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AN ELEMENTARY PROOF OF THE RIEMANN
HYPOTHESIS FOR AN ELLIPTIC
CURVE OVER A FINITE FIELD

HORST G. ZlMMER

Let K be an elliptic function field over a finite field of
constants k. This paper is aimed at presenting a valuation-
theoretic proof of the analogue of Riemann's hypothesis for
the zeta-function of K.

More precisely, K is regarded as the function field of the plane
elliptic curve over k defined by the nonhomogeneous equation in two
variables x, y

( 1 ) φ(x, y) = y2 + (aQx + a,)y + x3 + hγx
2 + b2x + δ3 = 0

with coefficients α*, b3- e k and nonzero discriminant D. Let p denote
the characteristic of k, q ~ pr be the number of elements in k, and
N the number of distinct solutions (ζ, rj) in k of the equation (1).
The analogue of the Riemann "hypothesis" for the elliptic curve (1)
over k may be stated as the following (see [l], Chap. V, §5)

THEOREM.

(2) \N-q\ ^2V~q .

This theorem was, in several important cases, first proven by
Hasse [3]. In the meantime various proofs and generalizations of it
have been invented by the same author, A. Weil, P. Roquette and
others. More recently, Manin [6], using ideas of Hasse's [4], gave
an entirely elementary proof of the theorem under the supposition
that the characteristic p of k is greater than 3. Elistratov [2] showed
in a subsequent paper that Manin's argument carries over to the
case of characteristic p — 3. Most of these proofs have in common
that the characteristic p is presupposed to be Φ 2, 3 (or at least Φ 2)
which permits one to assume that α0 = aL — bλ =• 0 (or at least α0 =
αL = 0) in equation (1).

In the present paper, we give for all finite characteristics p a
unified elementary proof of Riemann's hypothesis. Our method is
closely related to that of Manin but, as opposed to it, brings valua-
tion theory into play. This way our argumentation, on the one
hand, avoids some of the computations which appear to be inevitable
in Manin's proof and, on the other hand, circumvents a difficulty
occurring in his reasoning (cf. MR [6], [2]). Altogether the valua-
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268 HORST G. ZIMMER

tion-theoretic approach yields an explicit and perspicuous proof of the
theorem.

Similar to Hasse's original argument, the truth of the inequ-
ality (2) will be inferred from the more general fact that a certain
quadratic form is positive semi-definite. The setup of this paper has
the advantage that it can be generalized to a proof of the positive
semi-definiteness of a corresponding quadratic form in the case of an
elliptic curve (1) defined over an arbitrary algebraic function field K
in several variables over any field of constants k. This will be carried
out in a different context in a subsequent paper.1

2 A quadratic form* First we build up the usual system
£S = {p} of prime divisors p of the function field K/k with respect
to x. To this end we distinguish in K/k the rational function field
k(x)/k. Let a = {§>} denote the system of prime divisors of k(x)/k
given by the prime polynomials and the "infinite" prime of k(x). The
system £f — {§>} of K/k is then obtained by expanding the system
* = {%>} of k(x)/k to K/k in the familiar manner [1]. Observe that K
is a finite algebraic extension of k(x) of degree 2. We denote by
wp, wp the discrete valuations of k(x)/k, K/k respectively associated
with φ e*, pe S^ and normalize each wp such that it attains the least
positive value 1.

Each of the valuations wp of K/k with p e 6^ satisfies the sharp
inequality

( 3) wp(zι + z2) ^ min {wpfa), wp(z2)} (zL, z2 e K)

with the equality sign when wp(zL) Φ Wp(z2). Here the element 0 e K
is comprised by putting formally wv(0) = oo.

The system Sf has the property that, for any given 0 Φ Z e Ky

(4) Wp(z) Φ 0 only for finitely many pe£*.

Furthermore, for Sf there holds the product formula which we
preferably write in the additive shape

with the absolute residue class degrees fp of p as multiplicities [1],
Now we form the algebraically independent composite over k of

the elliptic function field K with itself, i.e., the elliptic function
field E — K(X, Y) over K as field of constants generated by the non-
homogeneous equation in two variables X, Y over K

1 This paper entitled "Die Neron-Tate'schen quadratischen Formen auf der
rationalen Punktgruppe einer elliptischen Kurve" is to appear in the Journal of
Number Theory.
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(6) <p(X, Y) = Γ2 + (a0X+ α 1 ) Γ + Xs + b,X2 + b2X + b3 = 0

with the same coefficients aiy bi as in (1).
The rational points P = (xP, yP) of the elliptic curve over K de-

fined by (6), that is to say those points P with coordinates xP, yPe K,
together with the "zero point" ^ =r (αo, co) make up an (additive)
abelian group ^ under the following group operation [1].

For P = (xP, yP), Q = (xQ9 yQ) e & the sum P + Q = (xP+Q, yP+Q)
is defined by (6) and

(7 ) xP+Q = - (χP + xQ) - (Vp ~ yA2 - alVp ~ y

\XP *^Q \X P *^

if xP Φ xQ, i.e., PΦ ±Q, or

\ O ) JU2p — ΔXP I I -f- Clol I Oι
I -f- Clol I

, VPV ^Φγ{%p, VP)J

if xP = xQ and P — Q, where φx, φγ stand for the partial derivatives
of φ relative to X, Y respectively, so that

φx(xP, yP) = aoyP + Zxp + 2b,xP + b2y φγ{xP, yP) = 2yP + aQxP + a, .

Observe that P and — P have the same first coordinate xP = #_P.
We are now in a position to define a quadratic form d on the

group of rational points <& of the curve (6) over K. Letting again
P = (xP, yP), we set

(9) i(P) = -iΣΛwp(ap) , (Peίf)
P<0

where the shorthand notation " P < 0", to which we shall stick
throughout in formulas involving (9), means that the summation is
over all prime divisors pe 6^ with wp(xP) < 0. For P ~ έ? we agree
to put d(P) = 0. Notice that the condition (4) ensures that d is well-
defined.

Our task consists first in showing that the function d defined by
(9) is indeed a quadratic form on ^ , i.e., that d satisfies the condition

(10) d(P + Q) + d(P - Q) = 2d(P) + 2d(Q) for any two P, Q e c^

which, as one verifies by induction, is tantamount to

(11) d(± nλpλ - i Σ nμnu{d(Pμ + PJ) - d(Pμ) - d(Pv)}

for any s points P19 , Pse^ and rational integers n19 , ns.
We remark that, in order to prove (2), it would suffice to establish

(10) for all integral multiples of two particular rational points. But
our method will at once yield a proof of (10) for any two points of ^ .
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For the proof of (10) we shall need two technical lemmas. The
first one is due to E. Lutz [5]. It can in fact be enunciated for an
elliptic curve (6) over any field K with an (additive) nonarchimedean
valuation w provided that the coefficients of (6) enjoy the property
w(ai) = 0, w(bj) = 0 whenever α̂  Φ 0, bd Φ 0 respectively. Let this
be the case. To comprise the element ^ = (oo, oo) of cέ? we put
formally w(oo) = - o o .

LEMMA 1. For any two rational points P = (xP, yP), Q = (xQ, yQ)
of the curve (6) over K we have:

(a) The inequalities w(xP) < 0, w(xQ) < 0 imply

w(xP+Q) < 0

and, moreover,

w(xP+Q) 5g max{^(a;p), w(xQ)}

with the equality sign when w(xP) Φ w(xQ).
(b) The inequalities w(xP) < 0, w(xQ) ^ 0 entail

w(xP+Q) ^ 0 .

We note first that the statements corresponding to (a), (b) with
P — Q instead of P + Q are also valid since x_Q = xQ.

Lemma 1 is obviously true if P, Q or P + Q is the zero point έ?
of <ĝ  Thus, we may assume that none of the points P, Q or P + Q
is έ?. Using the sharp inequality (3) for w and the addition formula
(7) for P,Qe^, one shows then that

(a) the relations w(xP) < w(xQ) < 0 imply w{xP+Q) — w(xQ), while
(β) w(xP) < 0 <; w(xQ) entail w(xP+Q) ^ 0. This proves (b) and

part of (a).
It remains to verify that the relations w(xP) = w(xQ) < 0 imply

w(xP+Q) fj w(xP). We may assume w(xP+Q) Φ w(xQ) since otherwise
the assertion is true. Then we must have w(xP+Q) < 0 because the
assumption w(xP+Q) ^ 0 would, on grounds of the decomposition P =
(P + Q) — Q, according to (β) lead to the inequality w(xP) ^ 0 con-
tradicting the premise w{xP) < 0. But then the same decomposition,
because of the relations w(xP+Q) < 0, w(xQ) < 0, w(xP±Q) Φ w(xQ), yields
by statement (a) that

w(xP) — max{w(#p + ρ ), W(XQ)} ^ w(xP+Q)

which proves the remaining portion of assertion (a).
To state the second lemma we return to our original situation

of an elliptic function field K/k defined by an equation (1) with coef-
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ficients ai9 bό in the constant field k of K. We denote by w any of
the valuations wp of K/k with p e S<

LEMMA 2. Let P = (xP, yP),Q = {xQ, yQ) be any two points of &
such that P Φ ±Q. i.e., xP Φ xQ.

(a) If w(xP) ^ 0, w(xQ) ^ 0, then the inequalities w(xP-Q) < 0,
w(xP+Q) < 0 imply

— iw(xP_Q) — iw(xP+Q) = w(xP — xQ) ,

while w(xPTQ) < 0, w(xP±Q) ^ 0 entail respectively

~iw{xPTQ) = w(xP - xQ) ,

and for w(xP_Q) ^ 0, w(xQ+Q) ^ 0 there holds

w(xP — xQ) — 0 .

(b) If w(xp) < 0, w(xQ) < 0, then we have also w(xP_Q) < 0,
w(xP+Q) < 0, and the relation

iw(xP_Q) + iw(xPhQ) = ^(xP) + w(xQ) — w(xP — xQ)

is valid.

For the proof of Lemma 2 we will need the following four identi-
ties which are immediate consequences of the equation (1) for the
coordinates of P, Q.

(12) yP - y-Q = (y-P - v-Q) + φY(χP, yP) ,

(13) yP - yQ = - (y^p - 2/_ρ) - ao(xP - xQ) ,

(VP - VQ)(VP - V-Q)

= -{xP — xQ)(xp + XpXq + x% + b^Xp + xQ) + b

+ » | + b^Xp + xρ) + 62 + aoyP(15)
^ ( ^ , VP)

Also we shall make continual use of the property (3) of w.
Now, employing the addition formula (7) and the relations (12)-

(15) for P, Qe^, we prove assertion (a) by showing first that, under
the assumptions w(xP) ^ 0, w(xQ) ^ 0, the inequalities w(xP_Q) < 0,
w(xP+Q) < 0 imply

(16) -iw(xP_Q) - iw(xP+Q) = w(xP - xQ) - w(φx(xP, yP)) ,

while W(XP+Q) < 0, w(xP±Q) ^ 0 entail respectively

-ΪW{XP+Q) = W(XP - XQ) - w(φγ(xP, yP)) ,
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and for arbitrary w(xP_Q), w(xP+Q) there holds obviously w(xP — xQ) ^ 0.

Then one verifies by means of Lemma 1 and the addition formulas

(7), (8) that in the first case

(17) 0 £ w{φx{xP, yP)) < w(φy(xP, yP)) ,

while in the second case

(18) w(φx{xP, yP)) ^ w(φγ(xP, yP)) ^ 0 ,

and thirdly, again by virtue of (12)-(15), for w{xP_Q) ^ 0, w{xPΛQ) ^ 0
the inequalities

(19) w{φx{xP, yP)), w(φγ(xP, yP)) ^ w(xP - xQ) ^ 0

are true.

Further, we observe that the discriminant D of the curve (6),
since it is the resultant of φX9 φY9 admits a representation in the
shape

(20) D = χ(ai9 bi9 X, Y)φz{X, Y) + ψ(ai9 bj9 X, Y)φr(X, Y) ,

where χ and ψ are polynomials in ai9 bί9 X, Y with rational integral
coefficients mod p. But the relation (20) remaining true upon re-
placing (X9 Y) by the coordinates (xP,yP) of the point Pe^ it
follows that in the first case w(φx(xP, yP)) = 0, in the second case
w{φγ(xP, yP)) — 0, and in the third case w(xP — xQ) = 0 since other-
wise (20) with (xP, yP) in place of (X, Y) and, respectively, one of
the identities (17), (18) or (19) would lead to the inequality w(D) > 0
which contradicts the fact that D is a nonzero element of the con-
stant field k of K, i.e., that w(D) = 0. We have thereby utilized
the assumption that the elliptic curve (6) is already defined over k
which means that its coefficients ai9 bά lie in k and a fortiori 0 Φ Dek.
This proves (a).

The first part of assertion (b) and the second part of (b) under
either additional assumption w(xP) < w(xQ) < 0 or w(xQ) < w(xP) < 0
are immediate consequences of Lemma 1, (a).

However, if w(xP) = w(xQ) < 0 one has to discuss the three
distinct possibilities w(xP^Q) < w(xQ), w(xP,rQ) < w(xQ) and w(xP_Q) =
w(xP+Q) = w(xQ) separately.

If w{xP_Q) < w(xQ) the assertion (b) can be proven by applying
Lemma 1, (a), the addition formulas (7), (8) and either the identities
(12), (13), when K has a characteristic Φ 2, or the relation (16), when
the characteristic of K is 2. More precisely, one shows in the former
case that
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w(xP+Q) — w(xQ), W(XP_Q) = 2w(yP — y_Q) — 2w(xP — xQ) and

2w(yP — y_Q) = 3w(xQ),

while in the latter case w(xP+Q) < w(xQ) is valid such that relation
(16) remains true here and

w(φx(xPί yP)) = 2w(xP) .

The case w(xP+Q) < w(xQ) can be treated similarly since x_Q = xQ.
If W(XP^Q) = w(xP+Q) = w(xQ) it is enough to establish

w(xP — XQ) — w(xQ) .

To this end one applies in succession the addition formula (7) and,
according as the characteristic is 2 or Φ2, the relations (14), (15) or
(12), (13) to show that the supposition w(xP — xQ) > w(xQ) would lead
to a contradiction. Notice that in the former case w{φz{xP, yP) =
2w(xP) while in the latter 2w{φγ{xP1 yP)) = 3w(xP).

We are now ready to prove the relation (10) for d with regard
to any two points P,Qe^ subject to the restriction PΦ ±Q. Ap-
plying in succession part (b) of Lemma 1, part (a) of Lemma 2, the
product formula (5) for £f and the inequality (3) for w$ with peS*,
we obtain according to the definition (9) of d (in the notation in-
troduced by (9)):

d(P -Q)+d(P + Q) + i Σ hw^{xpQ) + i Σ

= -i Σ
P,Q,P~Q<0 P,QP +

Σ fvwφp-o) - i Σ fpWp(xP+Q)
Q<0^PQ P+Q<0^PQ

= Σ
PQ^

Σ
P,Q<0

= 2d(P) + 2d(Q) + Σ hwv&r) + Σ ffWv(x<t) - Σ hwv{xP - xq) .
P,Q<0 P,Q<0 P,Q<0

But in comparing the first with the last portion of this sequence of
identities one recognizes by means of part (b) of Lemma 2 that (10)
is valid for PΦ ±Q.

If P = Q or — Q, (10) can be established in a similar way, apply-
ing the addition formula (8) in place of (7).

As already pointed out at the beginning, the asserted inequality
(2) turns out to be a consequence of the positive semi-definiteness of
the quadratic form d on ^ We say that d is positive semidefinite
on ^ if, for any two rational points P, Q of the curve (6) over K,
the quadratic form dPtQ, defined for rational integers m, n by setting
according to (11)
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δPyQ(m, n) — d(mP + nQ)

= d(P)m2 + {d(P + Q) - d(P) - d(Q)}mn + d(Q)n2 ,

has a discriminant

(22) ΔPtQ = {d(P + Q) - d(P) - d{Q)}2 - U(P)d{Q) g 0 .

In fact the following general lemma can be proved.

LEMMA 3. Let δ(u, v) = au2 + βuv + yv2 be a quadratic form in
two real variables u, v with real coefficients a, β, y such that δ satis-
fies the inequalities

(23) δ(mσ, nτ) ^ 0

for two fixed real numbers σ, τ Φ 0 and all rational integers m, n.
Then the discriminant Δ — β2 — 4ατ of δ is less than or equal to
zero.

Proof. If a = 0 or y = 0, then (23) implies β = 0, i.e., Δ = 0.
Thus, let a Φ 0. The discriminant of the polynomial in u

δn(u) = δ(u, nτ) is

(24) Δn = n2τ2Δ = a\pn - ωn)
2 ,

where pn, ωn are the roots of δn(u) in the complex number field.
Suppose, by way of contradiction, that Δ > 0. Then, because of

(24), also the inequalities Δn > 0 are fulfilled for all n Φ 0, whence
pn Φ ωn are real roots of δn(u).

Let ρn < Q)n, say. The assumption (23) implies for n Φ 0 that
there are rational integers κn such that the estimates

κnσ S pn< o)n ^ (*n + 1)^ or (ΛΓΛ - 1)(7 ,

i.e.,

(25) 0<(pn- ωn)
2 ^ σ2

hold. However, according to (24) and on account of the assumption
Δ > 0, the discriminants Δn become arbitrarily large, as w—> oo, which
contradicts the estimates (25). Thus, we have proved Δ ^ 0.

Application of Lemma 3 with σ = τ = 1 to the quadratic form (21)
yields the positive semi-definiteness of d on <£*. Note that the con-
ditions (23) with σ = τ = 1 are fulfilled for δPyQ since, by definition
(9) of d, d(mP + nQ) ^ 0.

We summarize our results in a

PROPOSITION. The function d, defined by (9), on the group %?
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of rational points of the elliptic curve (6) over K is a positive semi-
definite quadratic form on ^ .

3* Proof of the theormu Now we are in a position to prove
the theorem.

We pick two distinct rational points of <£*, namely Po = (x, y)
and its image Qo — (xq, yq) under the so-called Frobenius endomorphism
of ^ which consists of raising the coordinates of Po to the g-th power.
The proof of the theorem then amounts to verifying the following

LEMMA 4.

d(P0) = 1, d(QQ) = q, d(P0 + Qo) - d(P0) - d(Q0) = q-N.

For assuming Lemma 4 to be true one realizes immediately that
the inequality (22) with P = Po, Q = QQ is equivalent to the assertion
(2).

It remains to prove Lemma 4.
We first observe that the "infinite" prime divisor ^ of k(x)/k is

the only one with w^{x) < 0, such that the extensions £« of #« to
the elliptic function field K ~ k(x, y)/k are the only prime divisors
of K/k with wp^ix) < 0. But pM admits exactly one extension £«, to
K/k since it is ramified. This is because the equation (1) shows ac-
cording to property (3) that

2wipoo(y) = e^w^ix3 + bλx
2 + b2x + 63) = — 3epoo

so that the relative ramification index eVoo of £«, over ^^ is an even
number less than or equal to the field degree [K: k(x)] = 2, i.e.,
βpoo = 2. The absolute degree of p^ is /foβ = 1. By definition (9) of
d we have therefore

d(P0) = -ifvooWVoo(x) = 1

and, similarly, d(Q0) = q.
In order to compute d(P0 + Qo) we shall consider the group opera-

tion formula (7) on <Sf for P = Po, Q = Qo. Let Po + Qo = (x0, y0).
Formula (7) shows that Wp(x0) < 0 for p Φ p^ can happen if and only
if wP(x - xq) > 0.

REMARK* TO every solution (ξ, rj) in k of the elliptic equation
(1) there corresponds exactly one prime divisor p Φ p^ of degree
/p = 1 of K/k with ξ,η = . x, y mod p, and vice versa. Furthermore,
for each of those (finitely many) p's there holds

{26) wP(x - xq) = eP > 0 ,
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where e$ denotes the ramification index of p relative to K/k(x) (cf-
[1], Chap. IV, §2).

The statement (26) is true on grounds of the decomposition

(27) xq - x = Π (x ~ 0
ζek

because of which we have wp(xq — x) = epwv(xq — x) = ep where $, as
before, denotes the restriction of p on k(x)/k.

At first we discuss the prime divisors p Φ p^ of K/k with the
property Wp(x — xq) > 0. According to (27), these p's have at most
the degree /p = 2, and their ramification index ep relative to g> does
not exceed [K: k(x)] = 2.

We distinguish accordingly between three types of such prime
divisors p e 6^.

( i ) ev = 2,/p = 1. Then the restriction ^ of p on k(x) is rami-
fied in iί.

In this case we have wp(y — yq) — 1. For ^ necessarily divides
the different φγ(x, y) of the primitive element y for K\k{x), and
therefore p is not a divisor of φx(x, y) since, according to (20),

{x, y)) > 0 implies.

wp(φx(x, y)) = 0 .

Hence, the two relations (14), (15) with P = Po, Q — QQ, i.e.,

(y - yq){φY{χ, y)q + (y - yq)}

= -(x - xq){x2 + xxq + x2q + b,(x + tτ
9) + b2 + α0?/} ,

a;2 + xxq + x29 -r b,(x + a;9) + 62 + α0?/

- <px(χ, y) + (χ- χq){(χ - χ q ) - (3a; + 6 , ) } ,

together with (26) yield by the aid of (3) wp(y — yq) — 1.
We remark that wp(l — yq~ι) = 1 is impossible for ramification

prime divisors £ of degree 1 of K/k since otherwise the correspond-
ing restrictions #> on k(x)/k would possess two distinct extensions to
K/k. Hence wp(l — yq~ι) = 0 and wv(y) = 1.

The formula (7) for the group addition in ^ reveals now that
these ramification divisors p, because of (26), contribute the values

wv(x0) = 2wp(y - yq) - 2wv{x - xq) = 2 - 4 = - 2

to d(PQ + Qo).
Let ikf denote the number and ^ c £f the set of ramification

prime divisors p Φ p^ of degree 1 of K/k. In other words, ikf is the
number of solutions in k of the elliptic equation (1) corresponding to
those p 6 &.
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( ϋ ) e$ = 1,/p = 1. Then the restriction #> of p on k(x) is de-
composed in K.

In this case we have wp(y) = 0 because otherwise $> would admit
but one extension p to K. Also the inequality wp(l — yq~ι) > 0 holds
since fp = 1 means that the residue class field of p is A: itself so that
the element η = . ?/ mod p lies already in fc, i.e., 57 satisfies η Φ 0,
Tf-1 = 1.

But then the formula (7), in virtue of (26) and wp(y — yq) ^ 1,
shows

wp(x0) ^ 0 .

Let 2L denote the number and £& c 6^ the set of decomposition
prime divisors p of degree 1 of K/k. In other words, 2L is the
number of solutions in k of the equation (1) corresponding to those

(iii) e — 1,/p = 2. Then the restriction S> of ^ on k(x) is i%erί
in if.

In this case we have wp(y) — 0 and w$(l — yq~ι) = 0 since the
residue class field of p is a proper extension of k of degree /p = 2
such that f = .xmodip lies in k while η — .ymoάp does not lie in k,
which means rj Φ 0, ηq~ι Φ 1.

Thus the inertia prime divisors p of degree 2 of K/k do not yield
any solutions in k of (1), but they contribute, on account of (26),
the values

wp(x0) = 2wp(y - yq) - 2wp(x - xq) = 0 - 2 = - 2

to d(P0 + Qo).
The number of inertia prime divisors p of degree 2 of ϋΓ/A is

q — L — M. Denote the set of those pfs by ^ c ά^.
According to what we have said under (i), (ii), (iii), the number

N of solutions in k of the elliptic equation (1) is

N = 2L + M .

In order to compute d(PQ + QQ) it remains to consider the in-
finite prime divisor p^ of K/k. We have wpoo(x) = — 2 < 0, wpoo(xq) =
— 2q < — 2 < 0. Lemma 1, (a) therefore yields

ft>oo(α0)
 = wpΛ%) = — 2 .

Hence, by (9), we obtain altogether

Q o ) = - | p p

- 4(? - L -
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whence

d(P0 + Qo) - 1 + 2(0 - L) - M

such that

d(P0 + Qo) - d(P0) - ί(Qo) = q-N.

This proves Lemma 4.
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