1) with

u(0) = u M'(O) = 0 .

Moreover, if follows immediately from (3.3) that the operator S(t) =
ϊ"(t) + T(ί).B (domain: .D) has a bounded extension to all of E (which
we design with the same symbol); this extension, as a function of t, is
given by

S(t) = (φT)'(t) + (φT)(t)B

+ ^(t, φ))*((φS)(t) + (

This equation can be used as (2.43) was used in §2 to show that

\S(t)\ ^ Keω'<

in t ^ 0.
We have proved at this stage that if u0, uι are arbitrary elements

in D2 then

(3.16) u(t) = S(t)u0 + T(t)u19 t ^ 0 ,

is a solution of (3.1) in t ^ 0, with u(0) = u0, vf(ϋ) = ̂ . The proof of
Theorem 3.1 will be ended as soon as we show that any solution of
(3.1) admits the representation (3.16)-even if uQ, uγ do not belong to
JD2. In order to achieve this we begin by solving the inhomogeneous
equation

(3.17) u"(t) + Bu'(t) + Au(t) = f(t)

in [0, oo[ (as in Lemma 2.2 /(-) belongs to C(υ([0, oo[)). Observe first
that it follows from (3.4) (by pre-multiplication by JB) that T(t)E S D(B)
and that BT( ) is an ^f(E)-valued, strongly continuous function in
[0, oo[, It also follows from (3.4)-this time by differentiation-that
T'( ) is as well an .S^(£r)-valued, strongly continuous function in

[0, oo[. Finally, it can be proved that (\tf(s)ds)E Q D(A) and that

(3.18) AΓ?(s)ώ - I - BT(t) - T(t), t ^ 0
Jo

much in the same way equality (2.6) was proved. Imitating now the
proof of Lemma 2.2 we can use (3.18) to show that
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(3.19) u(t) = [f(t - s)f(s)ds = [*¥(8)f(t - s)ds
Jo Jo

is a solution of (3.17) in [0, oo[ with ^(0) = ^'(0) = 0. It is the only
such solution. For, let v( ) be another solution of (3.17) with the
same initial conditions. Then w = u — v satisfies (3.1) with initial
data w(0) = w'(0) = 0. Since the Cauchy problem for (3.1) is well
posed in [0, α], w(t) = 0 for 0 <£ t <J α; in particular w(a) = w'(a) = 0.
Applying the same reasoning to the function w(t + a) we obtain
w(t) = 0 in α <£ ί ^ 2α, etc.

Observe, finally, that it follows from the definitions of S, T and
from an examination of their Laplace transforms that if ueD(A),

(3.20) S'(t)u = - T(t)A.u

in t ^ 0.
Let now u( ) be any solution of (3.1). Define

Ui(t) = [\t ~ s)(u(s) - u(0))ds , t ^ 0 .
Jo

We have

u[(t) = \\u(s) - u(0))ds = [ \ t - s)u'(s)ds ,
Jo Jo

u['{t) = n(t) - u(0) = \\t - s)u"{s)ds + tv/φ) .
Jo

Accordingly, 6̂1(•) satisfies

u['(t) + Butf) + Au^t) = tu'(0) - —Au(0)
Δ

in t ^ 0. Applying the previous comments on (3.17) and observing
that ^(0) = u[(0) = 0, we obtain

Ul(t) = [\(t - s)T(s)u'(0) - i(t - s)2T(s)Au(0)]ds .
Jo

Differentiating twice

u(t) = f(t)u'(0) - [ f(s)Au(0)ds + u(0) , t ^ 0
Jo

which via (3.20) shows that formula (3.16) is valid for any solution
of (3.1) in t ^ 0. This clearly implies that the Cauchy problem for
(3.1) is well posed in [0, co[. It has been shown in the course of the
proof that both S( ), Γ( ) increase at most exponentially at infinity,
which completes the demonstration of Theorem 3.1.
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4* We deal here with conditions on the coefficients A, B, of (1.1)
that guarantee that the hypotheses necessary for the proof of Theorems
(2.1) and (3.1) are satisfied.

THEOREM 4.1. Let the Cauchy problem for

(4.1) u"(t) + Bu'(t) + Au(t) = 0

be well posed in [0, oo [. Assume that, either (a) B is bounded (hence
everywhere defined) or (b) DQ = D(A) and AD(A) = E. Then T'( ),
BT( ) are ^f{E)-valued, strongly continuous functions in [0, oo[.

Proof, (a) The assertion about BT(-) is evident. Let ueE,

(4.2) u(t) = [ \ t - s ) T ( s ) u d s , t^O.
Jo

If ueD,, AT(t)u = -BT{t)u - T"(t)u; applying this and Lemma 2.0
to (4.2),

(4.3) Au(t) = - T(t)u - B^\T(s)uds + tu .
Jo

Since A is closed, however, it follows from (4.3) that u(t) e D(A) and
that in fact the equality holds for all ue E. Consequently u( )
satisfies

(4.4) u"(t) + Bu\t) + Au(t) = tu

in t Ξ> 0; moreover u(0) — u'(0) = 0. Assume now that u e Do. Then
it is easy to see by means of some elementary manipulations that

v(t) = —\\t- s)2(S(s)u - T(s)Bu)ds
2! Jo

satisfies (4.4) and assumes the same initial values as u. Consequently
u( ) = v( ); differentiating twice,

(4.5) T{t)u = [\s(s)u - T(s)Bu)ds .
Jo

As B is bounded, (4.5) must hold as well for any u e E, which esta-
blishes our assertion on T"( )

(b) Let u e K = {u e D(A); Au e Dλ}. Define

u(t) = u - \tT(s)Auds ,
Jo

t > 0 .

A simple computation shows that u(-) is a solution of (4.1); plainly
= u, u'(0) = 0. In view of (2.1) u(t) = S(t)u, that is
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(4.6) S(t)u -u= - [*T(8)Auds .
Jo

Consider now the operator A from D(A) (endowed with the graph
norm \u\DU) = \u\ + \Au\) to E. Since A is closed D(A) is a Banach
space. On the other hand, A is onto, thus by the open mapping
principle ([3], Chapter II, p. 55) it transforms open sets into open
sets. This plainly implies that K is dense in D(A) (if it were not,
there would be an open set Ω in D(A) disjoint from K; then AΩ-
which is open-would be disjoint from D19 absurd in view of the density
of A) Let now u e D(A), {un} a sequence in K such that un —• u in
D(A). Writing (4.6) for un and then letting n—» co we see that it
holds for any ueD(A); since S( )^eC2([0, oo[) for those u, T( )Aue
C(1)([0, c>o[). Since any element of E can be written in the form An,
the assertion on T"( ) follows.

REMARK 4.2. Theorem 4.1 (a) together with Theorem 2.1 furnishes
a new proof of the exponential increase of the solutions of the equa-
tion u" + Au = 0 (see [8], p. 9 and [4], part I, p. 90).

REMARK 4.3. Under the hypotheses in (b) a number of additional
properties of the propagators can be established. For instance, it
follows from (2.51) and from the fact that S(t)D(A) S D(A) for all ί ^ 0
(consequence of the definition of S(t)) that T(s)T(t)E g D(A) for all
s, t ^ 0 and that AT{s)T(t) is an ^(i?)-valued function, strongly con-
tinuous jointly in both variables in [0, <χ>[ x [0, co[. Assume, to sim-
plify, that A is in addition, one-to-one and thus has a bounded inverse
A~ι. Then we can write

AT(s)T(t) = AS(s)S(t)A~ι ~ AS(s + t)A~ι , s, t ^ 0 .

Similarly, we can combine the equality

1 = -BS'(t)A~ιu - S"(t)A~lu

with the expressions obtained differentiating (4.6) once and twice
respectively, to obtain

AS{t)A~ι = BT(t) + T'(t) .

REMARK 4.4. All the results in this section have analogues for
the case in which the Cauchy problem for (4.1) is well posed in a
finite interval. The proofs are identical.

5. We present here several counter-examples that illuminate the
role of the hypotheses in Theorems 2.1 and 3.1. Throughout this sec-
tion E will be a separable Hubert space, {φn}, 1 ^ n < co a fixed
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complete orthonormal system in E. The operators A, B are given by

(5.1)

where the (complex) coefficients αw, bn1 n ^ 1 will be chosen in each
case such as to produce the desired effect. (Observe incidentally that
A and B are normal operators commuting with each other for any
choice of {αw}, {δw}.)

Consider the Cauchy problem for

(5.2) u"(t) + Bu'(t) + Au(t) = 0

(in [0, a] for α < co or in [0, oo[). If u(t) = Σ»=i un(t)φn is a solution
of (5.1) then it is plain that each coordinate un( ) must satisfy the
scalar equation

<'(*) + bnu
f

n{t) + anun(t) = 0

n — 1, 2, with initial conditions

"•(0) = M0,n <(0) = u1>n

where

OO CO

t6(0) = Uo = X tto > n9?n W'(0) = 16! = Σ ^l,n^»

This makes clear that the propagators S, T must be defined by

(5.3) θ(ί)9? n = —^ " ^

(5.4) T(t)φn - ^ - ^ ^ ^

where λn, μn are the roots of the w-th "characteristic polynomial"

(5.5) λ2 + Xbn + an = 0 ,

w = 1, 2, (if λn = μn we must, of course modify (5.3), (5.4) but we
shall not encounter this case in our examples). Accordingly, we see
that a necessary condition for the Cauchy problem for (5.2) to be well
posed in [0, a] (resp. in [0, oo [) is that the functions

(5.6) σ(t) = I S(t) I = sup I λ < " ' ~ ^

(5.7) r(ί) =

ίβ> That is, D{A) = {ueE; Σ \an(u, ψn)\2 < «>}, An = Σ an(u, ψn)ψn, where ( , •) de-
notes the scalar product in E. Same observation about B.
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should be bounded on [0, a] (resp. on compacts of [0, <>o[).(10) Con-
versely, the preceding conditions imply that the Cauchy problem is
well posed; for if, say the Fourier coefficients of u0, uγ are all zero
except for a finite number then S(t)u0 + T(t)ux furnishes a solution of
(5.2) in t ^ 0 with u(0) = u0, u'(Q) = ux. Moreover, it follows from
the preceding considerations (that is, taking coordinates) that any
solution u( ) of (5.2) must be of the form u(t) = S(t)u(0) + T(t)u'(0);
then

I u(s) I ̂  ( sup σ(s)) I u(0) | + ( sup τ(s)) \ u'(0) | .

Our first result is

THEOREM 5.1. Let a > 0. Then there exist A, B {of the form
(5.1)) such that the Cauchy problem for (5.2) is well posed in [0, α]-
but not well posed in any interval of the form [0, α'], α' > α.

Proof. We set A = 0 (that is an = μn = 0); as for the coefficients
of 5 in (5.1), we set

(5.8) Xn = i - log n + — (^2 - (log ^)2)1/2 , w ^ 1
α a

(by (5.5), 6Λ = — λn). As S(t) = /, we only have to check the bou-
ndedness (or unboundedness) of r( ) in (5.7). But

(5.9)
a(n{t~a)la - n~ι) ^

- μn

0 .

Consequently τ(ί) ^ 2α if ί ^ α, r(ί) = co if ί > α. This establishes
the required result.

REMARK 5.2. It is quite simple to see why Theorem 3.1 fails to
apply to the preceding example. In fact, it follows from (5.5) that
in our case

T'(t)φn = e^φn ,

n ^ 1; but, as \e*nt\ = ntι% T(t) is not a bounded operator for any
^-except of course t = 0. We when also note that we have Do =
D(A) = E; but, since AD(A) = {0} Φ E, Proposition 4.1 also fails to
apply. We introduce now a slight modification in the example. Set
λΛ as in (5.8) but set now μn = μ, n ^ 1 where μ Φ Xn for all n}zl,

(10^ An operator of the form Qu = Σ qn(u, ψn)ψn in E is bounded if and only if
q = sup \qn\ < °° (moreover, q = \Q\).
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μ Φ 0. Since an = μλn, \an\ Φ 0, \an| —* oo, A has a bounded inverse, in
particular AD(A) = E. However, it is not difficult to see that σ(t) =
τ(t) = oo for t > α, σ and r are bounded in [0, a]. This shows that
none of the two hypotheses in Proposition 4.1 (b) can be altogether
discarded.

We now show that, by judicious choice of A, B in (5.2) the pro-
pagators can be made to increase as fast as desired even if the Cauchy
problem for (5.2) is well posed in [0, oo[.

THEOREM 5.3. Let ω(-)be an arbitrary function in [0, oo], bounded
on compact subsets therein. Then there exist A, B (of the form (5.1))
such that (a) The Cauchy problem for (5.2) is well posed in [0, oo[.
(b)

(5.10) \S(t)\ ̂ ω(ί), \T(t)\^ω(t)

for t ^ 1.

Proof. Let Ω = {ωn}, n ^ 1 be a sequence of positive numbers
such that

(5.11) 2 ^ ω1 ^ ωψ ^ ωψ ^ , lim ω\ln = oo

but otherwise arbitrary. Define

(5.12)

for n ^

(5.13)

Noting

1, and let

that

βn = exp (

m(t) =

( 1 ω]

\n

m a l βn
t > o .

ln exp ' *

βn exp ωlίn

(ωιJnY

exp (Yl - —)ω\[Λ exp (—
\\ n/ / V2

2 n J

for 1 - t/n^ 1/2 we see that a\ = o(βn) as n -> oo for all t; then
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m(t) < oo for all t ^ 0. Moreover, for each t there exists an integer
n = n(tyn) such that

m(t) = ^-.

Let now t < V; since an > 1 for all w,

accordingly the function m( ) is increasing in [0, °o[, thus bounded on
compacts therein. Also,

(5.14) m(ri) ^ -̂ 2L = o)n , n ^ 1 .

Define now

7W = log an = log < / n + — ω\ln .

In view of the inequality log α + x ^ β^/v7"^ valid (at least) for x ^ 2

and of the fact that α>J/% ̂ > 2, we have

(5.15) 7 . ^ - ^ . .

We now choose αw, bn in (5.1)-or, what is the same, λΛ, μn, the roots
of (5.5), in the following way:

Plainly |λw | = βn ^ e2', on the other hand, by virtue of (5.15)

\Hn in) = in >

thus the sequence A — {Xn} is contained in the region

|λ | ^ e\ 0 ^ Reλ ^ Imλ .

Accordingly there exist constants Θ > Θ > 0 independent of Ω such
that

(5.16) 0 ^ — L ^ J — ^ 0 , rc ^ 1 .

We calculate now the functions σ, τ in (5.6), (5.7). With the forego-
ing choice of λΛ, μn we plainly have

(11> Not necessarily unique.
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lλ, - liV i λ j ) ~

\Λ l λ J / ~

In view of (5.16), we obtain

<5.17) θ{m(t) - eι) ^ σ{t) g Θ(m(ί) + e*)

(5.18) *(m(ί) ~ e*) ^ τ(ί) ^

in t ^ 0. The inequalities in the right-hand sides of (5.17), (5.18)
imply that the Cauchy problem for (5.2) is well posed in [0, oo[. It
only remains to choose the sequence Ω in such a way that the inequ-
alities (5.10) are satisfied. Observe first that we may assume, without
loss of generality, that ω( ) is nondecreasing. Define

(5.19) ωn = (^L±H + eή , * £ 1 .

A moment's observation shows that {ωn} satisfies all the required
conditions. Let now t ^ 1, n = [t], the greatest integer <Ξ£. Taking
into account (5.17) and (5.14) we obtain

σ(t) ^θ(m(t) - e*) ^ θ(m(n) - en)

^ θ(ωn - en) ^ θ(ωιjn - en) = ω(n + 1)

The corresponding inequality for r is obtained in exactly the same
way.

REMARK 5.4. In the preceding example we have an — Xnμn = λn,
i w = — (λw + /£Λ) = — (λΛ + 1) thus Equation (5.3) has the special form

u"(t) - {A + I)u'{t) + Au(t) .

The operator A has a bounded inverse -then AD(A) = £7- but Do

It is not difficult to see that the Cauchy problem for

(5.20) u"(t) - Au'{t) = 0

is also well posed in [0, oo[; now S(t) = I, Do = E, but

and thus it can be forced to increase as rapidly as one wishes.
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6* The results in §'s 2 and 3 can be generalized -at the price of
some complication in the notations but with essentially the same ideas-
to equations of order n. We sketch here the proofs of these gener-
alizations. The equation in question is now

(6.1) u{n)(t) + ΣiAku
{k)(t) = 0

λ; = 0

where Ao, •• ,An_1 are closed, densely defined operators in E. A
solution of (6.1) -say, in [0, <*>[- is a function u( ) eC{n)([0, oo[) such
that u{k){t) e D(Ak), Aku

{k)( ) e C(0)([0, oo[), 0 ^ k ^ n - 1, and (6.1) is
satisfied everywhere. The Cauchy problem for (6.1) is well posed in
[0, oo[ if and only if

(a) There exist dense subspaces DQ, , Dn_λ of E such that for
every uoeDo, •••, un_γ^Dn_ι there is a solution u(-) of (6.1) in [0, oo[
with u{k)(0) = uk,0^k^n-l.

(b) For every t Ξ> 0 there exist constants K0(t), , Kn_λ(t) < co
such that, for every solution u( ) of (6.1), 0 ^ s ^ t

The formulation of the Cauchy problem for a finite interval [0, a]
is similar (see § 3 for the case n = 2) and is therefore omitted. We
now have n propagators So, , S ^ ; /Ŝ  is defined in Dk by

SA(ί)w = uk{t)

where uk(-) is the solution of (6.1) with u{

k

l)(0) = δklu, δkl the Kronecker
delta, (0 ^ k, I ^ n — 1) and extended to all of E by continuity. Just
as in the case n = 2 it can be proved that So, •••, Sw_i are ^f(E)-
valued strongly continuous functions and that if u( ) is any solution
of (6.1) in [0, oo[ then

(6.2) %(ί) = ΣS*(ί)w (* )(0).
k = 0

THEOREM 6.1. Let the Cauchy problem for (6.1) be well posed
in [0, oo[. Assume that for every ueE,

S,(.)^eC^([0, oo[), Sik-?(t)ueD(Ak) and AkS}*?>( )u

is continuous in [0, <*>[, 1 -ζ k ^ n — 1. Then there exist constants
KQ, , Kn_ly ω0, , ωn_x < oo such that

(6.3) I u(t) I ̂  Σ ^ β β * * I rtk)(0) I , ί > 0 .
/c=0

The proof of Theorem 6.1 can be carried out in a series of steps
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imitating those in the proof of Theorem 2.1. They are as follows.

LEMMA 6.2. Let /(•) belong to C(1)([0, co[). Then (a)

<6.4) u(t) = [Sn^(t - s)f(s)ds
Jo

is a solution of

(6.5) u^(t) + | v f c l ( ί ) = f(t)

with u(0) = = u{n~1}(0) = 0. (b) // v( ) is any other solution of
(6.5) then

(6.6) v(t) = ΣSk(t)v{k)(0) + %(ί)
Λ = 0

^( ) defined by (6.4).

As in Lemma 2.2 we begin by observing that, if u e Dn^

Integrating,

ΣAuS^Mu - S^ι)(t)u + u .
k-1

This, and the hypotheses in Theorem 6.1 imply that

(^oSn^(s)ds^E ^ D(A0)

and that

U(t) =

+ Si Ll^O = / , ί ^ 0

Writing, by integration by parts

u(t) =

and differentiating, we obtain

Jo

<: fc ̂  ^. Finally, inserting u( ) in (6.5) the right-hand side equals
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U(t)f(O) +[*U(t- S)f'(s)ds
Jo

as claimed. Part (b) follows exactly as for second-order equations.
The result of Lemma 6.2 can be used as their analogues in §2

to prove

LEMMA 6.3. (a) Let ueD(A0). Then

(6.7) Sl(t)u= ~Sn^(t)Aou.

(b) Let u e I V i Π D(Ak), 1 ^ k ^ n - 1. Then

(6.8) S'k(t)u = Sk^(t)u - Sn

COROLLARY 6.4. (a) DQ = D(A0). (b) f\lzlD{Ak) is dense in E.
(c) A 3 D(A0) n D(A^ D2 2 Z?(Λ) Π D{AX) n

). (d) I/uGfl,

(6.9) SplMu + Σ Sΐλ^AtU = 0 .

LEMMA 6.5. (a) P(λ) = Xn + Σ S ^kAk is pre-closed for all λ.
(b) There exist constants a, β >̂ 0 suc/i ίfeαί P(λ) is one-to-one for

(6.10) Re λ ^ α + /3 log ( Σ I λ A .

The operator i?(λ, φ) of § 2 is defined here by means of the
formula

(6.11) R(X, φ)u =

where >̂ is now a π-times continuously differentiable function with
compact support and such that φ(0) = 1. It can be easily seen that
R(X; φ)E S Z); moreover, if % e £ ,

P(λ)22(λ, <p)t6 = u + ί V^M(ί,
Jo(6.12)

— u

where now

(6.13)

Observe that if j <£ fc — 1 (as in 6.13)
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= \——\\t
(k — 3 — 2)!Jo

then it follows from the hypotheses in Theorem 6.1 that AkS
ιJλj{ ) is

a £f(E) -valued, strongly continuous functions- thus the same is true
of M(t, φ). The operator R{X) is defined again as

(6.14) R(X) = R(\, φ)(I + M(\, φ))-1

for Re X *> ω, ω such that (2.18) is true. Once proved- as in § 2, but
now making use of Lemma 6.5- that R(X) = P(λ)"1 in Re X *> ω we
construct the "right-handed" representation of 22(λ), namely

(6.15) jβ(λ) = (I + iV(λ, φ^-'RiX; φ) .

Here N(X, <p) is the Laplace transform of N(t, ψ)\ N(t, φ) is defined
by the formula

N(t, φ)u =
j

for ueD = fy^zlD(Ak). To show—as we must—that N( ,φ) has a
£f(Ey valued, strongly continuous extension to all of E we go back
to the identities (6.8). According to them S^λ^Aj,, j ^ k — 1 (say,
with domain D) has a bounded extension to all of E (namely,

which implies the desired property of N( ,φ). Then functions
and ^V are defined in the same way as in § 2, that is ^C(£, φ) —
Σ~=1{-ϊ)nM(t,φy\<yΓ{t1 ?) = E r - i ( - W , p r ; they are
valued strongly continuous functions satisfying

(6.16) I ΛT(t, φ) I ^ i^βω/ί, I ^ r ( ί , φ) I ^ ifeω< ,

t ^ 0, for convenient constants iΓ, JK'', ω, α>'. The propagator
satisfies

(6.17) SU(O

and

(6.18) S^^ί) = (φSn^)(t) * (δ (g)

Equation (6.16) can be used, together with Lemma 6.3 (b) to recon-
struct the propagators So, Sl9 , Sn_2 from their values in the support
of φ. In fact, we get from Lemma 6.3 (b) that
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n—l_

0 ^ k ;£ n — 1. Consequently,

+ Σ
j = k + l

0 <Z> k < n — 1. Equations (6.17)-(6.19) are used to prove that So, >
SΛ_! increase at most exponentially at co. This proves Theorem (6.1).
Observe that, using (6.17) the same property can be proved of
j <; k — 1; on the other hand, (6.18) can be used to show exponential
increase of A^ltf), j ^ k - 1.

The results in § 3 can be generalized-essentially with the same
methods used to generalize the results in § 2-to equation 6.1. We
limit ourselves to state the following.

THEOREM 6.6. Let the Cauchy problem for (6.1) be well posed
in [0, a]. Assume that (a) Df is dense in E. (b) For every ueE,

Sk( )u 6 C^([0, α]), S'n
k-?(t)u e D(Ak)

and AkS^i^u e C(0)([0, α]), l ^ k ^ n - 1 . Then the Cauchy problem
for (6.1) is actually well posed in [0, co[.

Here we have set A* = {ue D; Aku e D, 1 ^ k <£ n — 1}.
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