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COMPLETIONS OF DEDEKIND PRIME RINGS AS
SECOND ENDOMORPHISM RINGS

JAMES KUZMANOVICH

The purpose of this paper is to show that if / is a maximal
two-sided ideal of a Dedekind prime ring R and P is any
maximal right ideal containing M, then the M-adic comple-

tion R of R can be realized as the second endomorphism
ring of E=FE (R/P), the R-injective hull of R/P; that is, as
end (xF) where K=end (E). The ring K turns out to be a
complete, local, principal ideal domain,

This paper was motivated by a result of Matlis [6] which
says that if P is a prime ideal of a commutative Neetherian
ring R, then the P-adic completion of the localization of R
at P can be realized as the ring of endomorphisms of
E=E(R|P), the R-injective hull of R/P.

Since R is a full matrix ring over a complete local
domain L [4], we are able to approach the problem by con-
sidering first the case that R is a complete local domain,
then by means of the Morita theorems we pass to the case
R=R, and finally pass to the general case,

I. Introduction. A prime ring R is called a Dedekind prime
ring if it is Noetherian, hereditary, and a maximal order in its
classical quotient ring @ (see [3]). A ring R is called local if the
nonunits of R form an ideal.

If R is a Dedekind prime ring with a nonzero prime ideal M,
then M is a maximal two-sided ideal and N M" = 0 (see Robson [7]).
Let R = R, be the completion of R at M in the sense of Goldie [3].
In this situation combining results of Goldie ([3], Theorem 4.5) and
Gwynne and Robson ([4], Theorem 2.3) yields the following theorem.

THEOREM 1.1. Let R be a Dedekind prime ring with a maximal
ideal M. Then (i) R has a unique maximal two-sided ideal M, M 1is
the Jacobson radical of R, and RN M? = M>.

(ii) R is a full k x k matriz ring over a domain L which has a
unique maximal ideal N, and L/N = F where F is a divistion ring.
Also R/M?=R/M? (each coset of M?” has a representative in R).

(iii) R is a prime principal ideal ring and L 1s a complete, local,
principal ideal domain. The only one-sided ideals of L are the powers
of N.
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For the rest of this section let R, M, R, M, L, and N be as in
Theorem 1.1. Let z be the generator of N; then N = 2L = Lz and
N# = g*[, = Lax*.

2, The Ring L. This section will be concerned with the con-
struction of the L-injective hull of (L/N), and with showing that
Theorem 4.4 holds for L.

LeMMA 2.1. L/N*® can be embedded in L/ N**' as a right L-module
via the map h,: LI N* — LI/N*** defined by h;, ([u + N*]) = [su + N*"'].

Proof. h, is clearly additive and right L-linear. Suppose
h(lw + N*]) = [0 + N**]. From the definition of h, it follows that
zu e N so that zu = 2**'u, for some % in L and u = x*u’' e N*.
Hence [u + N*] = [0 + N*] and #, is a monomorphism. A similar
argument shows that 7, is well-defined.

The maps {#,} and the right L-modules {(L/N*),} give rise to a
directed system. Let E, be the direct limit of this system. Then E,
can be considered as an ascending union of a family of submodules,
{(S;).}, which is totally ordered by inclusion and where each (S;), is
isomorphic to (L/NY),.

Lemma 2.2. Comsider (L/N**'*Y),. Take ae NT/N** and
de N\N**'. The equation yd = a has a solution in (L/N?*+'*),.

Proof. ae N?/N*++' g0 that a = [#”v + N*™*]. de N*\N**' so
that d = x*u where w is a unit in L. In L, xPou™' = wax? since

N? = o?L = La*. Let y = [w + N***"]. yd
= [w+ N*#7d = [wd + N7#] = [weru + N**+]
— [oc”vu“‘u + Np+t+1] — [xvaHt—i-l] = q.

PROPOSITION 2.3. K, is isomorphic to the L-injective hull of the
simple right L-module (L/N);.

Proof. E, contains a copy of (L/N),, namely S,. Thus it is
enough to show that K is an essential injective extension of S,. S,
is essential in K for if ae F, ac S, for some integer k. Let t be the
first such integer: then a e S\S,_,, a is a generator for S,, and aL = S,.
Thus aLNS, =S, and S, is essential. Since L is a principal ideal
domain, it is a hereditary two-sided order in its quotient division ring.
In order to prove K, is injective it is sufficient by a result of Levy
([5], Theorem 3.4) to show that it is L-divisible. Take ae E and
0#deL. acsS, for some t and d e N\N?* for some p. yd = a has
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a solution in S,,,,;,, and hence in E, by Lemma 2.2. FE is thus an
essential injective extension of S, and hence is its injective hull.

Let K = end,(F) and let K act on E by left multiplication; E then
becomes a left K-module. Let H = endg(F); in similar manner E then
becomes a right H-module. Ed = E (since E is L-divisible) for all
nonzero d in L; thus E is a faithful right L-module. Hence L may
be considered as a unital subring of H.

LEMMA 2.4. The S)’s are the only proper L-submodules of K.

Proof. Suppose M, is a submodule of E with generating set {m;} .
Since E = US,;, each m,; is in some S,. Let k; be the first k& for
which m; e S,. Then m;eS,\S;,—. and m;L = S,,. M = Zm;L = 3S,,
so that if {k;} is bounded, M = S,, where k, = max {k;}, and if {k;}
is not bounded, then M = FE,.

LEMMA 2.5. IfacS, and if beS,_,, then there is a qe K such
that q(b) = a.

Proof. Assume that ¢ is the first integer for which beS,.,.
Then ann,(b) = N"** which is contained in N” which in turn is contained
in ann;(a). Thus the map G: bL—alL defined by g(bd) = ad is well
defined. FE, is L-injective so that ¢ can be extended to an endomor-
phism ¢ of E. qe K.

ProOPOSITION 2.6. Fach S, is a cyclic left K-submodule of xF, the
composition length of r(S,) is n, and the S,’s are the only proper
K-submodules of E.

Proof. 1If ge K,q(S,) is an L-submodule of F of composition length
less than or equal to # and hence must be contained in S, by Lemma
2.4; hence each S, is a left K-submodule. Each .(S,) is cyclic via
Lemma 2.5; in fact, any L generator of S, will be a K generator of
S.. This implies that x(S,) is simple and inductively that the com-
position length of ,(S,) is n. The proof of Lemma 2.4 shows that
these are the only K-submodules of E.

LEMMA 2.7. Let H; be the annihilator of S; in H. Then H; is a
two-sided ideal of H, H;,, is properly contained in H,, and N H; = 0.

Proof. H, is clearly a right ideal of H. If he H, then (S;)% is a K-
submodule of E of composition length less than or equal to 7. By
Proposition 2.6 it must be that (S;)ACS; so that each S; is H-invariant.
As a result H; is a left ideal and hence an ideal. The inclusions are
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proper, for H; N L = N*and N, = N*'. Since E = U S;, anything in
N H; would annihilate all of E and hence be zero.

ProrosiTiON 2.8. H = L. That s, L is the second endomorphism
ring of K.

Proof. Take fe H. By Proposition 2.6 there is a nonzero y e S,
such that S, = Ky = yL. Hence there is a p, € L such that yf = yp,.
Also, if z€8S,, 2 = ky for some ke K and

Z(f— pl) = (ky) (f— pl) =k0=0. Hence f—p, ¢ annII(Sl) =H,.

Inductively suppose that there is a p;€ L such that f— p; e H..
Now take yeS;;\S;. w(f— p,)eS;., so that there is a de L such
that y(f—p;)=wyd. If 2€8;;,, 2=ky for some ke K. Then
2(f — ) = (ky) (f — p:) = k(y(f — p;) = k(yd) = (ky)d = 2zd and hence
f—»;—disin H;,. Let p;, = p; +d; then f— p,., e H;.,.

The sequence {p;} is Cauchy in L, for p, — p, = (0, — f) + (f — Dn)
an element of H, + H,; but H, + H, = H, if n <m. Thus p,=p, is in
H,NL = N". L is complete; therefore {p;} converges to some element
p of L. It only remains to be shown that p = f. Take z¢ E; z¢ S,
for some n. {p;} converges to p so that there is a positive integer
M such that p, — pe N* for all m greater than M. Take m greater
than M + n. zf = 2p,, = z2p. # was arbitrary; therefore f = p.

3. The Ring K. In this section it will be shown that K is a
complete, local, principal ideal domain.

LEMMA 3.1. Let L, E, and K be as wn §2. Let J denote the
Jacobson radical of K and let A, = anng(S,). Then

(i) K is a local domain.

(ii) J=A4, J'cA4,NA, =0, and NJ" = 0.

(iii) K is complete in the topology induced by the A,’s.

Proof. (i) K 1is local since it is the endomorphism ring of an
indecomposable injective module. To prove that K is a domain it is
sufficient to show that every nonzero endomorphism of K, is an epi-
morphism. Let 0 ke K. If k(E)=+ E, (E) =S, for some n by
Lemma 2.4. Ann,(S,) = N*; take 0 5= be N". Since E is L-divisible,
Eb = E. Asaresult S, = k(F) = k(Eb) = k(E)b = S,b = 0 contradict-
ing the fact that k == 0.

(ii) The radical of K, J, is the set of all endomorphisms of £,
whose kernel is essential (see [2], page 44). Since (S,), is the unique
minimal submodule of E, ker(k) is essential if and only if k(S) = 0;
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therefore J = A, and JS, = 0. Inductively suppose that J*'S,_, = 0.
JS,cS,_, since it is contained in the radical of K(S,), S,_,. Hence
J"s, = J*'(Js,) which is contained in J"'S,_, which is zero, hence
J*cA,N A, =0 since anything inN 4, would annihilate all of the S,’s
and hence all of E. N J™ = 0 since J"C A4,.

(iii) Let {f;} be a Cauchy sequence in K with respect to the
topology induced by the decreasing family {A4,}. Let zeE. zeS,
for some p. Since {f;} is Cauchy, there is an integer M such that
fo— fned, for n, m greater than M. Define f(x) = fy..(x). It is
clear that fe K and that f; — f by the nature of the construction.

Pick jeJ\A,. There is such a j, for if y,€ S,\S, and if 0 == 4, € S,,
then there is a je K such that j(y,) = vy, by Lemma 2.5. jeJ\A..
In fact if se S,.,\S,, then j”s is a nonzero element of S,. The proof
is by induction. If seS\S,, then s = y,u for % a unit in L. Hence
js = jy.u = y,u # 0. Inductively suppose that 7" 's is nonzero for all
s in S\S,_, and take seS,.\S,. jse€S, by an argument in the
previous proof. The claim is that js¢ S,_,. If it were, then j's = 0
which contradicts the induction hypothesis since sd € S,\S,-, for some
d in L. Hence js¢ S,., so again by the induction hypothesis j7"s =
J"(gs) # 0.

LEMMA 3.2. Let K, J, j, E, and L be as above.
(i) J=jK.

(ii) J = Kj.

(iii) J* ="K = Kj".

Proof. (i) Let xed. Let y,eS\S,. «(y,) = yeS,since xeJ. Let
J(¥.,) = y; ¥, is a nonzero element of S, since jeJ\4,. Then there is
an element d in L such that ¥y = yd = j(¥.)d = j(y.d). By Lemma 2.5
there exists k, € K such that k(y,) = vd. If se€S, then s = y,c for
some ¢ in L. x(s) = 2(y.0) = X(¥,)e = uc = (Gk(v:))e = jki(y.c) = jki(s).
This says that « — jk, € A,.

Inductively suppose that there exist %, ,---, k,—, such that

2=~ (Jk, + 5%k + ++- + 5" k) €A, IE
Yn+1 € S’rb+1\Sn7 then jﬂ(ynﬂ) =

a nonzero element of S, by the above choice of j. Also z(¥,..) €S,
since z ¢ A4,. Hence by the argument above there is a k,e€ K such
that z — j"k,€ A,.,. The sequence {jk, + «++ + j"k,} converges to x
in the A, topology by the nature of the construction. Also, since
J"< A, the sequence {k, + --- + 7*'k,} is Cauchy and hence by the
completeness of K converges to some element k& of K. Also by the
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construction jk = x. Since x was arbitrary in J, J = jk.

(ii) is proven by an argument similar to that of (i).

(ili) J=4K= Kj by (i) and (ii). Inductively suppose that
J"=7"K = Kj*. Then J**' = J*J = (jK)(JK) = j(Kj)K = j*GK)K =
J"7 K. Similarly J** = Kj»ti.,

ProprosiTION 3.3. K as above.

(i) Jr= A, for all n.

(ii) J* are the only ome-sided ideals of K.
(ili) K 4s a complete principal ideal domain.

Proof. (i) J = A, by Lemma 3.1. Inductively suppose that
A, =J" JHcAA,,cA,=J" JYJ"" =7"K[j""'K ~ K/jK = K[J
which is simple. Therefore either A4,., = J"** or A4,., = J". But by
the induction hypothesis j"¢ A4,., so that A4, = J"*.

(ii) It is sufficient to show that given ¢ e K, «K = K or that
2K = J” for some p. Take x¢€ K and suppose that K = K, then
is not a unit and hence z e J?** for some p. By Lemma 3.1 x = 5%k,
and k¥ must be a unit; for otherwise %k = jk, for some k, in K and
©=3%k, e J?t. Asaresult xK =j°kK =j°K = J*. Similarly Kx = J*.

(iii) K is a principal ideal domain by Lemma 3.2 and (ii). K
is complete by (i) and Lemma 3.1.

4. The Ring R. Let R, M, R, and L be as in Theorem 1.1.
Then R is the full & x k matrix ring over L. Let e;;, %, 5 = 1,2, «++, n
be a complete set of matrix units for B. Let M, be a right L-module
and let M* = M, --- P M,, a direct sum of n copies of M. Let f;
be the identity map on M,, and let f;, 1 =2, -+, % be an isomor-
phism from M, to M;. Then M* can be made into an R-module by
defining fi(m)e;; = f;(m) and fi(m)e,; = 0 if ¢~ k. “*” is a category
isomorphism from the category of right L-modules to the category of
right R-modules. There is also a category isomorphism e, from the
category of right R-modules to the category of right L-modules
defined by (Az)e, = Ae,. M and M%*e, are isomorphic for any right
L-module M (see [1], or [5] page 137).

PROPOSITION 4.1. R is the second endomorphism ring of the R-
injective hull of the simple right R-module.

Proof. Let E be the L-injective hull of the simple right L-module
as in §2. Then E* is the R-injective hull of a simple right R-module
since * is a category isomorphism. R/M is simple Artinian and M is
the Jacobson radical of R so there is only one isomorphism class
of simple right-R-modules. Let K = endz(E*) and take ¢ecK.
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q(E*e;;) = q(E*e::) = q(E*e;;)e;;; thus each E¥e; is K-invariant and
B = yF*e, D xFep P ++- D gF*e. Each e;; is a K-isomorphism
so that E* is decomposed as a direct sum of £ mutually isomorphic
K-modules. Thus each K-endomorphism of E* can be given by
multiplication by a matrix of homomorphisms. The remainder of the
proof shows that the entries in this matrix are of the desired forms.
Each ¢ e K restricted to E*;, is an L-endomorphism of E*;. Each
L-endomorphism of E*e;; can be extended in one and only one way
to an R-endomorphism of E*; namely, if ¢ is an L-endomorphism of
E*e;;, then its unique extension ¢ is defined by q(z) = >\%_.G(ze;;)e;;
for ze E*. Hence K =~ end,(E*e;;) via the restriction map. By pro-
position 2.8 each element of end.(E*e;;) can be given by right multi-
plication by an element of e;;Re;;. If h:E*e;; — E*e;; is a K-homomor-
phism, then heé;; is a K-endomorphism of E*e¢;; where ¢,; denotes right
multiplication by e;;. Hence hé;; = &;ré;; for some »c R. If ze E*;,
then (2)h = zhe;; = zheje;; = zeyreqe;; = zere; so that h is given by
right multiplication by an element of e;;Re;;. As a result every K-
endomorphism of E* is given by right multiplication by an element
of R.

R can be considered as a subring of R; as a result every R-module
is automatically an R-module. Also, if M is the maximal two-sided
ideal of R, then M?N R = M? and every coset of R/M” has a
representative in R (Theorem 1.1).

LEmMMA 4.2. E* as in the proof of Proposition 4.1, then (E*)z s
the ascending union of R-modules 0C B,C B, C - - - where the composition
length of B, is n. These are the only R-submodules of E*. Furthermore,
the B;’s are the only R-submodules of E* and every R-endomorphism
of E* is an R-endomorphism. That is, the structure of E* as an
R-module is identical to its structure as an R-module.

Proof. The first part follows since it was true of F and * is a
category isomorphism. Let B; = S;*. A category isomorphism pre-
serves the submodule lattice. Note that the composition length of
(B.)z is n; since M is the radical of B, B,M” = 0. In order to prove
that the B,’s are the only R-submodules of E* it is sufficient to show
that aR = aR for all ac E*. Take ac E*. Clearly aR c aR. Take
7eR. acB, for some n so that el = 0. By theorem 1.1 there is
an m in M"* so that ¥ + m = re R, then a¥ = aF + 0 = a7 + am =
a(Ff + m)ar. Thus aRcaR and aR = aR.

Let q be an R-endomorphism of E* and take ac E* and 7eR.
It must be shown that g(a¥) = ¢(a)?. Since a € E*, a € B, for some n.
The B,’s are the only R-submodules of E* and the composition length
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of B, is n, so that ¢(B,) B, and q(a) e B,. As above there is an
me M” such that # + m = re R. B,M"=0. Then

q(a7) = qla7 + 0) = q(a7 + am) = q(a( + m)) = q(ar)
= q(a)r = q(@)(T + m) = q(a)T + q(a)m
= q(a)7 + 0 = q(a)7 .

Thus ¢ is an R-endomorphism.
LEMMA 4.3 E* is the R-injective hull of (B))g.

Proof. By Lemma 4.2 (B,)); is an essential submodule of E*,.
E* is an injective R-module since * is a category isomorphism; in
particular E* is a divisible R-module so that E* is a divisible R-
module. R is a hereditary two-sided order so that E* is an injective
R-module by [5], Theorem 3.4.

THEOREM 4.4. Let R be a Dedekind prime ring with a maximal
two-sided ideal M, and let P be a maximal right ideal of R containing
M. Then the R-endomorphism ring of the R-injective hull of R/P is
a complete principal ideal domain.

Proof. Let R, R, L, E,, and E* be as above. Then by Lemma 4.3
E* is the injective hull of a simple right R-module which is anni-
hilated by M. (B,), = R\P since both are simple modules over the simple
Artinian ring R/M; thus E* =~ F(R/P). By Lemma 4.2 end,(E*) =
endz(£*) which is isomorphic to end,(£) since™ is a category isomor-
phism. Hence the result follows by Proposition 3.3.

THEOREM 4.5. (Main Theorem) Let R be a Dedekind prime ring
with a nonzero prime ideal M, and let P be a maximal right ideal
containing M with E(R/P) the R-injective hull of R/P. Then R, the
completion of R at M, is isomorphic to the second endomorphism ring
of E(R/P).

Proof. Consider E*; as above E* =~ E(R/P). By Lemma 4.2 the
R and R structures of E* are identical. Thus R is second endomor-
phism ring of E(R/P) by Proposition 4.1.
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