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ON THE BERGMAN INTEGRAL OPERATOR FOR AN
ELLIPTIC PARTIAL DIFFERENTIAL EQUATION
WITH A SINGULAR COEFFICIENT

P. ROSENTHAL

Let P.(f) be Bergman’s integral operator of the second
kind. In this paper it is shown (1) P,(f) can be uniformly
approximated by a linear combination of particular solutions;
(2) Py(f) can be analytically continued; (3) P,(f) admits
singular points if f is meromorphic,

In the study of functions of one complex variable one derives
various relations between properties of the coefficients @, of the series
development

(1) f@) =Sz,

of the function f(z) and various properties of f(z) in the large, such
as the location and character of the singularities, growth of the
function, etec. The method of integral operators enables one to
generalize these theorems to the theory of linear partial differential
equations

N2,
(2) L) = 52+ A @0+ Ade, 20+ Ao 29 = 05
4(0%\0202*) = A = (0*V\oN* + 0*y\00%), #z,2* are complex variables,
A=z + 22,0 =z — 2*\2i, A,(?,2%),v = 1,2, 3, are regular functions
of z and 2* in a sufficiently large domain. The situation changes in
the case when the A, admit singularities. In this paper we consider
the equation

where F(s) = s™%(a, + .8 + @,8* + «+» + a,8" + + - +), s = (—\)**, a, = 5\144,
a, = 0, while the a,, » = 2 are such that lim,_..|a,|' = 0.
The integral operator

. dt
,2%) = PAf) = | Bz, 2%, t <i 1—t2>————__
(4) Ve 7 = P = | B (20— )<
(where [ is some rectifiable Jordan path in the upper complex ¢-plane
connecting the points —1 and 1), transforming analytic functions

f() in the neighborhood of the origin into solutions of (3), has been
introduced and investigated by S. Bergman in [1, 2, 5, 6], see also
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[8], [10]. E, #0, called a generating function, is analytic in the
three variables z, 2* and ¢ providing |z + 2%| < |t%].
In analogy to (1) we write

(5) Ve #) = S a2
where

*) — * 2 TNy dt
(6) iz 2) = | B2 ,t)(?(l t))——-—VI_tz :

In §2 it is shown every solution 4 regular in the wedge domain
W ={n 9)|3IN] <y, M= 0,y > 0} (a case which arises in the study
of two-dimensional nonviscous compressible fluid flow problems) can
be uniformly approximated by finite linear combinations 3\¥, a,v, (2, 2¥),
where 2 = A + 1y, ¥ =% = A — 1y, on certain compact sets Q — W.

In §3 an extension and summation method is applied to derive
an extension of the operator v defined by (5). In §4 it is shown
that the Borel theorem on the multiplication of poles can be extended
to (5).

2. Uniform approximation of a solution V¥ by finite linear
combinations of the particular solutions (6) in W. Consider any
domain D c W which is bounded by the closed segments 04, 0A4,, 0
the origin, and the arc A:42, 04,, 04, lie on the respective lines a =
o, ©—tan™'vV 3 = a, > a,=7\2. Let WOR={X\ ®y\—r>
[(@ —tH")N\e], 0 < 282 < 82, 0 < 6, < 1,0 < ¢, = |E|, tel}, I will be speci-
fied in what follows. Let @ be compact and CR.

THEOREM. Suppose that f is continuous on D, closwre of D, and
analytic in D as well as on the boundary segments 0A,, 04, including
the end points. Ther the function

dt
V1i-¢

¥ =z,

(1) G 2) = SlE(z, o, ) f(-;—z(l — t2)>

can be uniformly approximated in Q by finite linear combinations
of the particular solutions defined in (6).

Proof. We choose for the integration curve | =C = C,UC,UC,,
Ci=(—1Zt<t),Co=(t, <t 1), Co=(t = t,e*, 7= P=0,1>£>0).
The existence of C for our case follows by modifying the proof of
Lemma 7.1 of [4], namely, by replacing the inequality 6\4 > 1 — #\¢
by y\—x > (1 — t)"A\¢, substituting y for & and A for 4. This also
determines B. Our hypotheses about f permit us to rotate the sides



ON THE BERGMAN INTEGRAL OPERATOR FOR AN ELLIPTIC PARTIAL 495

of the domain D through a small angle 7\2 > 4a > 0 to obtain a
wedge-shaped domain S such that Dc S and S is contained in the
domain of regularity of f.

LEMMA. There exists a 1> t(da) > 0 such that if ze D, teC,
then 2(1 — t})\2eS.

Proof. For teC,UC;, 1 — ¢ < 1. Hencez(l — t)\2e DcS. We
next consider the case ¢t e C,. We choose for ¢, = (tan® 4a/1 + tan® da)"*.
This choice of ¢, gives then da for the maximum argument of 1 — ¢
Since the maximum of |1 — ¢*| = 1 + ¢, the lemma follows. Since the
domain W was obtained by taking ! to be the semi-circle path in the
upper half of the t-plane, (z,2*) for | = C is the regular restriction
of Y(z,2*) for Il = (t,t =€, 0 <60 <7). This is a known property
of the operator defined by (4).

By our assumptions on f(g), we can uniformly approximate f
by polynomials P,(¢) = >V, a.,q*, ¢S, see [12, p.36]. Let ¢ =
1\2(2(1 — ), where 2z¢@Q,tel=C. By the above lemma, geS.
Then

| Feznf(Za—-n)_L

_ = 1 4 2) di i

SlzcE’(z, z, t)PN<2 Al — ) =L | < eLM,

L is the length of C, M = max,.q..c |E(z, 2z, t)|, € > 0,%and arbitrary.
This completes the proof of the theorem.

3. Summation and extension methods applied to the operator
P,(f). In the case of analytic functions of one complex variable when
considering the series development f(¢) = 3 =, a,9” converging in the
star domain, one can determine the values of f in a larger domain
using various summation methods.

THEOREM. Consider a sequence of particular solutions (V,(z, 2*)).
Let f(9) = >ir0a,q™ in some neighborhood of the origin. Let ¥(z, z*) =
Simeo @V (2, 2%) be the solution determined by f(q) (see (6)). Suppose
further that a sequence (0,(6)) is given such that

(1) o0,0) is real for 6 >0

(2) lim; 4+ 0,0) =1

@) Iim,..|0,0)[" =0,05>0

(4 Pi(2) = Diw0 0,02 - 1\1 — 2z as 6 — 0
untformly in z in any compact set containing no point of the line
(1, o). Then lim,_ o+ Dm0 0,(0)a, V. (2, 2*) will give the value of V(z, z*)
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at any point (2, 2*), where ¥ exists.

Proof. Let

dt
vVi—¢ '’

where f(z/2(1 — ¢?) is the analytic function given at the origin by
the series development f(q) = 37, a,q". Since our hypotheses satisfy
the known summation theorem, see [9, pp.190-191], we conclude

w0 0,(0)a,q" — f(q) as 6 — 0+ uniformly in ¢ in every star domain
with respect to the origin in which f(q) is analytic. Because of the
uniform convergence we are permitted to interchange the order of
summation and integration to obtain

V2, 2%) = SlE(z, e, 1) f<-§-(1 — w)

/ * < vy (R Y dt — < P ) ®
(8) SlE(z,z )3 an(ﬁ,an< 5 1 t)> T 25 0,(0)a, V(2 %)
Also by our hypotheses we are permitted to interchange the limit
and integration operations to obtain,

=3

ou0a( ol = ) T = (e 2

(8) and (9) give us the result as was to be shown.

n=

4. Application of a theorem of Borel. Bergman’s theory of
integral operators enables one to apply results in the theory of func-
tions of one complex variable about the relations between coefficients
of a, of the development f(z) = 3.7, a,2* and location and properties
of singularities of f(z) to the case of solutions of L(¥) = 0. That
singularities can occur for the operator P,(f), we note the following,
which is an immediate consequence of a result in [5]: Let the associate
function f(¢) be meromorphic with poles at ¢ =¢; 0, 1L =i = k.
Then V¥(z, 2*) = Py(f) will be singular, i.e., will not admit a Taylor
series about the points (z, 2%), 2* = —z, 2 = 2q,, - -+, 2¢;.

THEOREM. Assume that ¥(2, 2*) has the development D7 a,b,V,(2,
z%), where a,, b, are the coefficients respectively of the meromorphic
Sfunctions a(q), b(q) with series development about the origin >, a.q",
S 0.9 and poles at a;, 4 =1, <+, D, By, k=1, «++, v, Tespectively.
Then ¥(z, z*) 1s singular at the points z* = —z = —2aB,, providing
a;8, # aB, where «, B8 are any other singular points or external
points of a(q) and b(q).

Proof. By a theorem of Borel (see [7, p.106]) the function



ON THE BERGMAN INTEGRAL OPERATOR FOR AN ELLIPTIC PARTIAL 497

f(@) = 32, a,b,q" has poles at the points «;8,. By the result men-
tioned in §4 the theorem follows.
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