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COMPLETIONS OF DEDEKIND PRIME RINGS AS
SECOND ENDOMORPHISM RINGS

JAMES KUZMANOVICH

The purpose of this paper is to show that if M is a maximal
two-sided ideal of a Dedekind prime ring R and P is any
maximal right ideal containing M, then the ϋf-adic comple-
tion R of R can be realized as the second endomorphism
ring of E=E(R/F), the iMnjective hull of R/P; that is, as
end (KE) where K=enά (ER), The ring K turns out to be a
complete, local, principal ideal domain.

This paper was motivated by a result of Matlis [6] which
says that if P is a prime ideal of a commutative Noetherian
ring R, then the P-adic completion of the localization of R
at P can be realized as the ring of endomorphisms of
E=E(RIF), the i^-injective hull of RIP.

Since R is a full matrix ring over a complete local
domain L [4], we are able to approach the problem by con-
sidering first the case that R is a complete local domain,
then by means of the Morita theorems we pass to the case
R = R, and finally pass to the general case.

1* Introduction* A prime ring R is called a Dedekind prime
ring if it is Noetherian, hereditary, and a maximal order in its
classical quotient ring Q (see [3]). A ring R is called local if the
nonunits of R form an ideal.

If R is a Dedekind prime ring with a nonzero prime ideal M,
then M is a maximal two-sided ideal and ΠMn = 0 (see Robson [7]).
Let R — RM be the completion of R at M in the sense of Goldie [3].
In this situation combining results of Goldie ([3], Theorem 4.5) and
Gwynne and Robson ([4], Theorem 2.3) yields the following theorem.

THEOREM 1.1. Let R he a Dedekind prime ring with a maximal

ideal M. Then (i) R has a unique maximal two-sided ideal M, M is

the Jacobson radical of R, and Rf]Mp = Mp.

(ii) R is a full k x k matrix ring over a domain L which has a
unique maximal ideal N, and L/N — F where F is a division ring.
Also R/Mp — R/Mp (each coset of Mp has a representative in R).

(iii) R is a prime principal ideal ring and L is a complete, local,
principal ideal domain. The only one-sided ideals of L are the powers
of N.
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For the rest of this section let R, M, R, M, L, and N be as in
Theorem 1.1. Let x be the generator of N; then N = xL = L# and
Nk = xkL = Lα*.

2, The Ring L* This section will be concerned with the con-
struction of the L-injective hull of (L/N)L and with showing that
Theorem 4.4 holds for L.

LEMMA 2.1. L/Nk can be embedded in L/Nk+1 as a right L-module
via the map hk: L/Nk -»L/Nk+1 defined by hk ([u + Nk]) - [xu + Nk+1].

Proof. hk is clearly additive and right L-linear. Suppose
hk([u + Nk]) = [0 + Nk+1]. From the definition of hk it follows that
xu e Nk+1 so that xu = xk+1u, for some uf in L and u = xkuf e Nk.
Hence [u + Nk] = [0 + iVfe] and ^^ is a monomorphism. A similar
argument shows that hk is well-defined.

The maps {hk} and the right L-modules {(L/Nk)L) give rise to a
directed system. Let EL be the direct limit of this system. Then EL

can be considered as an ascending union of a family of submodules,
{(S3 )L}I which is totally ordered by inclusion and where each (Sj)L is
isomorphic to (LINl)L.

LEMMA 2.2. Consider (L/Np+t+ί)L. Take aeNp/Np+f+ι and
deNp\Np+ί. The equation yd — a has a solution in (L/Np+t+1)L.

Proof. aeNp/Np+t+1 so that a = [xpv + Np+t+1]. deNp\Np+ι so
that d = xpu where u is a unit in L. In L, xpvu~ι — wxp since

JV* = ^ L = Lxp. Let 2/ = [w + Np+t+ι]. yd

= [w + Np+t+ι]d = [wd + JVr*+ί+1J = [Wχpu + Np+t+1]

= [xpvu~ιu + iVΓp+t+1] = [a?^JVrp+t+1] = α.

PROPOSITION 2.3. £7̂  is isomorphic to the L-injective hull of the
simple right L-module (L/N)L.

Proof. EL contains a copy of (L/N)L, namely Sλ. Thus it is
enough to show that E is an essential injective extension of St. St

is essential in E for if ae E, ae Sk for some integer k. Let t be the
first such integer: then a e St\St-lf a is a generator for Ŝ , and aL = S t.
Thus α L π S i ^ S i and 5X is essential. Since L is a principal ideal
domain, it is a hereditary two-sided order in its quotient division ring.
In order to prove EL is injective it is sufficient by a result of Levy
([5], Theorem 3.4) to show that it is L-divisible. Take aeE and
0 Φ d e L. a e St for some t and d e NP\NP+1 for some p. yd — a has
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a solution in Sp+t+19 and hence in E, by Lemma 2.2. E is thus an
essential injective extension of Sι and hence is its injective hull.

Let K = endL(E) and let K act on E by left multiplication; E then
becomes a left iΓ-module. Let H = endκ(E); in similar manner E then
becomes a right ίZ-module. Ed — E (since E is L-divisible) for all
nonzero d in L; thus E is a faithful right L-module. Hence L may
be considered as a unital subring of H.

LEMMA 2.4. The Sk's are the only proper L-submodules of EL.

Proof. Suppose ML is a submodule of E with generating set
Since E = (j S*, each m< is in some S*. Let fe< be the first fc for
which m, e S*. Then mt e Skt\Sk.^ and m^L = S v M = I m . L = ΣSki

so that if {ki} is bounded, Λf = S*t where kt = max {&;}, and if {fcj
is not bounded, then M = EL.

LEMMA 2.5. If aeSn and if heSn-lt then there is a q e K such
that q(b) — α.

Proof. Assume that t is the first integer for which b e Sn+t.
Then annL(δ) = Nn+t which is contained in Nn which in turn is contained
in ann^α). Thus the map q:bL—>aL defined by q(bd) — ad is well
defined. EL is L-injective so that q can be extended to an endomor-
phism q of E. q e K.

PROPOSITION 2.6. Each Sn is a cyclic left K-submodule of KE, the
composition length of κ(Sn) is n, and the Sn's are the only proper
K-submodules of E.

Proof. If q e K,q(Sn) is an L-submodule of E of composition length
less than or equal to n and hence must be contained in Sn by Lemma
2.4; hence each Sn is a left iΓ-submodule. Each κ(Sn) is cyclic via
Lemma 2.5; in fact, any L generator of Sn will be a if generator of
Sn. This implies that ^SJ is simple and inductively that the com-
position length of κ(Sn) is n. The proof of Lemma 2.4 shows that
these are the only iΓ-submodules of E.

LEMMA 2.7. Let Hi be the annihilator of Si in H. Then Hi is a
two-sided ideal of H, Hi+1 is properly contained in Hi, and Γ\H{ = 0.

Proof. Hi is clearly a right ideal of H. If he H, then (SJh is a K-
submodule of E of composition length less than or equal to i. By
Proposition 2.6 it must be that (SJhaSi so that each S{ is ίZ-invariant.
As a result H{ is a left ideal and hence an ideal. The inclusions are
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proper, for HtΠ L = N* and N{ Φ Nί+1. Since E = U Si9 anything in
IΊ Hi would annihilate all of E and hence be zero.

PROPOSITION 2.8. H = L. That is, L is the second endomorphism
ring of EL.

Proof. Take feH. By Proposition 2.6 there is a nonzero y e St

such that St = Ky — yL. Hence there is α ^ e L such that yf = ypx.
Also, if z e S19 z = ky for some ke K and

/y( -f n~\ \ (If! l\ ( ~f <7Ί 1 \cΌ\ 0 ~HΌYΊΓ*C» /* W\ C Q TΊ TΊ ί ζf l̂ Ί-Γ

Inductively suppose that there is a p^ e L such that / — pte Hi.
Now take y e Si+1\Si. y(f — p^ e Si+ί so that there is a d e L such
that y(f — p^ — yd. If 2 e S i+1, z — ky for some ke K. Then
#(/ — p;) = (/c7/) (/ — Pi) = k{y{f — Pi) = k{yd) — {ky)d ~ zd and hence
f — Pi — d is in Hi+1. Let pi+1 = p{ + <2; then / — pi+1 e Hi+1.

The sequence {pi} is Cauchy in L, for pn — pm = (pw —/) + (/— ί>TO)
an element of ίΓu + ΐ ί w ; but Hn + Hm — Hniΐ n^ m. Thus ^ = Pm is in
Hnf]L = iV\ L is complete; therefore {p }̂ converges to some element
p of L. It only remains to be shown that p = /. Take ze E; zeSn

for some n. {pi} converges to p so that there is a positive integer
M such that pm — pe Nn for all m greater than M. Take m greater
than Λf + n. zf — zpm = 2^. 2 was arbitrary; therefore f = p.

3. The Ring K. In this section it will be shown that if is a
complete, local, principal ideal domain.

LEMMA 3.1. Let L, Ey and K be as in §2. Let J denote the
Jacobson radical of K and let An — a n n ^ S J . Then

( i ) K is a local domain.
(ii) J = Al9 JnczAnf]An = 0, and Π/ f t = 0.
(iii) K is complete in the topology induced by the An's.

Proof, (i) K is local since it is the endomorphism ring of an
indecomposable injective module. To prove that K is a domain it is
sufficient to show that every nonzero endomorphism of EL is an epi-
morphism. Let 0 Φ ke K. If k{E) Φ E, k{E) = Sn for some n by
Lemma 2.4. AnnL(Sn) = Nn; take 0 Φ be Nn. Since E is L-divisible,
Eb = E. As a result Sn = k{E) = k{Eb) - k(E)b = Snb = 0 contradict-
ing the fact that k Φ 0.

(ii) The radical of K, J, is the set of all endomorphisms of EL

whose kernel is essential (see [2] , page 44). Since {Sj)L is the unique
minimal submodule of E, ker(&) is essential if and only if k{Sx) — 0;
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therefore J = Ax and JSX — 0. Inductively suppose that J ^ ' S ^ = 0.
JSΛcS>Λ-i since it is contained in the radical of K(Sn), Sn^. Hence
Jnsn = Jn~ι(Jsn) which is contained in JW~1S%_1 which is zero, hence
JndAnf]An = 0 since anything infΊ An would annihilate all of the Sn's
and hence all of E. Π Jn = 0 since Jn c An.

(iii) Let {/*} be a Cauchy sequence in K with respect to the
topology induced by the decreasing family {An}. Let xeE. xeSp

for some p. Since {/J is Cauchy, there is an integer M such that
fn — fm£ Ap for n, m greater than M. Define f(x) = fM+i(x) It is
clear that feK and that /< —>/ by the nature of the construction.

Pick i e J\A2. There is such a i , for if #2 e S2\S1 and if 0 Φ y1 e Slf

then there is a i e K such that i(?/2) = yt by Lemma 2.5. i e J\A2.
In fact if s e Sn+1\Sn, then i%s is a nonzero element of Sx. The proof
is by induction. If s e SJ\Sl9 then s = y2u for u a unit in L. Hence
js = /̂y2i6 = 2/î  ^ 0. Inductively suppose that j%~ιs is nonzero for all
s in Sn\Sn-x and take s e Sn+1\Sn. js e S% by an argument in the
previous proof. The claim is that js $ Sn^. If it were, then jn~ιs = 0
which contradicts the induction hypothesis since sd e S%\^-i f° r some
d in L. Hence i s g S*^ so again by the induction hypothesis jns —
jn~\js) Φ 0.

J?, αticί L be as above.LEMMA 3.2.

( i ) J = j*

(ϋ) J=Kι
(iii) Jn = j'

Let K, J,
/-
j .

K = Kj\

Proof, (i) Let xeJ. Let yEeS2\SX. x(y2) = yeS1 since xeJ. Let
= 2/x; yx is a nonzero element of S1 since i G J\A2. Then there is

an element din L such that 2/ = Vid = i(?/2)ώ = j(y%d). By Lemma 2.5
there exists kyeK such that fc^) — ^ If s e S 2 , then s = ?/2c for
some c in L. α?(s) = x(y2c) = X(i/2)c = w = (jk^y^e = jkx(y2c) = / ί φ ) .
This says that a? — ;/&! e Aa

Inductively suppose that there exist &i , , fcΛ_! such that

z - x - O'fci + i2fc, + + iπ-^.-i) e A.. If

yn+ί e Sn+1\SnJ then jn(yn+ί) = ^

a nonzero element of Si by the above choice of j . Also z(yn+1) G SX

since «e -4*. Hence by the argument above there is a kne K such
that 2 — jnkneAn+1. The sequence {ifci + ••• + jnkn} converges to x
in the An topology by the nature of the construction. Also, since
Jn c An the sequence {kt + + jn~ιkn} is Cauchy and hence by the
completeness of K converges to some element k of K. Also by the
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construction jk — x. Since x was arbitrary in J, J = jk.
(ii) is proven by an argument similar to that of (i).
(iii) J = jK=Kj by (i) and (ii). Inductively suppose that

jn = jnR = Kjn9 T h e n j n + 1 = JnJ = (j*K){jK) = j*(Kj)K = jn(jK)K -
i%+1iΓ. Similarly J w + 1 = lζ/ +1.

PROPOSITION 3.3. j£ as above.
( i ) J* = Aw /or all n.
(ii) J% are the only onesided ideals of K.
(iii) K is a complete principal ideal domain.

Proof, (i) J = Aγ by Lemma 3.1. Inductively suppose that
An = J\ J^ c An+1 <zAn = J\ jηj"+1 = j«K/jn+1K ~ K/jK = K/J
which is simple. Therefore either An+1 = Jn+1 or An+1 = Jn. But by
the induction hypothesis j n ί An+ί so that An+1 = J% + 1.

(ii) It is sufficient to show that given xeK, xK = K or that
xK — Jp for some p. Take x e K and suppose that xK Φ K, then x
is not a unit and hence xeJp+1 for some p. By Lemma 3.1 x = jpk,
and yfc must be a unit; for otherwise k = jkλ for some kt in if and
x = j'JK e Jp+1. As a result £J£L •= i'feίΓ = jpK = Jp. Similarly Kx = J p .

(iii) i ί is a principal ideal domain by Lemma 3.2 and (ii). K
is complete by (i) and Lemma 3.1.

4. The Ring R. Let i2, ifcf, 5 , and 1/ be as in Theorem 1.1.
Then R is the full k x k matrix ring over L. Let ei3 , i, i = 1, 2, , n
be a complete set of matrix units for R. Let ML be a right L-module
and let ikf* = JMΊ 0 0 Jlί», a direct sum of w copies of l ί . Let /i
be the identity map on Mlf and let /4> i = 2, •••, w be an isomor-
phism from Mi to Λf<. Then M * can be made into an β-module by
defining fi{m)ei5 = fό{m) and fi(m)ekj = 0 if i Φ k. "*" is a category
isomorphism from the category of right L-modules to the category of
right β-modules. There is also a category isomorphism en from the
category of right 5-modules to the category of right L-modules
defined by (AR)en = Aen. M and Λf*eu are isomorphic for any right
L-module M (see [1], or [5] page 137).

PROPOSITION 4.1. R is the second endomorphism ring of the R-
injective hull of the simple right R-module.

Proof. Let E be the L-injective hull of the simple right L-module
as in §2. Then E* is the j?-injective hull of a simple right 5-module
since * is a category isomorphism. R/M is simple Artinian and M is
the Jacobson radical of R so there is only one isomorphism class
of simple right-jR-modules. Let K = end^(i?*) and take qeK.
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q(E*eu) = q(E*iieii) = q(E*eii)eu; t h u s each J£*e« is iΓ-invariant and

KE* = κF*en © κEe22 ® © κE*ekk. Each eo is a ϋΓ-isomorphism
so that E* is decomposed as a direct sum of k mutually isomorphic
ίΓ-modules. Thus each ϋΓ-endomorphism of E* can be given by
multiplication by a matrix of homomorphisms. The remainder of the
proof shows that the entries in this matrix are of the desired forms.
Each q e K restricted to E*it is an L-endomorphism of E*it. Each
L-endomorphism of E*eu can be extended in one and only one way
to an jS-endomorphism of E*; namely, if q is an L-endomorphism of
E*βn, then its unique extension q is defined by q(z) — SjUtfOsβii)^/
for zeE*. Hence K ~ endL(E*eu) via the restriction map. By pro-
position 2.8 each element of endκ(E*ea) can be given by right multi-
plication by an element of euReu. If h:E*eH —• E*ejj is a JΓ-homomor-
phism, then heόi is a i£-endomorphism of E*eH where edi denotes right
multiplication by eH. Hence heH = euτeu for some reR. If zeE*iit

then (z)h = sλβyy — zh&j&a = ze^r^Av = zeurei3 so that Λ is given by
right multiplication by an element of βaRe^. As a result every iΓ-
endomorphism of i?* is given by right multiplication by an element
of R.

R can be considered as a subring of R; as a result every jξ-module
is automatically an i?-module. Also, if M is the maximal two-sided
ideal of R, then Mp Π R = Mp and every coset of R/Mp has a
representative in R (Theorem 1.1).

LEMMA 4.2. E* as in the proof of Proposition 4.1, then (E*)R is
the ascending union of R-modules 0aB1c:B2c: • where the composition
length of Bn is n. These are the only R-submodules ofE*. Furthermore,
the BiS are the only R-submodules of E* and every R-endomorphism
of E* is an R-endomorphism. That is, the structure of E* as an
R-module is identical to its structure as an R-module.

Proof. The first part follows since it was true of E and * is a
category isomorphism. Let Bι — Si*. A category isomorphism pre-
serves the submodule lattice. Note that the composition length of
(J5Λ)s is n; since M is the radical of R, BnM

n — 0. In order to prove
that the i?/s are the only iϋ-submodules of E* it is sufficient to show
that aR = aR for all aeE*. Take aeE*. Clearly aR c aR. Take
reR. aeBn for some n so that aMn = 0. By theorem 1.1 there is
an m in Mn so that r + m = reR, then af = ar + 0 = af + am =
a(r + m)ar. Thus aRaaR and aR = αJS.

Let g be an ϋί-endomorphism of i£* and take aeE* and r e S .
It must be shown that q(ar) — q{a)r. Since a e E*, a e Bn for some n.
The IVs are the only iϋ-submodules of E* and the composition length
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of Bn is n, so that q(Bn) c Bn and g(α) e Bn. As above there is an
meMn such that f + m = r e i2. jBJkf Λ = 0. Then

q(ar) = g(αr + 0) = g(αf + am) = g(a(r + m)) = q(ar)

= q(a)r = q(a)(r + m) — q(a)f + q(a)m

= q(a)r + 0 = q(a)r .

Thus q is an jξ-endomorphism.

LEMMA 4.3 E* is the R-injective hull of

Proof. By Lemma 4.2 (JSJ^ is an essential submodule of ^* Λ .
E* is an injective ^-module since * is a category isomorphism; in
particular E* is a divisible ^-module so that E* is a divisible i?-
module. i2 is a hereditary two-sided order so that E* is an injective
iϋ-module by [5], Theorem 3.4.

THEOREM 4.4. Let R be a Dedekind prime ring with a maximal
two-sided ideal M, and let P be a maximal right ideal of R containing
M. Then the R-endomorphism ring of the R-injective hull of R/P is
a complete principal ideal domain.

Proof. Let R, R, L, EL1 and E* be as above. Then by Lemma 4.3
E* is the injective hull of a simple right iϋ-module which is anni-
hilated by M. (BJR — R\P since both are simple modules over the simple
Artinian ring R/M; thus E* ~ E(R/P). By Lemma 4.2 e n d ^ * ) =
end^(i?*) which is isomorphic to endL(E) since* is a category isomor-
phism. Hence the result follows by Proposition 3.3.

THEOREM 4.5. (Main Theorem) Let R be a Dedekind prime ring
with a nonzero prime ideal M, and let P be a maximal right ideal
containing M with E(R/P) the R-injective hull of R/P. Then R, the
completion of R at M, is isomorphic to the second endomorphism ring
of E(R/P).

Proof. Consider E*; as above E*~E(R/P). By Lemma 4.2 the
R and R structures of E* are identical. Thus R is second endomor-
phism ring of E(R/P) by Proposition 4.1.
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