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ON GENERALIZED TRANSLATED QUASI-CESARO
SUMMABILITY

B. KwWEE

Let « > 0,3 > —1. The (C;, @, B) transformation of the
sequence {s;} is defined by
P I'g+n+2'a+p+D) & e+ Ik +n+1) s
"7 T+ DIE+F D) = FE+D M a+p+nt+k+2) "’

and the (C;, «, B) transformation of the function s(x) is de-
fined by

Hat 8D, (" s
I'a)'p+1) o (x+ y)erett
Some properties of the above two transformations are

given in this paper and the relation between the summability
methods defined by these transformations is discussed,

9(y) = dw .

1. For any sequence {z,} the Hausdorff summability (H, p,) is
defined by the transformation

n

tn = Z <Z)(An~kﬂk)sk ’

k=0
where
A?‘k = s,
Ay =ty — iy s
A = A4,

Transposing the matrix of the (H, #,), transformation we get the
matrix of the quasi-Hausdorff transformation

- [k
t, = 2 ( )(Ak—n/’en)sk ’
k=n \ N

which will be denoted by (H*, ¢,). Ramanujan [8] introduced the
(S, p,) summability, which is defined by the transformation

= [k
te=3 ( ' ”)(A'Wsk :

Thus the elements of row % of the matrix of the (S, y,) transformation
are those of the corresponding row of the (H*, p,) transformation
moved n places to the left.

It is known [8] that if (H, p,) is regular and if ¢, — 0 as n— o,
then (S, ¢,..) is regular; conversely, if (S, #,.,) is regular, then (H, p,)
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can be made regular by a suitable choice of g,.
When

1
(n + a) ’
n
(H, p,) reduces to the Cesaro summability (C, «). Borwein [3] intro-
duced the generalized Cesiro summability (C, «, 8) which is (H, )

Un =

with
(n+,8)
_ n
(1) = mTat ey
")

The aim of this paper is to discuss properties of the (S, f£,..)
summability with g, given by (1) for « > 0, 8> —1 and of the ana-
logous functional transformation. We shall denote this summability
by (C,, @, B). The case in which 8 = 0 has been considered by Kuttner
[6] and a summability method similar to (C,, @, 8) has been discussed
by me [7].

A straightforward calculation shows that the (C,, «, 8) transfor-
mation is given by

t, = t(n, a, B) = (’8+1)(B+21;,"(3+n+ 1)
@t (@t k= D+ 1k +2) - (k+m)
= @+p+rl)a+rB+2 r(@atrB+n+ltk)
_ Lg+n+2la+p+) & e+ BIk+n+1)
I'(n + HI(B + DI(a) =0 T+ (a+B+n+k+2)

(2)

It is clear that, if (2) converges for one value of n, then it con-
verges for all n. Further, a necessary and sufficient condition for
this to happen is that
(3) S, 2

k=1 fatt

should converge.

Let s(x) be any function L-integrable in any finite interval of
2 = 0 and bounded in some right-hand neighbourhood of the origin.
Let « > 0,8 > —1, and let

(4) 9 = 9(y, a, B) = I'a+p+1) yﬁ+15°° x*'s(x)

I'a)I'(B + 1) o (v + y)rr
If g(y) exists for y > 0 and if
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limg(y) = s,
Yoo

we say that s(z) is summable (C,, @, B) to s.

It is clear that a necessary and sufficient condition for the con-
vergence of (4) is that
(5) r 3®) gy

1 ght?

should converge.

2. The relationship between sequence-to-sequence and func-
tion-to-functions transformations. Given any sequence {s,}, let the
function f(x) be defined by

f@=s, mMse<n+1Ln=012 -.).

Then the (C,, @, 8) summability of {s,} is equivalent to the (C,, a, B)
summability of f(x) for &« > 0, 8 = 0 (see [6] Theorem 4). However,
the proof breaks down when B> 0. We can prove that they are
equivalent for —1 < 8 < 0 as follows. Write

a4+ k)Ik+n4+1)

k) =
R IR 1y & Py Brimriy
k+1 xa-——l d
b(y, k) = Sk Gt

As in [6], we may suppose that s, = 0. Then the result would follow
if, corresponding to equation (11) of [6], we proved that, if (3) con-
verges, then uniformly for 0 < 6 < 1,

(6) 3% [a(n, 1) = bln + 0, s = o 1) .

Choose an integer @ such that @ = 8+ 3. From equations analogous
to those of the last line and line 6 from bottom of p. 709 of [6], we
find that

() alm, ) = b(n + 6, 1) = ZpO)—"—— +0( ke ).
’ ' (n + k)+etr (k + m)*re+t

where p(f) is a polynomial in 6 (which may be different for each term
in the sum), and the sum is taken over those integers g, r which are
such that

g=1,r=1, grnotbothl, ¢g+7r=Q.
Since the convergence of (3) implies that

8, = o(k**?) ,
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and since @ > 0,Q = B + 3, we see that the contribution to the ex-
pression on the left of (6) of the “0” term in (7) is

1
obmy
Hence the result would follow if (corresponding to Lemma 2 of [6])
we could prove that the convergence of (3) implied that, for relevant

Q77

N _ (1
(8) L SRk

Now write
= 3 _Sm
U = m% pED
so that v,— 0 (and this is all we know). The sum on the left of (8) is
had Jpot+et+i—e
& o a1 U
(9) - ____7)1__—+ iv { ka+5+2—q _ (]C— 1)¢!+ﬁ+2—q }
R R Y e R N e

The first term on the right of (9) is o(1/n#*") (since r =1, > 0). The
expression in curly brackets in the second term is

ka+ﬂ+l-—q
e
(k + m)*+e+r )
(and this result is best possible). This gives the required result when
B =<0; but if 8> 0, all that we can deduce in the “worst” cases
(which are ¢ =1,r =2 or ¢ = 2, r = 1) is that the sum (9) is o(1/n).
Of course, the fact that the proof breaks down does not imply

that the theorem itself is false. My guess is that the theorem pro-
bably is false for p > 0; but I have not actually got a counter example.

3. Theorems. The following two theorems with B =0 are
Theorem 1’ and Theorem 2’ given by Kuttner [6]. The proof of
Theorem 1 is similar to that of Theorem 1’ in [6], and Theorem 2
follows from Lemma 1 and Lemma 2 of this paper.

THEOREM 1. Let a>0,8> —1 and r = 0 and let s(x) be sum-
mable (C, r)* to s and (4) converge. Then s(x) is summable (C,, ., B) to s.

THEOREM 2. Let a > a’'>0,8> —1, and let s(x) be summable
(C,, a, B) to s. Then s(x) is summable (C,, &', B) to s.

1 For definition of the (C, r) summability of s(v), see [7].
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In §5, we shall prove

THEOREM 3. Let > 0,8> 8 > —1. Suppose that s(x) is sum-
mable (C,, a, B) to s and the integral

("2 4,

1 opf 2

converges. Then s(x) is summable (C,, a, B') to s.

The sequence {s,} is said to be summable 4; to s if

mw=a—ww§w”+”%m
n= n
converges for all x in the interval 0 < 2 < 1 and tend to a finite limit
s as t—1—. The A, method is the ordinary Abel method.

It is known (see [1] and [2]) that 4, D A4; for A > ¢ > —1. For
other properties of this summability method, see [1] and [6]. We
shall prove

THEOREM 4. Let > —1, 8> —1. Suppose that the sequence {s,}
is summable A; to s and that (3) converges. Then the sequence 1is
summable (C,, v + 1, B) to s.

4. Lemmas.

LemMA 1. Let a>a' > 0,8> —1. Suppose that (5) converges.
Then

Q-1 ’ — F(a) v a’—1 _— a—a’—1
¥y, &, B) = T T —a) So £y — )9 (, @, B)dt .

The proof of this lemma is similar to that of Lemma 4 in [6].

LEMMA 2. Let
o) = | e, sy -
Then in order that
s(y) — 8 (y— oo)

should imply
t(x) —s (x — o)

Jor every bounded s(y), it is sufficient that

e vy < &,
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where H is tndependent of x, that

v

|| let@, 9)ldy—0
when & — oo, for every finite Y, and that

Sw c(:c, y)dy —1
0

when x — oo,
This Theorem 6 in [4].

5. Proof of Theorem 3. Let

o) = |2 ay

ub+?

for « > 0. Then ¢(x) is continuous in (0, ), and é(x) —0 as x— co;
hence ¢(x) is bounded in (B, «) for any B > 0, say

lo(@)| = M

for x = B, where M may depend on B if B is small, but may be
taken as an absolute constant for large B. It follows that

) gl = |1 (F) " we)|

RCE
_ ’(Bi t)a+ﬂ+1¢(B)

e )

=) dw

< 19(8) | + @+ 6+ a2
S(a+p+2)M.

Since s(x) is bounded in some right-hand neighbourhood of the
origin, there exists B, > 0 such that
[s(x)| = K
for 0 < ¢ < B,. By partial integration, we obtain
Bo pets(x) de| < Ko + 28 + 2) )
o (@ + e alB + 1)

By combining (10) and (11) it follows that g(¢, @, B) is bounded
in any finite interval (0, T'). Since it tends to s as t— <o, g(¢t, a, B)
is bounded in (0, ). Thus, for y > 0, the integral

(11)

o]
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_ T@TB+1) (" ypy o
I=Tar s Sy“ (¢ =970 @, plat

converges. In view of the definition of g¢(¢, &, B) it follows that

12) I = lim I(4)

A—oo

where

S N Rl | 1)
14 = "¢ - wprr-atf T

It follows from (10) by dominated convergence that, for fixed A4,

4 oo a—1
t — ﬂ~ﬂ’~1dtS ‘”—s(‘”)_d, —
Sy( Y) e it

as B— <. Hence, by Fubini’s theorem

(13) I(4) = S‘” w“”’s(x)dxgj %}dt

We will now show that, for fixed v,

i I () L PR
14) SO @ s(x)d:vL @ T O dt — 0
as A— oo, It is clear that for large A the inner integral in (14) is
O(A—*=#-') uniformly in 0 < x# <1, so that the contribution to (14) of
the range 0 < ¢ < 1 tends to 0 as A — . Now write

P(w) = r S0

x ulgl+2

thus we are given that v(x) exists and that it tends to 0 as & — .
The contribution to (14) of > 1 may now be written

(15) I xa+p'+1d¢(x)5:-((iv—;yg;—1;——j—dt

It is easily seen that, for fixed y, A and large z, the inner integral
in (15) is O(z—*#'); thus, integrating by parts, (15) becomes

(16) v %idt

T = Wl i (3 el

Now for fixed y and large A, uniformly in 0 < 2 < A, the inner in-
tegral in (16) is
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O{Sjt—a—ﬁ'—2dt} = O(A——

Hence

g t— v~ a+ g + 1)t — (8 — B)2]
[ ome eyl P dt

SA/logzl S ) g (MO(A—a—ﬁ 'l)d’b
A]log.

1

A
+ 0(A~a-ﬂ'—1 sup | () |SA/W ma+ﬁ'da;> - 01) .

2 (4[logA)
Nothing that for fixed y and large ¢

(t — y)p &t = 8L L Ot %),
and also that

5 o @+ B+ Dt — (8= B2ly, g
0 (x + t)rere

we see that, for large A uniformly in x = A, the inner integral in
(16) is
_S“ v (e + B+ Dt — (878)7] gy
0 (z + t)x+e+
N i GRS % UENCEY [P
4 (x 4 t)ere?

= O{x_“—'ﬁ—lS: tﬁ—ﬂ’"ldt} + O{x—a—ﬂ—lgz tﬁ~ﬁ'~2dt} + O{S: t_a_ﬁ,_gdt}
= Oz AP%) + O(z—5"2)

{except that, in the case B — 8’ = 1, we must insert an extra term
O(x—**log x)). It is now clear that the expression (16) tends to 0
as A— o, and this completes the proof of (14). We deduce from
(12), (13) and (14) that

—_ « a—1 w (t — y)ﬁ—'ﬂ"‘l
I= So x s(x)dacgy Wdt

_IB=p)Ia+p +1 g“ aTs(@) g
I'la+pg+1) o (@ + y)H

_Ire=par@E +1) .. '

Thus, in view of the definition of I, we have
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h__ I(g+1 (™ gy s
00, @, §) = e iy~ 0t @ B)d

The kernel of this last transformation can easily be verified to satisfy
the conditions of Lemma 2, and the theorem now follows.

6. Proof of Theorem 4. It follows from the convergence of
(3) that for > —1, s, = o(v**?). We can easily prove that the func-
tion ¢"**(1 — ¢)*+#'+' has a maximum when

_ E-+n
E+n+r+p/+1

For large k + m, this maximum is O((k + n)~*~#~'). Hence, if 58’ >
B + 2, we have, the inversion in the order of integration and sum-
mation being justified by absolute convergence,

F(B"l‘n+2) ln _ 2-{-'-(—1<><> )\'+k> k}
]"(n+1)]“(,8’+1)jot(1 1o {kz( - s La

' +n+2 < (7L +k )Skgl (L — )L
A7 T I'n+ DI(E + 1) =\ & 0

DB +n+2)l(n+B+2) &  T'OvAk+D)I(E+n+1)
T'n+1)I(E +)I'(n+1) = T+ 1) " (n+8 +n+k+3)

=tn, v+ 1, 8) .

By analytic continuation, (17) holds for 8’ = 8. Hence

. I'B+n+2 Yl
“%N+LB%_Hn+DﬂB+D&ta 866t

FBA 142 (" v eivpey s
T T+ DIE+ 1) | = evpeeipt — e)dy

By Lemma 2 the result with follow if

. I'(B+mn+2) T (1 — g=vyrp—(p+Dy
(i) FW+MW+D&G eyre-tivdy < H

where H is independent of =,

.. e+ n+2) Y1 oer\a—(aty -
(ii) T T D76+ D So (1 — e)re~t6tV¥dy — 0

when n — oo, for every finite Y, and

re+mn+2) T o\rg—ai DYy
(iii) ACESVACESY So 1 —eV)rettividy —1,

when # — c. Since
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1 — o—t\rg—tavug, — L+ DI'(B + 1)
&a ¢Vyre—E+Iv gy oy

(i) and (iii) are satisfied. We have I'(n + B + 2) ~ nf+'['(n + 1), and
the integral in (ii) is, by changing the variable,

1—e~Y
S (1 — tyede .

0

Hence (ii) is satisfied.
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