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ON SUBGROUPS OF A PSEUDO LATTICE
ORDERED GROUP

J. JAKUBIK

The purpose of this note is to investigate some problems
raised in a recent paper of Conrad and Teller concerning
o-ideals and p-subgroups in an abelian pseudo lattice ordered
group.

The concept of a pseudo lattice ordered group (“p-group”) has
been introduced by Conrad [1]. In recent papers by Teller [5] and
Conrad and Teller [2] there is developped a systematic theory of
p-groups. Let G be an abelian p-group. In §3 it is proved that if
M is a subgroup of G such that {a¢, 0} N M =# @ for any pair of
p-disjoint elements a, be @, then M contains a prime o-ideal; this
generalizes a result from [2]. In §4 we prove that the intersection
of two p-subgroups of a p-group G need not be a p-subgroup of G.
Moreover, if 4 is a partially ordered set and for each de 4 H, + {0}
is a linearly ordered group, then for the mixed product G = V(4, H,)
the following conditions are equivalent: (i) for any two p-subgroups
A, B of G their intersection A N B is a p-subgroup of G as well; (ii)
G is an l-group. If A is an o-ideal of a p-group G and B is a
p-subgroup of G, then A + B is a p-subgroup of G.

2. Preliminaries. Let G be a partially ordered group. G is a
Riesz group (cf. Fuchs [3], [4]) if it is directed and if from a,,
b;eG, a; <b; (3,7 =1, 2) it follows that there exists ¢ € G satisfying
a;<c¢c=<b;, (t,7=1,2). G is a p-group (cf. [1] and [5]) if it is
Riesz and if each geG has a representation ¢ = a — b such that
a,beG, a =0, b=0 and

(%) re@ xZa, 2 <b=—nx=Z0a, ne <0

for any positive integer n.

Throughout the paper G denotes an abelian p-group. Elements
a,be@G, a=0, b= 0 satisfying (x) are called p-disjoint. A subgroup
M of G is a p-subgroup, if for each m € M there are elements a, be M
such that a, b are p-disjoint in G and m = a — b. A subgroup C of
G is an o-ideal, if it is directed and if 0 < g <ceC, geG implies
geC. Let O(G) be the system of all o-ideals of G (partially ordered
by the set inclusion). An o-ideal C of G is called prime, if G/C is
a linearly ordered group. For any pair a, b of p-disjoint elements
H(a, b) denotes the subgroup of G generated by the set
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0<meGilm=a m=0b}.

Then H(a, b) € O(G) (cf. [2]).

Let 4 be a partially ordered set and let H, = {0} be a linearly
ordered group for each de 4. Let V = V(4, H;) be the set of all
d-veetors v =(+--, v;, -++) where vs; € H;, for which the support S(v) =
{0 € 4| v, # 0} contains no infinite ascending chain. An element ve V,
v #= 0 is defined to be positive if v, > 0 for each maximal element
6eS(v). Then ([2], Th. 5.1) V is a p-group; V is an l-group if and
only if 4 is a root system (i.e., {0€4|d =7} is a chain for each
v e d).

3. Subgroups containing a prime o-ideal. The following asser-
tion has been proved in [2] (Proposition 4.3):

(A) For MeO(G), the following are equivalent: (1) M is prime;
(2) the o-ideals of G that contain M form a chain; (3) if a and b are
p-disjoint in G, then ae M or be M.

Further it is remarked in [2] that each subgroup M of G ful-
filling (3) is a p-subgroup and any subgroup containing a prime
o-ideal satisfies (3); then it is asked whether a subgroup M of a
p-group G satisfies (3) if and only if it contains a prime o-ideal (a
similar assertion is known to be valid for lattice ordered groups).
We shall prove that the answer is positive.

We need the following propositions (cf. [2] and [5]):

B) Let g=a —beG where a and b be p-disjoint. Then g =
x — ¥y, where « and y are p-disjoint, if and only if ® = a + m and
y = b + m for some m < H(a, b).

(C)y If a and b are p-disjoint, then na and nb are p-disjoint for
any positive integer n and H(a, b) = H(na, nb) ([2], Proposition 3.1).

LemMMA 1. Let M be a subgroup of G fulfilling (3) and let a, b
be p-disjoint elements in G. Then H(a, b) C M.

Proof. Let he H(a, b). According to (3) we may assume without
loss of generality that ae M. Suppose (by way of contradiction) that
heM. Then a + h¢ M, hence by (B) b+ heM, and analogously
b— heM, thus 2be M. Further 2a + h¢ M and therefore according
to (C) and (B) 2b + h € M, which implies # € M.

LEMMA 2. Let M be a subgroup of G satisfying (3) and let
X = {X;} be the system of all o-ideals of G such that X;cC M. Then

the system X has a largest element.

Proof. Let Y be the subgroup of G generated by the set U X..
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Then Yc M and Y is the supremum of the system {X,} in the
lattice & of all subgroups of G. Since O(G) is a complete sublattice
of & ([2], Th. 2.1), Y e O(G) and thus Ye X.

Let H be the subgroup of G generated by the set U H(a, d)
where a, b runs over the system of all p-disjoint pairs of elements
in G. Since each set H(a, b) is an o-ideal ([2]), H=V H(a, b) (a and
b p-disjoint in G) where YV denotes the supremum in the lattice O(G).
According to Lemma 1 HCM whenever the subgroup M of G
satisfies (3).

For any w, ve G, u < v, the interval [u, v] is the set

freGu=sx=<}.

LEMMA 3. Let M be a subgroup of G satisfying (3) and let N
be the largest o-ideal of G that is contained in M. Let ge G, g>0.
Then

[0, 9]cM—=—geN.

Proof. According to Lemma 2 the largest o-ideal N in M exists.
Assume that ge G, g >0, [0, g] c M. The set

Z = g[—ng, ng]

is clearly an o-ideal in G. Let ze Z, hence z¢€[—mng, ng] for a posi-
tive integer n. This implies 0 £ y < 2ng where ¥y = 2 + ng. Since
G is a Riesz group, according to [3, p. 1568, Th. 27] there are elements
Oy 1 92 €G, 0 < g, =g such that y =g, + -+ + g,.. Thus g:€ M,
therefore y€ M and Zc M. Now we have ZC N and so g N.

LEMMA 4. Let M be a subgroup of G fulfilling (8) and let N
be the largest o-ideal of G contained in M. Then G/N 1is a linearly
ordered group.

Proof. Assume (by way of contradiction) than G/N is not linearly
ordered. According to Lemma 1 H C N, hence by [2], Theorem 4.1
G/N is a lattice ordered group. Thus there exist elements X, Y e G/N
such that X A Y =0, X >0, Y > 0 (0 being the neutral element of
G/N). From [2] (Proposition 2.2, (ii)) it follows that there are elements
ze X, ye Y such that 2 and y are p-disjoint in G and hence xe M
or ye M. Clearly ¢ N, y¢ N and thus according to Lemma 3 there
exist elements z,, ¥, € G such that

O0<z, =2, 0<y, =y, meM, yeM.
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Then in G/N we have 0 <o, + N<2+N=X,0<y, + N<y+N=
Y, whence

(@ +N)A @, +N)=0.

Thus by using repeateadly [2], Proposition 2.2, we can choose elements
x,e%, + N, y,€9, + N such that x, and ¥, are p-disjoint in G. There-
fore (without loss of generality) we may assume z,e¢ M and this
implies z, e x, + N =, + NCM, a contradiction. The proof is complete.

THEOREM 1. Let M be a subgroup of a p-group G. Then
8) = (2) and the condition (3) is equivalent to (') M contains a
prime o-ideal.

Proof. According to Lemma 4 (8)=(1). By [2] 1)=(3).
Assume that M is a subgroup of G fulfilling (8). Let K, K, be
o-ideals of G such that Mc K, N K,. Let N have the same meaning
as in Lemma 4. Since Nc M,

K cK,— K/NcCK,/N.

K,/N and K,/N are o-ideals of G/N and G/N is linearly ordered, hence
K, /Nc K,/N or K,/N c K,/N; therefore (2) holds.

If M is an o-ideal of G satisfying (3), then by Theorem 1 M
contains a prime o-ideal N; according to [2] (Corollary 1 to the
Induced Homomorphism Theorem) G/M is isomorphic to (G/N)/(M/N)
and hence (G/N being linearly ordered) G/M is a linearly ordered
group and M is prime. Thus it follows from Theorem 1 that (3) = (1)
for M e O(G) (cf. (4)).

Let us remark that if M is a subgroup of G fulfilling (3) then
M need not contain any nonzero o-ideal that is a lattice; further (3)
is not implied by (2).

ExAMPLE 1. Let B be an infinite Boolean algebra that has no
atoms and put 4 = {beB|b+# 0}. For each de4 let H; = E where
E is the additive group of all integers with the natural order, G =
V4, H;). Let M={veG|v, =0} (by 1 we denote the greatest element
of B). Then M is a prime o-ideal of G, hence M satisfies (3) and M
contains no lattice ordered o-ideal different from {0).

ExXAMPLE 2. Let 4= {6, 0,, 6;}, where 0, < ,, 0, < 0, and 4, 0, are
incomparable. Put H,, = E(:1=1,2,3),G=V({4, H;), M = (veG|v, =
v;, = 0}. Then the only o-ideal that contains M is G, thus (2) holds.
Let a,beG such that a; =1, a;,=a,,=0, b,=1, by, =bs, =0.
The elements a and b are p-disjoint in G and a¢ M, b¢ M, hence M
does not fulfil (3).
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4. Intersections and sums of two p-subgroups. Another pro-
blem formulated in [2] is whether the intersection of two p-subgroups
of a p-group G must be a p-subgroup of G; there is remarked in [2]
that this conjecture seems rather dubious. The answer to this pro-
blem is negative.

ExampLE 3. Let 4 = {0, 0,, 6;}, where &, > 0,, 6, > 0, and o, 0,
are incomparable. Let H,, = E(i =1, 2,3), G = V(4, H;). We write
v(9;) instead of v,,. Let ¢;= 0 (v =1, 2) be positive integers, ¢, # ¢,.
Denote

A; = {veG|v(0;) = c;[v(d) + v(d)]}

(1=1,2). Let te{l, 2} be fixed. For proving that 4, is a p-subgroup
of G we have to verify that to each ve A; we can choose a, be A4,
@ =0, b= 0 such that (x) holds and v = a — b. It is easy to verify
that it suffices to consider the case when 0 and v are uncomparable,
hence we may assume v(3,) > 0, v(0,) < 0 (the case v(5,) < 0, v(d,) > 0
being analogous). Let a, beG,

a’(al) = v(al)l a(az) = Or a(63) = cia(al) )
b(6,) = 0, b(d,) = —v(0,), b(0;) = —c;v(0) .

Then a and b have the desired properties, hence A; is a p-subgroup
of G. Denote C = 4, N A4,. If veC, we have

alv(6,) + v(0:)] = v(3:) = &:[v(d,) + v(3,)]

and thus (since ¢, # ¢,)v(d;) =0, v(d;) = —v(d,). Therefore any element
veC, v # 0 is incomparable with 0 and C is not a p-subgroup of G.

The method used in this example can be employed for proving
the following theorem:

THEOREM 2. Let 4 be a partially ordered set and for each
0ed let H, + {0} be a linearly ordered group, V = V{4, Hy). If V
1s mot lattice ordered, them V contains infinitely many pairs of
p-subgroups A,, A, such that A, N A, is not a p-subgroup of V.

Proof. Assume that V is not lattice ordered. Then 4 is no
root system, hence there exist elements J,, 8, 6; such that 6, > §,,
0, > 0, and 4, 9, are incomparable. Choose ¢;€ H;, e, >0 and let
¢, ¢, be positive integers, ¢, # ¢, Let Vi={weV]|v, =0 for each
0¢1{0,, 0, 95}},

A= {we V| v0) = me, v(0y) = 0y, v(3:) = ci(n, + ny)eq)

where %, and n, run over the set of all integers (7« =1, 2). Analo-
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gously as in Example 3 we can verify that A, and A, are p-subgroups
of V. Let veC = A4,N A,. Then ¢,(n, + n,) = ¢(n, + n,), thus n, =
—mn, and v(d;)) = 0. Therefore no element of C is strictly positive
and C is no p-subgroup of G. Since the positive integers ¢, # ¢, are
arbitrary there exist enfinitely many such pairs 4,, 4..

As a corollary, we obtain:

ProposITION 1. Let V = V{4, H;), where each H; is linearly
ordered. Then the following conditions are equivalent: (1) V 1is
lattice ordered; (ii) if A and B are p-subgroups of V, then AN B
18 a p-subgroup of V as well.

Proof. By Theorem 2 (ii) implies (i). Let V be lattice ordered.
Then a subgroup A of V is a p-subgroup of V if and only if it is
an 1l-subgroup of V; since the intersection of two 1-subgroups is an
1-subgroup, (ii) is valid.

PROPOSITION 2. Let 4 be a partially ordered set and for any
ded let Hy, + {0} be a linearly ordered group. Asswme that there
exist 0., 0,, 0;€ 4 such that 6, < 0,, 6, < 6, and é,, 0, are incomparable,
V = V{4, H;). Then there are infinitely many p-subgroups A, B of
V such that A + B is not a p-subgroup of V.

Proof. Denote V,={veV]v(©) =0 for each ¢ {0, d, d;}} and
let ¢ be a fixed positive integer, e;e H;, ¢; >0 (i =1, 2,8). Put

A={veV,|v(,) = ne, v(d,) = —cne, v(0;) = ne;} ,
B={weV,|v06) =20, =0, v(0;) = nes}

where n runs over the set of all integers. A and B are linearly
ordered subgroups of V, hence they are p-subgroups of V. The set
C = A + B is the system of all elements ve V, such that

v(0,) = ne,, V(0,) = —cne, v(0;) = N8
where n,, n, are arbitrary integers. Hence there is g € C satisfying
9(0) =e, 9g(0) = —ce, g(0)=0.

Ifg=a—-0,aeC,beC,a=0, b=0, then a + 0 +# b (since g > 0,
g € 0), thus a(d;) = b(d;) = e, There exists ve V, such that v(0;) =
a(d;), v(0,) < a(d)) and b(3,), v(d;) < a(d,) and b(d,). Thus v <a, v <b,
but 2v £ a, 2v < b. Therefore ¢ and b are not p-disjoint in G and
C is no p-subgroup of G.

One of the problems raised in [2] is affirmatively solved by
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THEOREM 3. Let A be an o-ideal of G and let B be a p-subgroup
of G. Then A+ B is a p-subgroup of G.

Proof. Let us denote G/A=G and for any teG write t + A=1.
Let A+ B=2X, xe¢X. There are elements ac A, be B such that
2 = a + b and since B is a p-subgroup there exist b, b,c B such that
b=0>b —0b, and b, b, are p-disjoint in G. Further 2 =u — v, u,
ve@, where v and v are p-disjoint in G. According to [2] G is a
p-group and by [2], Proposition 2.2, b, and b, (% and ¥) are p-disjoint
in G. Further we have

T=b—b,=u—7,

hence if we apply (B) (§3) to the p-group G it follows that there
exists m € H(w, v) fulfilling

b=u+m, by=0+m.
Again, by Proposition 2.2 of [2], there is m, € m such that m, € H(u, v).

Thus according to (B) the elements w, = u + m, and v, = v + m, are
p-digjoint in G and © = u, — v,. Since

el =0+m=U+m=>b=0b+AcA+B=X

and analogously v, € X, the set X is a p-subgroup of G.
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